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a b s t r a c t

This paper presents a novel multi-objective genetic algorithm (MOGA) based on the NSGA-II algorithm,
which uses metamodels to determine optimal sampling locations for installing pressure loggers in
a water distribution system (WDS) when parameter uncertainty is considered. The new algorithm
combines the multi-objective genetic algorithm with adaptive neural networks (MOGA–ANN) to locate
pressure loggers. The purpose of pressure logger installation is to collect data for hydraulic model cali-
bration. Sampling design is formulated as a two-objective optimization problem in this study. The
objectives are to maximize the calibrated model accuracy and to minimize the number of sampling
devices as a surrogate of sampling design cost. Calibrated model accuracy is defined as the average of
normalized traces of model prediction covariance matrices, each of which is constructed from
a randomly generated sampling set of calibration parameter values. This method of calculating model
accuracy is called the ‘full’ fitness model. Within the genetic algorithm search process, the full fitness
model is progressively replaced with the periodically (re)trained adaptive neural network metamodel
where (re)training is done using the data collected by calling the full model. The methodology was first
tested on a hypothetical (benchmark) problem to configure the setting requirement. Then the model was
applied to a real case study. The results show that significant computational savings can be achieved by
using the MOGA–ANN when compared to the approach where MOGA is linked to the full fitness model.
When applied to the real case study, optimal solutions identified by MOGA–ANN are obtained 25 times
faster than those identified by the full model without significant decrease in the accuracy of the final
solution.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Data for the calibration of a water distribution system (WDS)
model is usually collected from a series of field tests at strategic
locations within the network in which the pressure head is recor-
ded (de Schaetzen et al., 2000). The accuracy of calibration depends
on the quality and quantity of the collected data and its relative
location to the calibration parameters being estimated. Therefore,
the selection of appropriate collection locations, called the
sampling design (SD), is important and has been a challenge for
researchers and practitioners (Kapelan et al., 2005a).

Practitioners often use a simplified approach for sampling
design since they seek straightforward applicable methods without
the need for complex computations (Walski, 1983). Although these
methods are simple to understand and apply, they suffer from the
x: þ44 1392 217965.
).

All rights reserved.
lack of accuracy since they may require a logger to be located on
nodes where pressures are insensitive with respect to calibration
parameters. This way, the measurement locations that can return
most of the information about calibration parameters may be easily
omitted.

The above problem was overcome in the past by identifying
sampling designs that have the optimal trade-off between
calibrated model accuracy and the sampling design cost (Meier and
Barkdoll, 2000; de Schaetzen et al., 2000; Kapelan et al., 2003;
Vitkovsky et al., 2003). However, all these models require esti-
mating the calibration parameter values prior to the optimization-
based sampling design process. This is difficult to achieve as these
values can be obtained accurately only after the model calibration.

To overcome this problem, a stochastic sampling design
problem is formulated and solved here. The problem is formulated
as an optimization problem trading off the calibrated model accu-
racy with the sampling design cost but this time, calibration
parameter values are assumed uncertain and modelled by using
probability density functions. This way, a more realistic
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Nomenclature

a vector of calibration parameters
Da perturbation value added to ak
Cova parameter variance–covariance matrix
Covz model prediction variance–covariance matrix
F1 normalized first objective function
F2 normalized second objective function
f1 average of model prediction uncertainty
s standard deviation of measurement devices
f1,ml value of f1 assuming that all analysed locations are

monitored
ITG Initial Training Generations
J Jacobian matrix
Jml full Jacobian matrix (all locations monitored)
Jz prediction Jacobian matrix
NF number of best Pareto (sub)fronts in offspring

population

Na number of calibration parameters
Nk number of sets of samples from uncertain parameters
Nl actual number of measurement devices
Nl
max maximum allowed number of measurement devices

Nl
min minimum number of measurement devices

Nml number of SD potential measurement locations
No number of measurements in both spatial and temporal

domain
Nz number of model predictions for whom uncertainty

are evaluated

Superscript
T vector/matrix transpose operator
s standard deviation of measurement devices
y vector of WDS model predicted variables
z vector of model predictions of interest
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representation of the (essentially unknown) calibration parameter
values is obtained which should lead to more robust sampling
designs obtained. However, this comes at the price as stochastic
sampling design problem is more difficult to solve than the deter-
ministic one.

In this paper, an overview of sampling design andmetamodelling
approaches is briefly presented first. Optimal sampling design
problem is then formulated. Following this, the methodology of the
proposed algorithm, i.e. the multi-objective genetic algorithm and
theadaptiveneural network (MOGA–ANN), is described. TheMOGA–
ANN for SD is first tested on a hypotheticalWDS, which is often used
as a benchmark problem (Farmani et al., 2003), and then it is applied
to a real case study. Finally, the relevant conclusions are drawn.
2. Background

2.1. Sampling design

The problem of sampling design for WDS model calibration has
attracted the attention of a number of researchers in recent years
(Kapelan, 2002; Lansey, 2006). Only a few recently developed
studies related to the proposed model are discussed here. A
comprehensive overview of the relevant works can be found in
Kapelan (2002).

