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A B S T R A C T   

Chromium (Cr) pollution caused by the discharge of industrial wastewater into rivers poses a significant threat to 
the environment, aquatic and human life, as well as agricultural crops irrigated by these rivers. This paper 
employs artificial intelligence (AI) to introduce a new framework for modeling the fate, transport, and estimation 
of Cr from its point of discharge into the river until it is absorbed by agricultural products. The framework is 
demonstrated through its application to the case study River, which serves as the primary water resource for 
tomato production irrigation in Mashhad city, Iran. Measurements of Cr concentration are taken at three 
different river depths and in tomato leaves from agricultural lands irrigated by the river, allowing for the 
identification of bioaccumulation effects. By employing boundary conditions and smart algorithms, various as-
pects of control systems are evaluated. The concentration of Cr in crops exhibits an accumulative trend, reaching 
up to 1.29 µg/g by the time of harvest. Using data collected from the case study and exploring different scenarios, 
AI models are developed to estimate the Cr concentration in tomato leaves. The tested AI models include linear 
regression (LR), neural network (NN) classifier, and NN regressor, yielding goodness-of-fit values (R2) of 0.931, 
0.874, and 0.946, respectively. These results indicate that the NN regressor is the most accurate model, followed 
by the LR, for estimating Cr levels in tomato leaves.   

1. Introduction 

Human life and civilisation are based on water and available fresh-
water resources, increasing well-being and the quality of everyday life. 
Many efforts have been made so far, to balance the relationship between 

water, environment and the human civilisation. All these efforts to 
manage these relations should be in line with the UN Sustainable 
Development Goals (SDGs) and especially SDG#14 (i.e. Life Below 
Water (LBW) (Capello, 2022). LBW is proposed for both governments 
and private sectors worldwide and a majority of experts aim to meet its 
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requirements by improving the relevant practices in their own areas 
(Gulseven, 2020). One significant measure for achieving this goal is to 
protect water resources from wastes and chemicals, i.e. contamination 
(Joshi and Temgire, 2022). The LBW is fundamental to water resources 
with major impacts on human life either directly e.g., drinking water or 
indirectly such as the aquatic, agricultural and industrial activities as 
illustrated in Fig. 1. 

Discharge of pollution and wastewater directly or indirectly into 
receiving water resources, especially rivers due to human activities are 
one of the most dangerous threats among all factors threatening water 
resources (Horn et al., 2022). Moreover, industrial wastewater dis-
charged into the rivers has resulted in increased concentrations of heavy 
metals including Co, Cr, Cu, Fe, Sb and Zn (Lučić et al., 2022). All these 
have driven scientists to investigate river catchments and identify the 
contribution of heavy metals (including fate and transportation) to the 
pollution of water resources. Fig. 2 shows the interaction between the 
pollution derived from human activities discharged into the rivers and 
the threats to the environment and humans. In addition, there might be 
major threats against rivers with challenging consequences, which 
require all stakeholders such as governments, the private sector and 
society, to take the necessary action to mitigate the negative impacts 
(Lu, 2022; Hernanda and Giyono, 2022). More attention is now given to 
water resources conservation e.g., LBW in SDG#14 and it can be more 
crucial in developing countries (Omuku et al., 2022). 

The accumulation of heavy metals in living organisms, which is also 
known as bioaccumulation, can have severe consequences, which can be 
resulted in the destruction of water-food nexuses in a water body 
catchment (Lv et al., 2022). Fig. 3 shows this nexus through a cycle of 
industrial and agricultural activities around the river and their impact 
on the nearby environment and SDG especially LBW. These conceptual 
circular impacts can help decision makers to establish sustainable plans 
for healthy agriculture and the protection of human health. This nexus 
with its impacts on or affection by intervention in the relevant sectors 
has been analysed in research works. For example, re-distrution of 
manufacturing with relevant challenges and opportunities for 
food-water-energy nexus has attracted a lot of attention by stakeholders 
and research communities (Veldhuis et al., 2019). More specifically, it 
aims to understand a conceptual framewok for local nexus network for 
evaluating the sustainability of future localised food systems and their 
association with energy and water supply (Cottee et al., 2016). 

Furthermore, the scarcity of water resources and the necessity of 
developing water reuse strategies have introduced a new challenge 
related to the impact of pollution on receiving water bodies. This chal-
lenge affects the water-energy-pollution nexus, leading to the emer-
gence of new intervention strategies emphasising the interconnection of 
these factors (Landa-Cansigno et al., 2020). 