Most of the developed SD approaches have been based on the
sensitivity criteria of measurement locations with respect to cali-
bration parameters. Mainly, Jacobian matrix and covariance matrix
are used to find the most sensitive locations for monitoring (Yu and
Powell, 1994; Bush and Uber, 1998; Lansey et al., 2001; Kapelan
et al., 2003). These criteria have been used either to rank potential
locations based on a sensitivity-based method (Ferreri et al., 1994;
Bush and Uber, 1998; Piller et al., 1999) or to create an optimization
problem (Lee and Deininger, 1992; Meier and Barkdoll, 2000; de
Schaetzen et al., 2000; Kapelan et al., 2003; Vitkovsky et al., 2003).

In the above ranking type approaches, a new measurement
location leading to the current largest increase in SD accuracy is
added to the previously selected set of logger locations until
the maximum number of loggers is reached. This implies that the
optimal set for Nmeasurement locations is always a superset of the
optimal set for N� 1 locations, which was shown not to be always
true (Kapelan et al., 2003). Having said this, when compared to the
empirical methods, the ranking type approach is computationally
superior and easy to set up as it does not require solving a complex
optimization problem.
The optimization model can take into account the effect of a set
of monitoring locations altogether and their mutual interactions
when performing SD for a set of specified monitoring locations.
Most SD approaches have used genetic algorithms (GAs) to solve
the associated optimization problem (Meier and Barkdoll, 2000; de
Schaetzen et al., 2000; Kapelan et al., 2003; Vitkovsky et al., 2003).

Bush and Uber (1998) proposed three sensitivity-basedmethods
to rank the locations of pressure and tracer measurements within
WDS for model calibration. All three methods are based on mini-
mizing the uncertainty in estimated parameter values (directly or
indirectly). Lansey et al. (2001) developed an SD procedure based
on a three-step calibration process to consider the uncertainties in
measurement and estimation. The trace of the model prediction
covariance matrix is used as the model uncertainty. They finally
proposed how to identify the preferable conditions and locations
for data collection based on the uncertainty and sensitivity-based
heuristic analysis.

The model by Kapelan et al. (2003) presented a deterministic
multi-objective genetic algorithm (MOGA) for SD prior to WDS
model calibration. The two objectives proposed were to maximize
calibrated model accuracy and to minimize total SD costs. The
authors also proposed and compared three different approaches for
evaluating the model accuracy, which were calculated using some
norms of the parameter itself or the prediction covariance matrix.
In this approach, elements of the Jacobian matrix are calculated
prior to the optimization model run by assuming the model
parameter values. This approach is obviously prone to errors as that
kind of information is not readily available when measurement
locations are being selected.

In water quality management, optimal sensor placement in
WDS has also attracted special attentionwith the aim of identifying
contamination sources (Ostfeld and Salomons, 2004; Berry et al.,
2005, 2006; Propato, 2006; Shastri1 and Diwekar, 2006). They all
typically minimize the risk from contamination using sensors for
timely detection.

2.2. Metamodelling

The use of metamodels to reduce the computational times in
optimization processes was proposed by Blanning (1975). A meta-
model can be used as a surrogate for calculating fitness values,
which are normally based on time-consuming simulations. Such
ametamodel can be effectively integrated into the search process to
gradually substitute the large portion of simulation which model
runs require. One of the frequently usedmetamodels is the artificial
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neural network (ANN) because of its ability to approximate effec-
tively a wide range of non-linear functions (Leshno et al., 1993).

Historically, ANNs have been successfully applied to several
water resource problems, such as groundwater remediation
designs (Aly and Peralta, 1999; Yan and Minsker, 2006), water
distribution systems (Lingireddy and Ormsbee, 1998; Broad et al.,
2005; May et al., 2008), river sediment load estimation (Alp and
Cigizoglu, 2007) and coastal pollution prediction (Lin et al., 2008).
In a recent application of groundwater remediation design, Yan and
Minsker (2006) reported a model that makes use of an adaptive
neural network and a single objective genetic algorithm. They
saved approximately 90 percent of the simulation model calls with
no loss in accuracy in the optimal solutions. In the context of water
distribution systems Lingireddy and Ormsbee (1998) applied ANNs
to optimal calibration of a WDS model. Later, Broad et al. (2005)
proposed ANNs as a substitution for a complex simulation model
for WDS design, in which ANNs were trained offline. As ANNs were
trained before being used by the optimization model, the authors
proposed setting some heuristic rules to prohibit solutions
becoming infeasible. In a recent application, May et al. (2008)
developed ANN models to forecast water quality within water
distribution systems. They proposed a new non-linear input vari-
able selection algorithm to reduce arbitrary judgement and
extensive trial-and-error during ANN training.
3. Optimal sampling design

The objective of the SD here is to find a set of optimal
measurement locations with the aim of calibrating accurately the
WDS hydraulic model. These models are typically calibrated for
uncertain pipe roughness coefficients and nodal demands, often
jointly for both (Walski, 1983, 1986; Bhave, 1988; Ormsbee, 1989;
Lansey and Basnet, 1991). Other sources of uncertainty (i.e. poten-
tial calibration parameters) may exist too, e.g. nodal elevation
errors, tank level errors, level of detail (skeletonisation) errors,
outdated pump curves, to name the few (AWWA, 1999). Pipe
roughness coefficient values are usually estimated because it is
usually too difficult/costly to inspect the condition of underground
pipes. On the other hand, demands are calibrated because they are
often not monitored (at least not in the UK). Even when they are
monitored, an error is introduced when actual demands of indi-
vidual households (that occur along the pipe/street) are lumped
together to a nearby network node to construct a WDS model.

The stochastic SD problem is formulated and solved here as
a two-objective optimization problem under parameter uncer-
tainty. The two objectives are the maximization of the calibrated
model accuracy and the minimization of the sampling design cost.