Given the significant health hazards associated with heavy metals in 
water resources, it is crucial to monitor their presence in receiving water 
bodies and understand their impact on agricultural crops through irri-
gation. Hence, multiple researchers investigated the sources, trans-
portation and fate of heavy metals in rivers and their impact on water 
quality factors and plants irrigated with the polluted water. For 
example, Mokarram et al. (2022) collected experimental samples from a 
river reach to quantify the water quality of a river and estimate the 
spatial distribution of heavy metals released by industrial sectors using 
Kriging methods. The level of heavy metals in soils can also be measured 
and different factors like the distance of river or type of soil can be 
considered to evaluate the role of pollution in the agricultural landscape 
(Shahradnia et al., 2022). Krauss et al. (2002) investigated the potential 
of using Isoterms as a non-linear method to predict some heavy metal 
concentrations (Cd, Cu, Pb, and Zn) in wheat grain and leaves. Mac-
Farlane et al. (2003) analysed the accumulative concentration of heavy 
metals such as Cu, Pb and Zn in different parts of the grey mangrove 
plant. They studied the relationship between heavy metals and several 
transferring factors like pH and sediment concentration. Chojnacka et al. 
(2005) conducted research on the transfer of heavy metal ions (As, Cd, 
Cr, Cu, Hg, Mn, Ni, Pb, Zn) from contaminated soil to plants with a focus 
on the transfer factors to better predict whether a given soil is suitable 
for cultivation of plants. Adams et al. (2004), Ye et al. (2014) and Tang 
et al. (2018) studied the transfer and prediction patterns of heavy metals 
in crops by empirical regression models along with edaphic factors such 
as total heavy metal content, organic matter content and pH. Verma 
et al. (2007) modelled the cadmium uptake by some vegetables and 
solved the non-linear partial differential equations through an implicit 
finite difference method using Picard’s iterative technique in MATLAB. 
Boshoff et al. (2014) developed a regression-based model to predict the 
heavy metal (As, Cd, Cu, Pb and Zn) concentration in a soil-plant 
ecosystem in grass and nettle (Agrostis sp./Poa sp. and Urtica dioica L.) 
plants using pseudo total metal concentration. Yu et al. (2016) presented 
a linear model of prediction and distribution of heavy metals (Zn, Cd, 

Fig. 1. The impact of the water cycle on human life through direct water use and agricultural and industrial activities.  
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Cu, Pb, Cr, and Ni) in wheat in Tianjin, China. Zhou et al. (2019) also 
investigated six heavy metal contaminants in soil and the rice-wheat 
rotation systems in Dingshu an industrial region in China. They 
further implemented a prediction model of Cd for rice and wheat grains 
based on the nonedible organs and soil properties. Kumar et al. (2019a) 
similarly examined a two-factor multiple linear regression model to 
predict heavy metal uptake by water lettuce (Pistia stratiotes L.) from 
paper mill effluent. In another study by Kumar et al. (2019b), Principal 
Component Analysis, and Accumulation Nutrient Elements methods 
were employed as a regression modelling to predict heavy metal uptake 
by cauliflower (Brassica oleracea var. botrytis) grown in soils irrigated by 
industrial effluent. Zhao et al. (2019) also provided a sigmoid model to 
predict heavy metal uptake by sunflowers in different stages of growth. 
Their novelty was to consider the whole biomass-soil system instead of 
root-soil system employed in previous studies (Thoma et al., 2003; 
Mathur, 2004; Liang et al., 2009; Wu et al., 2009; Tuovinen et al., 2011). 
Hu et al. (2020) modelled bioaccumulation of heavy metals (Cu, Cr, Ni, 
Hg, Cd, As, Pb and Zn) in soil-crop ecosystems and used machine 
learning algorithms including random forest, gradient boosted machine, 
and generalised linear to identify the transfer process and controlling 
factors in the Yangtze River Delta, China. Eid et al. (2020) developed 
several regression equations to predict the uptake of ten heavy metals 
(Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Zn) by a vegetable (Arugula) in Abha 
region, Saudi Arabia. Yutao et al. (2022) investigated the concentration 
of several heavy metals, especially Cr, in the irrigated soil by electro-
plating factories effluent located in Jiangsu Province, China. They used 

back propagation (BP) neural network prediction model and human 
health risk assessment. Eid et al. (2022) also developed a regression 
prediction model for evaluating 10 heavy metal uptake into Hordeum 
vulgare L. including roots, foliage and grain. Montazeri et al. (2022) 
developed a new empricical approach for bio-accumulated Cr in tomato 
during the growth period and evaluates different 3D mathematical dis-
tribution including Polynomial, Interpolant, and Lowest models for 
estimating Cr concentrations in agricultural crops. Some other experts 
also traced heavy metals in the food chain by collecting and analysing 
samples of fish for heavy metals by using atomic absorption spectros-
copy (Dehghani et al., 2022). Researchers also investigated the footprint 
of heavy metals from rivers to human bodies to trace and highlight the 
importance and biomonitoring of heavy metals including Cr, Co, Cu, As, 
Hg, and Pb in rivers (Shaabani et al., 2022). In addition to the impact of 
heavy metals, including Cr on the river ecosystem, they are highly risky 
to the environment, public and ecological health (Ali et al., 2022). More 
specifically, heavy metals generally damage all aquatic ecosystems, 
which requires immediate actions for monitoring and prevention 
(Ahmed et al., 2022). A review of the most relevant research on this 
issue is listed in Table1. 

As there are a large number of industrial wastewater treatments 
discharging a high amount of concentration of Cr into rivers, this heavy 
metal is selected for the analysis in this study. Hence, keywords "chro-
mium", "emission" and "water resources" have been looked out in Scopus 
databank and then assessed through VOSviewer software. Keywords 
with more than 200 iterations were extracted and the results associated 

Fig. 2. The interaction of pollution from human activities discharged into a river with the threats to the environment and human demands.  
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with Cr is depicted in Fig. 4. 
Overall, the monitoring and simulation of heavy metals discharged 

into rivers by industrial activities were analysed thoroughly by various 
research works. However, the efforts mainly remain in the monitoring 
phase with a lack of a holistic management approach for taking action 
against increasing the presence of heavy metals. To overcome this, the 
present study aimed to analyse the transport and fate of the Cr metal 
from the beginning (i.e., discharge phase) to the end (i.e., uptake by the 
crops). This approach starts with a field study and continues with 
gathering samples for experimental analyses, investigating and ana-
lysing the data to create a dataset for developing Artificial Intelligence 
(AI) and Machine Learning (ML) to forecast pollution spread and finally, 
supporting managerial systems to make informed decisions. 

The next section presents the material and methods including 
methodology, case study, field research and data collection methods, ML 
logics, and smart framework creating steps followed by presenting re-
sults and discussion by comparing with the latest publications in this 
area. Finally, the conclusions are drawn by presenting the key findings 
of the research, followed by making recommendations for future works. 

2. Material and methods 

2.1. Methodology framework 

Fig. 5 shows the methodology based on the framework with all steps 
suggested in this study. It started with a site investigation to identify 
industries and the type of potential heavy metals they can potentially 
discharge into the river. This study selects a heavy metal and traces it 
from the point of discharge to the bioaccumulation of the plant and 
agricultural crops based on the conditions of the area (bioaccumulation 
and its epidemiology-immunology effects for tomato are shown and 
described in Text A1 and Fig. A6 in Appendix A). The concentration of 
the heavy metal is also measured across the river to create a compre-
hensive database of all sampling and potential sources and bio-
accumulation in the agricultural crops. Analysing and visualising this 
database can depict the conditions of the river’s health. The ML was then 

trained and tested with an existing database to predict the heavy metal 
for a number of future scenarios. The water quality management of the 
river can then be delineated based on the list of significant parameters of 
the bioaccumulation process, along with depicting future scenarios. 
More details of these steps are described below after presenting the case 
study in the next section. 

2.2. Case study 

The methodology in this study is demonstrated by its application to 
the real-world case study of the river located in the north-western part of 
Iran (shown in Fig. A1 in Appendix A). The river is the main source of 
water surface for irrigation of agricultural lands, although it now has no 
such function due mainly to the lack of proper inflow and over-
exploitation of water withdrawal at upstream catchments. Finally joins 
the Harirud River towards the East at the borderline between Iran and 
Turkmenistan. The river is 240 km long and passes through mountains, 
plains and at least four important cities, including Mashhad (the capital 
of the province) (Davari et al., 2020). A collection of historical and 
current pictures of the river (Fig. A2 in Appendix A) shows the condi-
tions of the river that have been deteriorated over the time through 
industrial and urban wastewater discharge and lack of environmental 
management (Hajinamaki et al., 2016). 

The primary pollution sources of the river are shown in the dash-
board in Fig. 6. As can be seen, the three wastewater treatment plants 
(WWTPs), i.e., Oulang and two Parkands, account for 97.3% of the total 
pollution in the river. These three WWTPs receive urban wastewater and 
have recently been banned from discharging or bypassing into the river. 
Therefore, the main threat will be from the rest of the industries shown 
in Fig. 6b in which the Charmshahr WWTP (CWWTP) is the primary 
source of pollution in the river. Table A1 in Appendix A provides the 
flow values of pollution discharge. Note that Charmshahr is an industrial 
town located in Mashhad with more than 60 branches and 2,200 
workers in leather processing. Based on preliminary field investigation 
and site visits, the discharge of CWWTP into the river has a significant 
amount of Chromium (Cr) which needs to be monitored and controlled. 

Fig. 3. Defective cycle of the case study river utilisation for gaining more economic growth.  
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The technical details of this approach are discussed in the following 
sections. 

2.3. Data collection 

This study applies widely used techniques for data collection as 
spatial monitoring and sampling mainly from the river surface (Islam 

et al., 2022). Moreover, the concentration of Cr is measured in the 
agricultural products irrigated by the river within the downstream 
lands. Fig. 7 illustrates the sampling network of the Cr measurements as 
the schematic representation of the catchment, pollution source points, 
the network/layers for sampling and the location of irrigated land and 
frequency of sampling from the agricultural crops. 

As depicted in Fig. 7a, the sampling scheme is designed by defining 

Table 1 
Main recent research works for modelling and estimating heavy metal concentrations in agricultural crops.  

Crop type Heavy 
metals 

Methodology Aim Concentrations Reference 

Wheat Cd, Cu, Pb, 
and Zn 

Isoterms Estimation of heavy metal 
concentration in wheat grain and 
leaves 

< 0.01–1.3 mg Cd/kg, 1.3–6.6 mg Cu/kg, 
< 0.05–0.30 mg Pb/kg, 8–104 mg Zn/kg of 
grain 
3.2 mg Cd/kg, 111 mg Cu/kg, 4.3 mg Pb/kg, 
and 177 mg Zn/kg for leaves 

Krauss et al. 
(2002) 

Grey Mangrove Cu, Pb and 
Zn 

Accumulative concentration Estimation of accumulative 
concentration relation in different 
parts of grey mangrove and soil 

1.58, 0.79 and 4.51 µg/mol Cu, Pb and Zn for 
root. 0.14, 0.02, 0.38 µg/mol Cu, Pb and Zn for 
leaves. 

MacFarlane 
et al. (2003) 

Wheat and 
Barely 

Cd Multiple linear regressions and 
analysis of variance 

Investigation of the relation 
between soil properties and Cd 
concentration 

0.04–0.2 mg/kg Cd for wheat. 
0.008–0.036 mg/kg Cd for barely. 