To quantify the calibrated model prediction accuracy, a first-
order second-moment (FOSM) model is used to approximate the
relevant parameter and prediction covariance matrices. Without
the loss of generality, it is assumed that prediction and measure-
ment variables of interest are nodal pressures only. As a conse-
quence, if a set of Nl measurement devices with the standard
deviation of s are installed in Nl measurement WDS locations, the
variance of calibrated parameters can be estimated from the diag-
onal elements of the parameter covariance matrix (Bush and Uber,
1998; Kapelan et al., 2005a):

Cova ¼ s2
�
JTJ

��1
(1)

where J¼ Jacobian matrix of derivatives vyi=vak
(i ¼ 1;.;No; k ¼ 1;.;Na), y¼ vector of No pressure predictions
at locations where loggers are installed, a¼ vector of Na calibration
parameters, No¼ number of observations, i.e. measurement data in
both spatial and temporal domains (e.g. if there areNt time steps for
each of Nl monitoring locations, then No¼Nt$Nl), Na¼ number of
calibration parameters. Note that the above equation can be used to
propagate uncertainty in any measurements (e.g. pressures and/
or flows) to any calibration parameters (e.g. pipe roughness coef-
ficients and nodal demands). It captures the relative sensitivity of
estimated calibration parameters to the measurements used. This
sensitivity depends on a number of factors including relative
proximity of measurement locations to estimated calibration
parameters, calibration parameter grouping (if any), flow condi-
tions in the network during field tests, etc. As a consequence, it is
very difficult to state upfront which parameters (e.g. pipe rough-
nesses or nodal demands) will be more sensitive to the measure-
ments collected (e.g. pressures).

Once the parameter uncertainties are estimated using equation
(1), the uncertainty in calibrated model predictions (e.g. pressures)
at any location in the system can be estimated from the diagonal
elements of the prediction covariance matrix (Lansey et al., 2001;
Kapelan et al., 2005a):

Covz ¼ Jz$Cova$J
T
z (2)

where Jz¼ Jacobian matrix of derivatives vzi=vak
(i ¼ 1;.;Nz; k ¼ 1;.;Na); z¼ vector of Nz pressure predictions
of interest. Note that there are several general methods for the
calculation of Jacobian matrices J and Jz (Kapelan et al., 2003). Here,
the elements of these two matrices are calculated by using the
finite difference method (Lansey et al., 2001):

vzi
vak

¼
zDi � zi

ðak þ DaÞ � ak
(3)

where zDi ¼ pressure prediction with the perturbed calibration
parameter value (akþDa); zi¼ pressure prediction with the
assumed calibration parameter value ak; and Da¼ perturbation
value added to ak. To calculate the elements of the Jacobian matrix,
the following procedure needs to be used: (1) simulate the
hydraulic model by using the assumed parameter value; (2)
simulate the hydraulic model by using the perturbed calibration
parameter value, akþDa, for k¼ 1; (3) calculate derivatives by
using equation (3) and complete the first row of the Jacobian
matrix; and (4) repeat steps 2 and 3 for k¼ 2, ., Na.

To aggregate the model prediction uncertainty, the average of
square root of all diagonal elements in matrix Covz (i.e. standard
deviations of model predictions) is assumed as the model
uncertainty:

f1 ¼ 1
Nz

XNz

i¼1

Cov1=2z;ii (4)

Therefore, the normalized prediction accuracy is then defined as
follows (Kapelan et al., 2003; Bush and Uber, 1998):

F1 ¼
f1;ml

f1
(5)

where f1,ml¼ the value of model uncertainty for the ideal state
where all potential measurement locations are monitored. Note
that if model uncertainty (equation (4)) is to be minimized then
normalized prediction accuracy (equation (5)) has to be
maximized.

Note that all Na calibration parameters have to be assigned
a value before the values of the full Jacobian matrix can be calcu-
lated, i.e. before sampling design process can commence. These
values, however, are not normally available prior to the sampling
design process. To overcome this problem, each calibration
parameter is assumed here to be uncertain following some pre-
defined probability density function (PDF). It is envisaged that this
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should enable a more realistic representation of essentially
unknown calibration parameter values.

As a consequence, the calibration accuracy objective is defined
here as the average of normalized prediction accuracies
(see equation (5)), each of which is constructed from a randomly
generated sample of calibration parameter values:

Maximize F1 ¼ 1
Nk

XNk

j¼1

f j1;ml

f j1
(6)

where Nk¼ number of sets of samples and superscript j refers to jth
sampling set. This approach to calculating the first objective value is
called the ‘full’ fitness model henceforth. To do so, Nk sets of
uncertain parameter values are randomly generated from the
associated PDFs by using the Latin Hypercube (LH) sampling
technique (McKay et al., 1979; Helton and Davis, 2003; Post et al.,
2008). The noisy objective value is then calculated by averaging the
relative accuracies obtained by Nk runs of the deterministic SD
model.

The sampling design cost is surrogated by the number of devices
used leading to the following second optimization objective and
the associated constraint:

Minimize F2 ¼ Nl=Nml (7)

Nmin
l � Nl � Nmax

l (8)

where Nml¼ number of potential measurement locations; Nl
min,

Nl
max¼minimum and maximum number of measurement devices

used, respectively.