Adams et al. 
(2004) 

Wheat As, Cd, Cr, 
Cu, Hg, Mn, 
Ni, Pb and Zn 

Measuring the heavy metal 
concentration 

Finding the correlation of 
transferring factors and heavy metal 
concentrations 

3.13–9.16 As, 0.07–0.55 Cd, 6.55–26.57 Cr, 
6.21–26.2 Cu, 0.57–4.64 Hg, 164.0–1087.0 Mn, 
5.24–16.7 Ni, 13.27–47.1 Pb, 0.02–1.80 Se, 
21.00–100.70 Zn (all in mg/kg) in soil samples 

Chojnacka 
et al. (2005) 

Several 
vegetables 

Cd Non-linear partial differential 
equations via an implicit finite 
difference method 

Estimation of cadmium uptake by 
vegetables 

0.980, 0.310, 3.090 and 0.093 mg/kg Cd in 
carrot, radish, spinache and cabbage 
respectively 

Verma et al. 
(2007) 

Grass & Nettle As, Cd, Cu, 
Pb and Zn 

Regression-based model using 
pseudo total metal 
concentration 

Estimation of heavy metal 
concentrations 

Highest amounts (mg/kg) of 11. 5, 60, 130 and 
475 for As, Cd, Cu, Pb and Zn in nettle and 10, 
217, 633 for Cd, Pb and Zn in grass respectively. 

Boshoff et al. 
(2014) 

Rice Cd A pot experiment with 19 
representative paddy soils 

Investigation of the effects of soil 
properties on bioaccumulation of Cd 
in rice grains 

0.021–0.33 mg/kg in rice grains Ye et al. 
(2014) 

Wheat Zn, Cd, Cu, 
Pb, Cr, and 
Ni 

Linear model Estimation and distribution of heavy 
metals 

0.025–0.117 Cd, 2.1–4.16 Cu, 0.0–0.24 Pb, 
16.0–52.95 Zn, 0.2–0.62 Cr, 0.0–0.52 Ni in 
grains, 
0.027–0.146 Cd, 1.74–4.13 Cu, 0.05–0.69 Pb, 
5.28–22.46 Zn, 0.290–0.95 Cr, 0.37–0.41 Ni in 
leaves, all in mg/kg. 

Yu et al. 
(2016) 

Rice & wheat Cd, Cr, Cu, 
Ni, Pb and Zn 

Empirical model based on the 
nonedible organs and soil 
properties 

Estimation of Cd in rice and wheat 
grains 

0.04–0.62 Cd, 0.16–0.68 Cr, 0.32–2.47 Ni, 0.26- 
,1.77 Pb, 1.37–7.31 Cu, 26.79–97.08 Zn in 
wheat grains and, 0.03–0.37 Cd, 0.31–0.93 Cr, 
0.25–3.61 Ni, 0.2–1.18 Pb, 2.78–8.87 Cu and 
27.97–69.91 Zn in rice grains all in mg/kg 

Zhou et al. 
(2019) 

Water lettuce Cd, Cu, Fe, 
Pb, Mn and 
Zn 

Two-factor multiple linear 
regression model 

Estimation of heavy metal uptake by 
water lettuce from paper mill 
effluent (PME) 

0.204 Cd, 0.788 Cu, 14.83 Fe, 0.297 Pb, 10.351 
Mn, 4.181 Zn in plant leaves irrigated 100% by 
PME all in mg/kg. 

Kumar et al. 
(2019a) 

Cauliflower Cd, Cr, Cu, 
Fe, Mn and 
Zn 

Regression-based model based 
on principal component 
analysis, and accumulation 
nutrient elements methods 

Estimation of heavy metal uptake 0.001–1.290 Cd, 0.104–12.580 Cr, 
0.313–11.450 Cu, 2.649–22.840 Fe, 
2.073–26.750 Mn and 1.640–25.820 Zn, all in 
mg/kg. 

Kumar et al. 
(2019b) 

Sunflowers Cd, Ni, Pb, 
and Zn 

Sigmoid model Estimation of heavy metal uptake in 
different stages of growth 

79.54 Cd, 33.89 Ni, 141.63 Pb, 324.65 Zn all in 
mg/kg 

Zhao et al. 
(2019) 

Rice, vegetables, 
fruit, tubers, 
bean and tea 

Cu, Cr, Ni, 
Hg, Cd, As, 
Pb and Zn 

Machine learning algorithms 
including random forest, 
gradient boosted machine, and 
generalised linear 

Bioaccumulation analysis of heavy 
metals in soil-crop ecosystems and 
identifying the transfer process and 
controlling factors 

The average amounts are 14.22 Zn, 1.97 Cu, 
0.44 Cr, 0.39 Ni, 0.16 As, 0.05 Pb, 0.05 Cd and, 
0.02 Hg all in mg/kg. 

Hu et al. 
(2020) 

Arugula Cd, Co, Cr, 
Cu, Fe, Mn, 
Mo, Ni, Pb 
and Zn 

Regression-based models Estimation of the heavy metal 
uptake 

0.2–1.3 Cd, 1–11 Co, 7–88 Cr, 4–27 Cu, 
687–17747 Fe, 72–396 Mn, 0.5–3 Mo, 2–27 Ni 
and 0.1–4 Pb all in mg/kg. 

Eid et al. 
(2020) 

Okra Cd, Co, Cr, 
Cu, Fe, Mn, 
Ni, Pb, and 
Zn 

Regression-based model Estimation of heavy metal uptake by 
the fruits, the leaves, the stems, and 
the roots of the okra plant 

0–2.2 Cd, 0.2–25.1 Co, 0.1–211.5 Cr, 0.8–37.9 
Cu, 45.6–27496 Fe, 9.7–937.3 Mn, 0–105.5 Ni, 
0–3.9 Pb, 10.1–179.2 Zn in different parts of the 
plant all in mg/kg. 