4. Methodology

The objectives and the constraints shown in equations (6)–(8) define a two-
objective optimization problem under uncertainty. Themain problem here is how to
efficiently calculate the value of first objective function (see equation (6)) due to the
time consuming nature of repetitive Jacobianmatrix calculations. To resolve this, the
optimization problem is solved by using the multi-objective genetic algorithm
coupled with adaptive neural networks (MOGA–ANN).

Each GA chromosome is coded as a potential sampling design solution and its
fitness is evaluated initially by using the full fitness model (i.e. with a number of
samples). Later on, during the GA search process, the full fitness model is progres-
sively replaced with the periodically (re)trained ANNmetamodel where (re)training
is done using the data collected from the previous evaluations by the full model. The
ANN is retrained after a pre-specified number of objective function evaluations
using the full model. The detailed flowchart of MOGA–ANN is shown in Fig. 1.

4.1. Multi-objective genetic algorithm

Here, a multi-objective evolutionary algorithm known as the Non-dominated
Sorting Genetic Algorithm II (NSGA-II) is used (Deb et al., 2002). NSGA-II alleviates
all of the following difficulties of previous MOGAs: (1) considerable computational
effort, (2) non-elitism approach, and (3) the need for the specification of a sharing
parameter. The selection operator in NSGA-II combines the parent and offspring
populations in a single population and then selects the best solutions with respect
to fitness and spread criteria. More details of this approach can be found in Deb
et al. (2002).

Integer value coding is used for the encoding of each chromosome. The number
of genes equals the maximum number of measurement devices (Nl

max), each of
which represents the position of one pressure logger inWDS. A genewith zero value
indicates no measurement device is available. When using integer encoding, two or
more genes may take the same integer value, indicating more than one pressure
logger should be installed in the same location. These solutions will be rejected by
MOGA due to an increase in cost and no increase in accuracy (Kapelan, 2002).

4.2. Artificial neural network (ANN)

The ANN is used here as a replacement for a full fitness evaluation model used
when estimating the model accuracy objective with the idea of making significant
computational time savings. However, ANN predictions are only approximate and,
therefore, prone to errors when used to evaluate the objective value. To resolve this
problem, several strategies have been proposed to sample solutions and calculate
the relevant objective value with the full model. In addition, the ANNs are period-
ically retrained within the algorithm progress to improve their prediction accuracy.

Fig. 2 shows the architecture of the proposed ANN. As it can be seen,
a conventional neural network with an input, hidden and an output layer is
assumed. Input data are defined as measurement locations, hence the number of
input layer neurons is equal to the maximum number of measurement devices (see
above). The output layer has one neuron only equal to the value of first objective
function (prediction accuracy), as defined in equation (6). The second objective
function value, i.e. the number of measurement locations, is directly calculated and
there is no need to consider it as an additional output neuron. The back propagation
Levenberg–Marquardt algorithm is used to train the ANN (Lingireddy and Ormsbee,
1998).

4.3. MOGA–ANN algorithm

A flowchart of the proposed MOGA–ANN method is shown in Fig. 1. It can be
seen that the method is essentially a modified NSGA-II algorithm that makes use of
the ANN and the caching technique. The search process starts by creating a random
initial population and evaluating the fitness of each chromosome by using the full
fitness evaluation model. The data obtained (both chromosome components, i.e.
genes and relevant objective function values) is then stored in the cache with the
idea of preventing costly repetitive fitness evaluations. The cache is updated
continuously during the search process, i.e. every time chromosome fitness is
evaluated using the full model.

The main loop of the algorithm starts with the creation of the offspring pop-
ulation using the NSGA-II selection, crossover, and mutation operators. In the first
few generations, chromosome fitness is estimated using the full model only, in order
to collect enough ANN training data (steps 5–7 in Fig. 1). Once the ANN is trained
for the first time, evaluation of objective function values is done by using both
ANN and the full model (steps 10–13 in Fig. 1). At first, objective values of all
chromosomes in the offspring population are evaluated by using the ANN. Then the
offspring chromosomes are compared to the ones previously stored in the cache. If
the offspring chromosome is found in the cache then its accuracy objective value
(approximated by the ANN) is replaced with the corresponding value from the cache
(estimated previously by the full model).

To improve the algorithm convergence, a (small) number of chromosomes in the
offspring population is selected and re-evaluated by using the full model (if they
were previously evaluated by the ANN). The chromosomes selected are the ones
present in the best NF Pareto (sub)fronts, i.e. subpopulations of the offspring
population.

Furthermore, when using the integer coding, two or more genes in a newly
created chromosome may have the same value indicating that more than one
pressure logger should be placed on the same network node, i.e. indicating an
infeasible solution. Even though they should be rejected, such chromosomes are
considered by the MOGA–ANN model because of the errors in ANN predictions and,
as a consequence, these solutions may still appear in the best NF Pareto (sub)fronts.
Although applying the above re-evaluation would cause such infeasible solutions to
be rejected quickly, it would lead to a weak convergence of the algorithm. To avoid
this, a penalty is added to the accuracy objective function value of these
chromosomes.

Once the offspring population is created by using the above procedure, it is
combined with the parent population into a single population (double the original
size). The next generation population (of the original size) is then created by using
the standard NSGA-II approach. At this point an additional check is made and if
a chromosome fitness value is estimated by the ANN, its fitness is re-evaluated by
using the full model. This is necessary to ensure good algorithm convergence and it
typically involves a small number of chromosomes. The above search process
continues until some convergence criterion is met.

In addition to standard NSGA-II parameters, MOGA–ANN has some additional
parameters which have to be set before performing the optimization run. This
includes setting the values of NF, the number of Initial Training Generations (ITG),
the number of retraining data and the number of neurons in a hidden layer. The
MOGA–ANN is first rigorously analysed in a hypothetical case study to identify the
optimalMOGA–ANNmodel parameter values. These parameter values are then used
in a real case study.

4.3.1. Best ranked Pareto (sub)fronts (subpopulations)
As noted above, after identifying all Pareto sub-fronts in the offspring pop-

ulation, members of the best NF fronts are checked to see whether their fitness has
been calculated by the full model. If not, they are re-calculated using the full model.
Obviously, a trade-off exists here – the larger the NF is, the better the results will be
achieved from the search accuracy point of view, but also more computational time
will be required to obtain them.

4.3.2. Number of initial training generations (ITG)
A number of initial full model fitness evaluations are required to obtain data for

the first ANN training. This data is collected by using the full fitness model only
when evaluating chromosomes in the first ITG. A sensitivity analysis is performed to
determine the minimum number of ITG required for the good MOGA–ANN
performance.
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4.3.3. Number of retraining data
To increase the accuracy of ANN predictions, ANNs need to be periodically

retrained with new data. The number of retraining data points is defined as the
number of additional (i.e. new) full fitness model evaluations that is collected before
ANN is (re)trained. There are two possible approaches for collecting additional
training data (Yan and Minsker, 2006): (1) the growing set approach and (2) the
fixed set approach. In the former approach, the ANN retraining is accomplished with
both new and existing data (each time the ANN is retrained) whilst in the latter
approach existing data are replaced with new data (leading to the constant number
of retraining data and hence, smaller data sets than in the growing set approach).
Thus, the fixed set approach typically needs less time for retraining and contains less
data but may lead to lower prediction accuracy. A novel mix of the above two
approaches is adopted here to exploit the benefits of both. The growing set approach
is used first to gather (re)training data until some pre-defined data capacity is
reached. After this, new data are replaced with the oldest existing data which are
less likely to be found by the genetic algorithm search.
5. Case studies

5.1. Case #1: literature example

The abovemethodology is first tested and verified on a literature
benchmark case study of the Anytown network shown in Fig. 3
(Kapelan et al., 2003). The objective is to compare the computa-
tional efficiency and accuracy of the proposed MOGA–ANNmethod
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NF and ITG.
and the MOGA model (the latter being based on full fitness evalu-
ations only, i.e. no use of either ANN or caching).

The network configuration data has been taken from Ormsbee
(1989) with the following assumptions. The collected pressure data
will be later on used for the calibration of an extended period
simulation model with eight steady-state loading conditions. The
SD problem is solved with respect to 5 grouped pipe roughness
coefficients and 4 grouped nodal demands (Na¼ 9). All network
nodes are considered as potential pressure measurement locations
except for the reservoir and tank nodes (Nml¼ 16). Full Jacobian
matrix Jml is obtained by using 16 potential measurement locations
and 8 steady-state loading conditions leading to No¼ 128. Standard
deviation of pressure loggers and number of sample sets are set
equal to s¼ 0.1 m and Nk¼ 200 respectively. Uncertain pipe
roughness coefficient parameters follow a uniform PDF with lower
and upper bounds equal to �30% of the deterministic value.
Uncertain nodal demand parameters follow a Gaussian PDF with
coefficient of variation (CV) equal to 0.20.

The following GA parameters are used (values obtained after
a limited number of trial runs): population size of 50, binary
tournament selection operator, random-by-genemutationwith the
probability of 0.25 and single-point crossover with the probability
of 0.90. All MOGA and MOGA–ANN runs were performed for 500
generations.
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Fig. 5. Case #1: model reliability for different values of NF and ITG.
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MOGA–ANN algorithm parameters were determined by the
sensitivity analyses. The criteria for comparing different sets of
parameter values are the number of full fitness evaluations and
the search model reliability. The latter is denoted here as the
percentage of Pareto optimal front points obtained by using the
MOGA–ANN model when compared to the MOGA model. This
percentage has been averaged over 20 MOGA runs with different
random initial populations. The number of best ranked Pareto
(sub)fronts (NF) is examined especially since it has a major effect on
both comparison criteria.
Table 1
Case #1: Pareto optimal solutions obtained by using the MOGA–ANN and percentage of

In the ‘‘Opt. locations’’ rows, ‘‘1’’ means pressure logger should be installed in the node
Fig. 4 shows the average number of full model evaluations for
three values of NF and ITG. As it can be seen, when the NF is
increased, the average number of full model evaluations increases
monotonically, and yet, considerably compared to the increasing
ITG. Fig. 5 shows themodel reliability sensitivity with respect to the
two MOGA–ANN parameters. Based on this figure, the best MOGA–
ANN performance is achieved for ITG¼ 6 and NF¼ 2 or 3.

Fig. 6 shows the sensitivity of model reliability to the number of
retraining data. As it can be seen, for NF¼ 1 and 2, model reliability
decreases when the number of retraining data increases. This
selected sampling locations obtained by using the MCS-based model.

and ‘‘0’’ means no pressure logger is required in the node.
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and the MCS-based models.

Table 2
Case #1: statistics of normalized pressure prediction accuracy (Equation (5)) for four
optimal measurement locations obtained by using the MOGA–ANN and the MCS-
based models.