Eid et al. 
(2021) 

- Cr and As Geological accumulation index 
method, BP neural network 

Bioaccumulation analysis for the 
concentration of several heavy 
metals in soil and human health risk 
assessment model 

N/A Yutao et al. 
(2022) 

Barely Cd, Co, Cr, 
Cu, Fe, Mn, 
Mo, Ni, Pb 
and Zn 

Regression-based model Estimation of heavy metal uptake 0.1–1 Cd, 0.1–18 Co, 3–85 Cr, 2–48 Cu, 
121–11165 Fe, 0.4–538 Mn, 1–5 Mo, 0.3–42 Ni, 
0.1–5 Pb, 6–194 Zn in different parts of the plant 
all in mg/kg. 

Eid et al. 
(2022)  
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Fig. 4. Keywords associated with chromium with more than 200 iterations in the literature.  

Fig. 5. The flowchart of the methodology.  
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25 sampling points in a network of 5 m by 500 m in the river, starting 
from the pollution source points and extending by 50 m downstream. 
The sampling is also taken in three levels of depth as 0.5, 0.9 and 1.3 m 
from the river surface. Therefore, each level is divided into 5 sections in 

both directions and 25 sampling points are set, which is a total of 75 
samples for measurement. The data were collected in September 2019 – 
2020 with even distribution between winter and summer to provide a 
picture of a general trend of the Cr concentration throughout both 

Fig. 6. Share of pollution discharged by industrial sectors into the river of the case study for (a) all industrial units, including three main WWTPs and (b) only small 
industrial units i.e., except the three main WWTPs. 

Fig. 7. Sampling scheme of the Cr measurements (a) the pollution source and levels and network of sampling and (b) schematic location of agricultural lands for 
sampling and frequency of sampling. 

A. Montazeri et al.                                                                                                                                                                                                                              



Ecotoxicology and Environmental Safety 263 (2023) 115269

8

seasons in the river. Therefore, a total of 150 samples are measured in 
the experimental practices. 

The sampling from water is according to the standard of Raven Water 
Sampling, USA. In each practice, three samples are collected from the 
river and the mean value of the chromium amount with less than 5% 
tolerance is reported. Tomato sampling is done manually with experi-
mental instruments (AZ company, Taiwan) as per standard methods 
(Benedetti et al., 2010; AMBRUS, 1979; Papadopoulos, 2008). All the 
water and tomato samples are transferred to the lab in icy bottom less 
than 2 h after the sampling process. 

The second part of measurement is for data collection from the 
agricultural crops (i.e., tomato in this case) irrigated by the river as 
illustrated in Fig. 7b. Tomato is the main agricultural crop of this area. 
Hence, the Cr concentration is measured inside the leaves of certain 
tomato plants every two days for up to 77 days during the summer 
before harvesting the crop. Note that the location of tomato plants is 
500 m downstream of the end of the sampling network of the river, that 
is 550 m downstream of the pollution source point. 

The concentration of total Cr in the lab is measured according to the 
standard of Perkin Elmer Anlyst 700 Atomic Absorption Spectroscopy 
(AAS) and specific 357.9 nm lamp based on standard methods (Hseu, 

2004; Standard methods for the examination of water and wastewater, 
2012). The concentration of Cr in tomato is measured based on first 
acidifying the samples by adding 1 mol L−1 HNO3 (Merck, Darmasdat, 
Germany) and then measuring the concentration in the solution by the 
AAS. In the acidification process of different samples, 2 g from each 
sample is digested in 20 mL of the declared acid. The hardness of water 
samples is measured by Portable Water Hardness Testers, HACH, USA 
(Standard methods for the examination of water and wastewater, 2012). 
Likewise, the pH of samples is measured by Metrohm 827, Switzerland 
(Standard methods for the examination of water and wastewater, 2012). 

Note that Sodium Absorption Ratio (SAR) is a parameter used to 
evaluate the suitability of water for irrigation purposes. It measures the 
concentration of sodium relative to calcium and magnesium in the soil 
and is an indicator of the potential for soil structural problems caused by 
excessive sodium. The SAR is calculated as: 

SAR =
Na+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ca2+ + Mg2+)
/

2
√ × 100 (1)  

where Na+ =the concentration of sodium ions (in milliequivalents per 
liter, meq/L); Ca2+ = the concentration of calcium ions (in 

Fig. 8. Steps of the ML used in this study (a) general method and (b) customised by the scikit-learn library.  
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milliequivalents per liter, meq/L); Mg2+ = the concentration of mag-
nesium ions (in milliequivalents per liter, meq/L). In this study, the 
experimental practices of the SAR measurements were done based on 
the standard methods and techniques (Sposito and Mattigod, 1977). 

2.4. AI application 

This study applies AI methods written in Python to estimate the Cr 
concentration (µg/g) in tomatoes at different stages in the river and 
agricultural plant. Hence, various ML methods are analysed to identify 
the most suitable one for estimating the concentration of Cr and find 
their optimum settings. The methods include the ordinary least squares 
Linear Regression (LR) and Neural Network (NN) multi-layer perceptron 
classifier and regressor. The combination of these methods is also ana-
lysed here to (1) evaluate the potential of regression and classification 
methods for accumulation prediction; (2) ensure the best ML method is 
selected that can be used for similar research and finally (3) examine 
their compatibility with the nature of the dataset. 

Fig. 8 shows the steps required for building the two types of the ML 
used in this study. Fig. 8a is the general steps of the ML starting with pre- 
processing, dividing data into train and test groups, training model, 
validating and finally testing the model performance with Coefficient of 
Determination (R2). The general steps of the ML method are further 
customised in Fig. 8b in Python under Jupyter Notebook. The steps from 
pre-processing to R2 calculations are utilised by using scikit-learn 1.0.2 
library for the LR through fitting a linear model with coefficients to gain 
minimum residual sum squares between predicted targets and observed 
records. Moreover, the NN in the library would optimise the log-loss 
function with Limited-memory Broyden–Fletcher–Goldfarb–Shanno 
(LBFGS) or stochastic gradient descent. 