Description MOGA–ANN MCS

Mean 0.3912 0.3598
Minimum 0.1146 0.1075
Maximum 0.5414 0.5985
Standard deviation 0.0499 0.0645
95% confidence interval upper bound 0.2804 0.2387
95% confidence interval lower bound 0.4789 0.4857
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decrease for NF¼ 1 is about 10% when the number of retraining
data is increased from 1000 to 2000 because ANNs are not updated
after their first training. However, the same decrease in model
reliability is much lower for NF¼ 2 because ANNs are retrained
during the search process and hence the required training data for
NF¼ 2 is obtained earlier than the corresponding data for NF¼ 1.
For NF¼ 3, model reliability is not dependent on the number of
retraining data (always 100%) showing that the value of NF¼ 3 is
large enough to cover all errors arising from different ANN
updating.

Fig. 7 shows the sensitivity of model reliability to the number of
neurons in ANN’s hidden layer. As can be seen, model reliability of
100% is obtained for NF¼ 2 and the number of neurons equal to 20
and 30 and NF¼ 3 (regardless of the number of hidden layer
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Fig. 9. Case #1: comparison of different ty
neurons). Since a larger number of hidden neurons would lead to
longer ANN training times, the number of hidden layer neurons
equal to 20 is selected here.

Based on the above sensitivity analyses, the following MOGA–
ANN specific parameter values are used here: ITG¼ 6, NF¼ 3,
number of ANN hidden layer neurons¼ 20 and ANN retraining
every 1000 full model fitness evaluations.

To validate and compare the results (i.e. the optimal sampling
locations) obtained by using the MOGA–ANN model, the Monte
Carlo Simulation (MCS) based model is developed and used here. In
theMCS-basedmodel, an equivalent deterministic sampling design
optimization problem (i.e. maximization of normalized prediction
accuracy defined by equation (5)) is solved for a number of
randomly generated calibration parameter samples. Optimal
sampling locations are then determined by identifying the most
frequently selected sampling locations in these optimization runs.
Based on the separate sensitivity analysis performed (not shown
here), 200 samples were deemed sufficient for the MCS model.

The optimal sampling locations obtained by the MOGA–ANN
model are shown in Table 1. The table also shows the percentage of
selected sampling locations obtained by the MCS-based model. As
it can be seen, the most frequently selected sampling locations in
257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497
tion number

ANNs evaluation
Cache retrieving
Full model evaluation

pe fitness evaluations in MOGA–ANN.



Table 3
Case #1: comparison of computational times.

Model type Computational time
(minutes)

The number of deterministic
prediction accuracy calculation callsa

MOGA 32 5,000,000
MOGA–ANN 4 590,000
MCS-based 32 5,000,000

a The number of deterministic prediction accuracy calculation calls defined by (4)
for MOGA andMCS-based model is equal to NpopNgenNk, whereNpop is GA population
size (50 here) and Ngen is the number of GA generation before convergence (500
here) and Nk is the number of samples (200).

Table 4
Case #2: summary of pipe materials and diameters.

No. Original material Number of pipes Diameter (mm)

1 Asbestos 406 80–250
Cement

2 Ductile iron 470 100–500
3 Galvanized 113 25–125

Iron
4 PVC 657 25–110
5 Steel 166 20–65
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the MCS-based model (framed fields) almost always correspond to
the optimal ones determined by the MOGA–ANN model. Of course,
some discrepancies exist too (dark coloured fields). The differences
occur inevitably due to the different approaches used in the two
methods when dealing with uncertainty. Nevertheless, 93% of
solutions matched show similarity in the results obtained using the
above two stochastic approaches. Note that theMOGAmodel found
the same solutions as the MOGA–ANNmodel and hence its optimal
measurement locations are not shown in Table 1.

Furthermore, for each given number of monitoring devices in
Table 1, a relatively uniform distribution of optimal measurement
locations is seen within the network. This can be interpreted as the
tendency of the model to cover all parts of the network. However,
these devices are usually located in places far from transmission
pipes which are often close to main sources. For example, nodes 20
and 30, which connect the main source and the main costumers,
consistently rank low. On the other hand, nodes which are the final
receivers of water are the most sensitive nodes and hence they can
be the first candidates for selection. For example, the flow in all
connecting pipes linked to nodes 90, 120 and 170 is almost always
directed towards these nodes, which indicates that they do not
transmit water. This can be because such nodes are the most
sensitive ones with respect to the head loss changes.
Inflow
Inflow

Reservoir

Reservoir

MOGA-ANN  model

MOGA  model

Fig. 10. Case #2: skeletonised Mahalat WDS model and optimal pressure logger
locations (10 measurement points).
To compare the Pareto optimal front obtained by the MOGA–
ANN and the MCS-based models, solutions are further evaluated in
the same uncertain environment. To do so, the following steps are
preformed: (1) 10,000 sets of uncertain parameter values are
randomly generated according to the pre-specified parameter
PDFs; (2) for each model the normalized prediction accuracy (see
equation (6)) is calculated for each optimal measurement location
identified in the 10,000 samples.

Fig. 8 shows Pareto optimal fronts obtained by the aforemen-
tioned method for the two stochastic models. The prediction
accuracy of both models is also shown in the third column of Table
1. As can be seen from Fig. 8, both Pareto optimal fronts match
reasonably well although MOGA–ANN’s front seems to be slightly
better for a few measurement locations. Also, note that the largest
incremental change in the calibration accuracy is gained when
moving from a solution with 6 loggers to a solution with 7 loggers.
This fact could be used to select the solution with 7 loggers as the
‘best’ one, i.e. the most cost-effective one (Kapelan et al., 2005b).