Table 2 shows the main features of these two models. The Linear 
Regression (LR) algorithm in the scikit-learn library provides a powerful 
tool for modeling linear relationships between variables with several 
settings and parameters outlined here. The LinearRegression class al-
lows for customisation and fine-tuning of the algorithm’s behaviour. The 
fit_intercept parameter is a boolean value that determines whether to 
calculate the intercept of the linear regression model. More specifically, 
when setting to True, an intercept term will be included in the model. 
Conversely, when setting it to False, it will force the model to pass 
through the origin (0, 0). The normalise parameter was previously used 
to normalise the input features although it was marked as deprecated. 
However, it is now recommended to use the StandardScaler or other 
appropriate preprocessing methods separately on the input data. The 
copy_X parameter is another boolean value that determines whether a 
copy of the input data should be made before fitting the model. Setting it 
to True ensures that the original input data remains unchanged during 
the fitting process. The n_jobs parameter controls the parallelism of the 

algorithm. By specifying an integer value greater than 1, the computa-
tion can be distributed across multiple processors. If it sets to − 1, it will 
use all available processors for parallel execution. If it sets to None, the 
algorithm will use the default value i.e., 1. The positive parameter al-
lows the model to enforce non-negativity constraints on the coefficients. 
When it sets to True, it ensures that the coefficients remain positive 
during the fitting process. By adjusting these settings in the LinearRe-
gression class, users can tailor the algorithm’s behaviour to their specific 
needs and achieve optimal results when fitting linear regression models. 

The MLPClassifier algorithm in scikit-learn provides a range of 
configurable settings for constructing a Neural Network classifier. Some 
key selected values for the model include specifying a single hidden 
layer with 130 neurons using hidden_layer_sizes= (130), employing the 
rectified linear unit (ReLU) activation function with activation= ’relu’ 
to introduce non-linearity and capture complex patterns, utilising the 
’adam’ solver that combines stochastic gradient descent (SGD) and 
adaptive learning rate methods with solver= ’adam’, controlling regu-
larisation strength through alpha= 0.0001, setting the initial learning 
rate to 0.001 with learning_rate_init= 0.001, limiting the number of it-
erations to 200 using max_iter= 200 to prevent overfitting, and adjust-
ing the batch size automatically based on the training data size with 
batch_size= ’auto’. These values can be fine-tuned based on the specific 
dataset and task requirements to optimise the classifier’s performance 
and achieve accurate classification results. 

The MLPRegressor algorithm in scikit-learn provides a range of set-
tings to configure a Neural Network regressor. The selected values for 
the model include a hidden layer with 130 neurons, the ’relu’ activation 
function to introduce non-linearity, and the ’adam’ solver as the opti-
misation algorithm. The alpha parameter controls the regularisation 
strength, while the learning_rate_init determines the initial learning rate. 
The max_iter parameter limits the maximum number of iterations during 
training to 200, and the batch_size is set to ’auto’ for automatic 
adjustment based on the data size. The random_state parameter is set to 
1 for reproducibility. Other parameters such as tol, verbose, momentum, 
nesterovs_momentum, early_stopping, validation_fraction, beta_1, 
beta_2, epsilon, n_iter_no_change, and max_fun provide additional op-
tions for convergence tolerance, verbosity, momentum, early stopping 
criteria, validation set splitting, and optimization. In total, the MLPRe-
gressor algorithm has 23 parameters that can be adjusted to suit specific 
needs and optimize performance for regression tasks. The general set-
tings are also optimised to achieve the best results that will be discussed 
in next sections. 

3. Results and discussion 

Data collection is the essential and primary step of this study to 
portray a realistic perspective of the river with the concentration of Cr 
and how it is taken up to bioaccumulate in the crops, i.e., tomato in the 
downstream agricultural lands irrigated by the river. Figs. 9–11 show 
the heatmap of the average concentration of Cr at three depths of the 
river (also see Figs. A3-A5 and Tables A2-A4 in Appendix A). They are 
based on the data collection at these depths and five sections in both 
directions of X (along with the river flow) and Y (perpendicular to the 
river flow) in both summer and winter seasons. As depicted in Fig. 9, the 
Cr concentration is significantly high in the areas close to the pollution 
source, which is around 30 m distance. Records in the same X co-
ordinations are not similar in different Y coordinations, which empha-
sizes that the Cr concentration is gradually decreasing through both 
directions, e.g., along with the river flow and perpendicular to the river 
flow. By comparing the average concentrations of Cr between the two 
seasons, it is evident that the Cr level is higher in the winter than in the 
summer. In addition, the rate of reduction in the average Cr concen-
tration is lower in the winter than in the summer, as can be spotted when 
comparing any two cells between the results of the two seasons. 

Fig. 10 shows the records of the average Cr concentration in the 
second level of depth i.e., 90 cm depth from the surface of the river. 

Table 2 
Key features of LR and NN methods in the scikit-learn library.  