To further compare solutions obtained by the MOGA–ANN and
MCS-based models, the four optimal monitoring locations identi-
fied by each of these twomethods are shown in Fig. 3. Here it shows
that three out of four monitoring locations are identical. The
statistics of normalized pressure prediction accuracy (see equation
(5)) which resulted from model simulations in the uncertain
environment are given in Table 2. It can be seen that both statistics
are similar to each other.

Fig. 9 shows the comparison of the number of the actual func-
tion evaluations using the full model, the caching technique and the
ANN approximations as the MOGA–ANN model search progresses.
It can be seen from this figure that a total of 12% of chromosomes
are evaluated by using the full fitness evaluation model. Most of
these evaluations occur in the first six generations of the MOGA–
ANN model when the initial ANN training data is obtained. After
that, the proportion of the full model evaluations decreases in
favour of two other means of estimating the solution fitness. The
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Fig. 11. Case #2: comparison of Pareto optimal fronts obtained by the MOGA and the
MOGA–ANN models.



Table 5
Case #2: statistics of normalized pressure prediction accuracy (Equation (5)) and uncertainty (Equation (4)) for ten optimal measurement locations obtained by using MOGA
and MOGA–ANN.

Model type Relative pressure prediction accuracy Pressure prediction uncertainty (m)

Mean 95% confidence interval
lower bound

95% confidence interval
upper bound

Mean 95% confidence interval
lower bound

95% confidence interval
upper bound

MOGA 0.2451 0.1836 0.2761 0.6774 0.5838 0.9012
MOGA–ANN 0.2445 0.1849 0.2747 0.6780 0.5909 0.8919

Table 6
Case #2: comparison of the computational times required to obtain Pareto optimal
solutions.

Model type Computational time
(minutes)

The number of deterministic
prediction accuracy calculation callsa

MOGA 1550 320,000,000
MOGA–ANN 65 2,098,400

a The number of deterministic prediction accuracy calculation calls defined by (4)
for MOGA is equal to NpopNgenNk, where Npop is GA population size (200 here) and
Ngen is the number of GA generation before convergence (8000 here) and Nk is the
number of samples (200).
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percentage of objective values retrieved from the cache is almost
constant at 25% once the initial ANN training is done.

Table 3 shows the comparison of computational effort for the
three aforementioned stochastic sampling designmodels. As can be
seen from the second column of this table, the MOGA–ANN model
achieves optimal solutions 8 times faster (87% savings) than the
MOGA and the MCS-based models.

5.2. Case #2: real-world case study

Here, the proposed MOGA–ANN sampling design model is
further tested and verified on the Mahalat WDS shown in Fig. 10.
The city of Mahalat is located in the central part of Iran. The WDS
covers an area of approximately 46 km2, with a population of
around 160,000. The city is located on a steep slope with the lowest
elevation of 1584 m.a.s.l. while the highest elevation is 1900 m.a.s.l.
Water demands are predominantly domestic with some commer-
cial users. To reduce the high pressure head induced by the steep
slope, six pressure reducing valves (PRVs) are used to decrease
pressure heads to pre-specified values. The total number of pipes
defined in the original WDS is 1814 with the total length of
approximately 101 km.

The dominant pipe materials (see Table 4) are ductile iron
(larger pipe diameters), PVC (small diameter pipes) and asbestos
cement (most of the middle diameter pipes). The skeletonised
EPANET hydraulic model has 237 pipes,195 junctions, 2 tanks and 6
PRVs. TheWDS is supplied by gravity and pumped from three wells
and two service tanks (reservoirs). The position of the water supply
sources (two wells) is marked in Fig. 10 as ‘inflow’. The third well
supplies the two reservoirs. The average water demand in the
network is 158.9 l/s.

It is assumed that the above WDS model will be calibrated for 7
grouped pipe roughness coefficients, i.e. Na¼ 7. Although there are
a large number of pipes (237 pipes), the small number of calibration
parameter groups is assumed to primarily keep the calibrated
model prediction error low but also to reduce the computational
effort (Mallick et al., 2002). The Hazen Williams (HW) pipe
roughness coefficients were first grouped using engineering tables
and proposed relationships based on the diameter, material, lining
and age of pipes (Walski et al., 1988; Kapelan, 2002). Then, the final
pipe grouping was performed by dividing the range of identified
HW pipe roughness coefficients (78–155) into the following
groups: (78, 90], (90, 100], (100, 110], (110, 120], (120, 130], (130,
140] and (140, 155]. Once this was done, the average value at each
interval was considered as the group’s representative roughness
coefficient value. Furthermore, it was assumed that the Mahalat
model would be calibrated for average demand loading conditions
only. The standard deviation of all pressure loggers was assumed
equal to s¼ 1.0 m.

Since the number of calibration parameters is equal to 7 (Na¼ 7),
the constraint on the minimum number of measurement devices
(Nmin) is set to 7. This ensures that the sampling design solutionwill
lead to at least an even-determined calibration problem. Further-
more, each node of the network was considered as a potential
measurement location (Nml¼ 195). However, the maximum
number of 50 measurements (Nmax¼ 50) was introduced as the SD
budget limit. The full Jacobian matrix Jml is obtained by using all
potential measurement locations and average demand loading
conditions leading to No ¼ 195. Note that pressure under average
demands can be accurately predicted in this case because the SD
problem was solved under average demand conditions.