Model features 

LR  1. It is accepted for predictive modelling and making inference  
2. There is a high level of collective experience and expertise, 

including teaching materials on linear regression models and 
software implementations  

3. Linear equations have an easy-to-understand interpretation on a 
modular level (Hastie et al., 2009). 

NN 
(Classifier)  

1. Neural networks require less formal statistical training to 
develop  

2. Neural networks can implicitly detect complex nonlinear 
relationships between independent and dependent variables  

3. Neural networks have the ability to detect all possible 
interactions between predictor variables   

4. Neural networks can be developed using multiple different 
training algorithms 

(Tu, 1996) 

NN 
(Regressor)  
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Fig. 10a reveals that the Cr concentration slightly decreases as depth 
increases along with the length of the river (i.e., X direction, and 
perpendicular flow direction i.e., Y direction). The trend of the Cr con-
centration in Fig. 10b seems to be relatively similar to the results in 
Fig. 11. This similarity between the records in the summer and winter is 
observed at the 50 cm level. Note that the average Cr concentration 
(mg/L) is lower in the second level compared to the first level. This may 
be because the dilution happens when the pollution is discharged into 
the water, and hence the pollution concentration reduces through the 
depth of the river. As depicted in Fig. 11, the average Cr concentration is 
significantly lower at the third level of depth than at the first and second 
levels which is because of diffusion phenomena in depth. According to 
Fick’s second law, in all three dimensions with increasing the distance 
from the main source of the pollution, the flux of contamination is 

reduced and the effects of both advection and diffusion are increased. 
Therefore, with increasing depth, the intensity of mass transfer is 
increased, and the pollution is much more diluted. This fact also appears 
in the experimental practices and is depicted in Figs A3–5 in Appendix A. 
In addition, the concentration ratio of the lowest level to the middle 
level is equal to the same ratio of the middle level to the highest level. It 
is clear that the Cr concentration is diluted from the water sampling 
point before reaching to plant and the pollution level from mg/L is 
reduced to µg/L. 

Fig. 12 shows the variation of some parameters obtained by tracing 
the Cr concentration in the tomato plants for up to 77 days, i.e. the 
harvesting time. These parameters include temperature (Fig. 12a), TDS 
(Fig. 12b), pH (Fig. 12c), total hardness (Fig. 12d), Sodium Adsorption 
Ratio (SAR) (Fig. 12e), mean concentration of Cr in water (Fig. 12f) and 

Fig. 9. Heatmap of the average concentration of Cr (mg/L) at the first level (50 cm depth) of the river in (a) the summer and (b) the winter.  

Fig. 10. Heat map of the average concentration of Cr (mg/L) at the second level (90 cm depth) of the river in (a) the summer and (b) the winter.  
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the Cr concentration in tomatoes (Fig. 12g). Fig. 12a displays that the 
temperature was mainly around 22 ◦C although it was up to 24 ◦C for 
some limited days. Fig. 12b illustrates Total Dissolved Solids (TDS) 
which are fairly spread between 600 and 1400 mg/L within the 77 days 
of the experiment. Fig. 12c shows pH ranging between two integer 
values of 7 and 8 in the leaves of tomato plants. Variations of total 
hardness (Fig. 12d) and the mean concentration of Cr (Fig. 12f) in irri-
gation water samples are similar to TDS in Fig. 12b. Likewise, variation 
of SAR in Fig. 12e is similar to pH and takes only two values (either 2 or 
3). Interestingly, the variation of the Cr concentration in tomatoes 
(Fig. 12g) is mainly around 0.56 µg/g at the beginning of the experiment 
and gradually releases during the experiment up to over 1.29 µg/g that 

might be related to the the irrigation by the river. 
The parameters measured during the 77-day experiment are then 

used as a database to create ML modelling in this study. Hence, the 
correlation of these parameters with the concentration of Cr in tomato 
samples is first analysed using the linear regression (LR) model. The best 
correlation is obtained for the LR model with the coefficient of deter-
mination (R2) reaching 0.931 for the Cr concentration in the tomato 
samples. The coefficient of determination for other LR models is 0.655 
for the time of sampling, 0.760 for temperature, − 0.011 for TDS, 1.667 
for pH, − 0.009 for Total Hardness, 1.479 for SAR, and 1.175 for the 
mean Cr concentration (µg/L) in the irrigation water sample. This low 
rate of correlation indicates some parameters such as pH and SAR have 

Fig. 11. Heat map of Cr average injection concentration (mg/L) at the third level (130 cm depth) of the river in (a) the summer and (b) the winter.  
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Fig. 12. Parameters collected every two days including (a) Temperature (◦C), (b) TDS (mg/L), (c) pH, (d) Total Hardness (e) Sodium Adsorption Ratio (SAR), (f) 
Mean Cr concentration (µg/L) in water sample and (g) the concentration of Cr (µg/g) in tomato. 
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no major impacts on the concentration of Cr. The ML model is also 
trained and tested for the database, as 70% of recorded data is used for 
training and the remaining 30% is used for testing. 

The NN models are developed here for the database collected within 
the 77-day experiment. Based on the settings in Table 2, R2 for the NN 
models is 0.743 for the NN classifier and 0.841 for the NN regressor. 
These scores are solid statements indicating the dataset is linear and the 
trend of Cr accumulated in the tomato plants as a simple linear regres-
sion is more accurate than a complicated NN model with more than 100 
hidden layers. However, by increasing the number of the hidden layers 
in the NN algorithms to 500, and the maximum number of iterations 
from 200 to 300, R2 can be improved to 0.874 and 0.946 which is higher 
than the LR’s R2. However, the NN regressor is more sophisticated than 
the NN classifier. This comparison, to some extent, is done with other 
research, but here scores are generally higher. For instance, the best 
score of other studies was reported up to 0.89 for R2 (Quang et al., 
2022). Eid et al. (2022) developed a special linear regression model for 
estimating the concentration of 10 heavy metals and found the amount 
of heavy metal in soil, pH, and organic matter content affecting heavy 
metal concentrations in Hordeum vulgare tissues. They achieved the 
highest R2 of 0.76 for Cr in the grains harvested after 77 days. Also, the 
highest and the lowest R2 in the study were related to the Mn in root and 
Cu in grains by 0.96 and 0.39 respectively. Hu et al. (2020) estimated 
and compared the factors controlling the heavy metal (HM) uptake by 
plants using Random Forest (RF), Gradient Boosted Machine (GBM), and 
Generalised Linear (GLM) models in soil-crop systems in the Yangtze 
River Delta, China. Results showed the best prediction for the RF fol-
lowed by GBM and linear methods. The most important relative vari-
ables for estimating the Cr concentration were plant type, elevation, 
heavy metals in soil, and soil organic materials. The R2 for estimating the 
concentration of Cr was 0.59, 0.52, and 0.27 in RF, GBM, and GLM 
respectively. Novotná et al. (2015) developed regression models for HM 
uptake into some crops. The influence of measured soil concentrations 
and soil factors (pH, organic carbon, content of silt and clay) on the Cr 
concentrations in plants was evaluated using multivariate regressions. 
The results showed R2 of 0.55 for Hop and 0.25 for grass mowing. Yu 
et al. (2016) launched a linear regression model to predict HM con-
centration in wheat grains. They used pH, organic matter, and salt 
concentration in the soil as the most affecting factors, but the results did 
not show a good correlation for Cr concentration. Kumar et al. (2019b) 
explored the HM uptake by cauliflower through multivariate regression 
analysis and found that R2 is equal to 0.8, 0.9 and 0.83 for Cr concen-
tration in root, leaves, and florescence of B. oleracea, respectively. Eid 
et al. (2021) investigated the HM concentration in the okra plant 
(Abelmoschus esculentus (L.) Moench) grown in greenhouse conditions 
and soil amended with sewage sludge. The Cr concentration was more 
concentrated in the roots than in any other parts of the plant. The metal 
bioaccumulation factors were negatively correlated with the pH of the 
soil and positively correlated with soil organic matter content. They 
used a regression model and the results showed R2 equal to 0.79, 0.90, 
0.80, and 0.82 for Cr concentration in fruits, leaves, stems, and roots, 
respectively. 

4. Integrated management of the system 

Discharging heavy metals by industries into receiving water bodies 
needs to be monitored and analysed as presented above. However, the 
whole ecosystem, including the water body, environment, human ac-
tivities, and wastewater discharge from industries and agriculture, also 
needs integrated management under a holistic framework to minimise 
the impact on the environment and human life. Given significant tech-
nical efforts and advancements available worldwide to remove the 
pollution of heavy metals in water bodies, the integrated management 
should contain a mechanism to prevent the pollution discharge, mini-
mise the negative impacts on aquatic lives and finally minimise the 
irrigation of agricultural lands by contaminated water. However, the 

lack of managerial efforts may be significant despite international con-
ventions. This study suggests that there is an essential need for estab-
lishing organisations at both national and local levels run by decision- 
makers who are aware of SDGs, especially LBW. In this study, a 
healthy river used to irrigate a major part of one of the greatest prov-
inces in Iran has been affected by unsustainable, short-time industrial 
and economic purposes. In addition, there is no valid and scientific 
estimation of the amount of human health damage due to living close to 
the river or consuming products from those agricultural lands. 
Following integrated management of the whole system, Fig. 13 shows a 
conceptual model of what is needed in this context to protect their 
natural environment and human life. As depicted in the figure, desirable 
results are achieved by the close collaboration of experts, engagement of 
stakeholders (including relevant industries and farmers), and decision- 
makers (including policymakers) who can set out the necessary regu-
lations for water resources conservation and environmental protection. 
Furthermore, technical analysis and findings should be translated into 
managerial instruments and instructions utilised by those who have the 
power to enforce and monitor the integrated system. 

5. Conclusions and future prospects 

The study examined a new approach for the fate and transportation 
of Cr in a real-wrold case study of the river ecosystem by analysing its 
concentration at the discharge point up to the end of the irrigated plants 
and its bioaccumulation in agricultural plants irrigated by the contam-
inated water. In addition to measuring the concentration of Cr, several 
important parameters (i.e., temperature, pH, SAR, Total Hardness, TDS) 
of the tomato plant (the most popular crop production in the pilot study) 
were analysed throughout the 77 days before harvesting tomatoes. 
Three ML techniques (LR, NN classifier, and NN regressor) were also 
developed to identify the correlation between the concentration of Cr in 
the plant leaves and other parameters. Key findings include:  

• Pollution levels in the river varied across depths and seasons, with 
higher concentrations observed in winter due to increased industrial 
activity and river characteristics.  

• Bioaccumulation of Cr in plants initially measured at 0.56 µg/g, 
gradually increasing to 1.29 µg/g by the harvesting day, likely due to 
continuous irrigation with contaminated water or nutrients from the 
accumulated soil. 

• Three machine learning techniques demonstrated acceptable coeffi-
cient of determination especially NN regressor and LR, indicating 
their potential for estimating Cr concentration in tomato leaves 
based on influencing plant parameters. 

The study suggests the need for further research to develop an in-
tegrated management approach for Cr and other heavy metals in the 
river, involving stakeholders, creating comprehensive spatial maps of 
heavy metals, tracing the impact on human consumers, and employing 
more robust AI methods based on extensive databases for validation and 
model enhancement. 
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