MOGA model settings were determined after a limited number
of trial runs with different initial populations. The following
settings have been used for GA parameters in all model runs:
population size of 200, binary tournament selection, random-by-
gene mutation with probability rate of 0.05 and single-point
crossover with probability rate of 0.80. All MOGA runs were per-
formed for 8000 generations. The additional MOGA–ANN model
parameters were set equal to the values obtained in the first case
study. When compared to this case study, the maximum training
data capacity needs to be defined in this case because of the large
number of full fitness evaluations. Therefore, the caching capacity
of 5000 was assumed for the Mahalat case study. Furthermore, the
following assumptions are made about uncertain parameters: (1)
the calibration parameters are assumed to be only pipe roughness
coefficients, all following a uniform PDF with lower and upper
bounds equal to �30% of the deterministic value; (2) uncertain
nodal demands following a Gaussian PDF with coefficient of vari-
ation (CV) equal to 0.3 were modelled too (but not calibrated for).

The near optimal measurement locations are obtained by
running both the MOGA and theMOGA–ANNmodels. As the lists of
these sampling locations are long (between 7 and 50), only the
Pareto optimal fronts obtained are shown here. The same meth-
odology used in case #1 is used here to compare the two Pareto
optimal fronts.

Fig. 11 shows the Pareto optimal fronts obtained by the MOGA
and the MOGA–ANN models. The following can be observed: (1)
both fronts match reasonably well although there is a minor
advantage of MOGA over MOGA–ANN for the large number of
monitoring locations. As a consequence, solutions obtained by the
MOGA–ANN model represent a good surrogate of the solutions
obtained by using the MOGA model; (2) an average normalized
accuracy of approximately 60% is attainable by monitoring 25%
optimal measurement locations (i.e. by using 50 pressure loggers);
(3) the rate of increase in WDS model prediction accuracy declines
quickly with the increase in number of monitoring locations; for
example, adding one more measurement location when 4% loca-
tions are already monitored improves the normalized calibrated
WDS model prediction accuracy by 3%, while adding one more
sampling location when 10% of the system is monitored leads to an
improvement (in normalized WDS model prediction accuracy) of
less than 1%.
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The ten MOGA–ANN and MOGA optimal monitoring locations
are shown in Fig. 10. Only four monitoring locations are identical
although other monitoring nodes are relatively close to each other.
The statistics of normalized pressure prediction accuracy (equation
(5)) and pressure prediction uncertainty (equation (4)) obtained by
using the model simulation in the uncertain environment are given
in Table 5. The 95% confidence interval for pressure prediction is
between 0.18 and 0.27 in both models. The statistics show similar
relevant objective values although the optimal monitoring nodes
are not quite the same. This is probably due to the fact that as in
many other large-size optimization problems, there are many
combinations of near optimal solutions (i.e. monitoring locations)
that can produce similar fitness statistics. Fig.10 also shows that the
distribution of ten optimal measurement devices is relatively
uniform within the network. The selected measurement locations
are usually located away from the main sources and transmission
pipes. This confirms that the optimalmeasurement locations satisfy
suggestions put forward by Walski (1983) and verified by Kapelan
et al. (2003).

Table 6 shows the comparison of computational times for the
two stochastic SD models. It can be seen in the case of a real-world
problem, that the main advantage of the MOGA–ANN model when
compared to the MOGA model, is that Pareto optimal solutions are
obtained with large computational savings (96% approximately)
without significant decrease in accuracy.

Finally, Fig. 12 shows the proportion of different types of fitness
evaluations performed by the MOGA–ANNmodel in the case of the
Mahalat WDS. This figure shows that less than 1% of all fitness
evaluations are performed by using the full model, 65% are per-
formed by using the ANN and the rest is obtained by using the
caching technique.
6. Summary and conclusions

This paper addresses the problem of stochastic WDS sampling
design for calibration. The objective is to identify best measure-
ment locations in the WDS that should be used to collect the
relevant data for subsequent model calibration. The sampling
design is formulated and solved as a two-objective optimization
problem under calibration parameter uncertainty. The two objec-
tives are themaximization of the calibratedmodel accuracy and the
minimization of the number of sampling devices used (used as
a surrogate for sampling design cost). Uncertain calibration
parameters are characterised by means of pre-specified PDFs.

The sampling design problem is solved by the new MOGA–ANN
algorithm. This is amodifiedNSGA-II algorithm,whichmakes use of
artificial neural networks and the caching technique to reduce the
computational burden. The periodically retrained ANNs are used as
surrogate models during the optimization process to speed up the
fitness evaluations. The caching technique is used to retrieve
previouslyevaluated solutions efficientlyandprevent re-evaluation.

The MOGA–ANN algorithm is tested and verified on two case
studies, the benchmark problem of a hypothetical network (Any-
town), and the real case study of the Mahalat WDS. The results
obtained clearly demonstrate that substantial computational
savings can be achieved by using the MOGA–ANN model without
significant loss of accuracy. This is a promising result when it comes
to solving stochastic sampling design or generally time-consuming
multi-objective optimization problems for large-scale WDSs.
Having said this, further research work is required to test and verify
the capability of the proposed approach before achieving that goal.
In addition, improvements achieved by stochastic sampling design
should be further investigated in real case studies.
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