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Highlights

• The study contributes a unique dataset of echocardiogram images annotated by accredited experts, which is made publicly available for further research and
model development.

• The study proposes a novel active learning approach for efficient left ventricle segmentation in echocardiography.
• The proposed approach combines uncertainty-based and representativeness sampling methods to improve annotation efficiency.
• The authors evaluate their approach on two datasets and demonstrate that it can significantly reduce annotation costs by up to 80% while maintaining high
segmentation performance.



Active Learning for Left Ventricle Segmentation
in Echocardiography

Eman Alajrami1, Tiffany Ng2, Jevgeni Jevsikov1,2, Preshen Naidoo1, Patricia
Fernandes1, Neda Azarmehr1, Fateme Dinmohammadi1, Matthew J
Shun-shin2, Nasim Dadashi Serej1, Darrel P Francis2, and Massoud

Zolgharni1,2

1 Intelligent Sensing and Vision, University of West London, London, UK
2 National Heart and Lung Institute, Imperial College London, London, UK

eman.alajrami@uwl.ac.uk

Abstract

Background and Objective: Training deep learning models for medical im-
age segmentation requires large annotated datasets, which can be expensive and
time-consuming to create. Active learning is a promising approach to reduce this
burden by strategically selecting the most informative samples for segmentation.
This study investigates the use of active learning for efficient left ventricle seg-
mentation in echocardiography with sparse expert annotations.
Methods: We adapt and evaluate various sampling techniques, demonstrat-
ing their effectiveness in judiciously selecting samples for segmentation. Addi-
tionally, we introduce a novel strategy, Optimised Representativeness Sampling,
which combines feature-based outliers with the most representative samples to
enhance annotation efficiency.
Results: Our findings demonstrate a substantial reduction in annotation costs,
achieving a remarkable 99% upper bound performance while utilizing only 20% of
the labelled data. This equates to a reduction of 1680 images needing annotation
within our dataset. When applied to a publicly available dataset, our approach
yielded a remarkable 70% reduction in required annotation efforts, representing
a significant advancement compared to baseline active learning strategies, which
achieved only a 50% reduction. Our experiments highlight the nuanced perfor-
mance of diverse sampling strategies across datasets within the same domain.
Conclusions: The study provides a cost-effective approach to tackle the chal-
lenges of limited expert annotations in echocardiography. By introducing a dis-
tinct dataset, made publicly available for research purposes, our work contributes
to the field’s understanding of efficient annotation strategies in medical image
segmentation.

Keywords: Echocardiography · Deep learning · Active learning · Image seg-
mentation
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1 Introduction

Cardiovascular diseases (CVDs) are a leading cause of global mortality [1].
Echocardiogram (Echo), or cardiac ultrasound, examinations are widely used for
non-invasive and safe diagnosis of CVDs [2]. However, manual interpretation of
Echo images by trained clinicians can be prone to intra- and inter-observer vari-
ability, potentially resulting in diagnostic errors [3]. Therefore, there is a strong
need for automated Echo interpretation for various tasks [4–10], including left
ventricle (LV) segmentation.

Accurate LV segmentation is crucial for measuring clinical parameters such
as LV ejection fraction, which is a key indicator of cardiac function [11, 12]. Deep
learning (DL) methods, including the U-Net architecture, have shown significant
performance in medical image segmentation [13, 14]. The U-Net model is widely
applied for LV segmentation due to its efficiency and performance compared to
alternative networks [15].

However, DL models typically require large annotated datasets for effective
training, which, in medical imaging, can be costly, time-consuming and laborious,
requiring highly skilled experts. Limited annotations in medical imaging hinder
effective DL model training, leading to inadequate segmentation results [16].

Therefore, automated methods are required to minimise annotation efforts
in medical imaging. This is where weakly supervised learning emerges as a valu-
able tool, able to leverage diverse sources of information with minimal manual
annotations. Two weakly supervised approaches, active learning (AL) and semi-
supervised learning can enhance model performance with less annotated data
[17]. AL, combined with DL, focuses on selecting the most informative sam-
ples for annotation and training [18, 19], while semi-supervised learning lever-
ages both labelled and unlabelled samples to refine data representation [20, 21].
Nonetheless, the challenge of selecting samples for labelling underscores the sig-
nificance of AL.

1.1 Related work

AL selection methods can be categorised into uncertainty-based, diversity-based,
and hybrid approaches [22]. Uncertainty sampling, a commonly used strategy in
AL, measures the model’s uncertainty on unseen instances to select the most
uncertain samples for annotation [19, 23–25]. However, it may overlook the dis-
tribution of data points and choose redundant samples with similar features [26].
Representativeness sampling selects the diverse samples that highly represent
the unlabelled dataset to reduce annotation costs [26, 27]. Hybrid methods com-
bine uncertainty and diversity sampling to choose representative and uncertain
samples [28].

Numerous studies have highlighted the advantages of using AL in various
areas of medical imaging, including histopathology, breast cancer, and digital
pathology [29–33]. This technique holds immense promise for both improving
accuracy and reducing the need for extensive data annotation, a crucial aspect
in areas reliant on expert analysis.
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Budd, Robinson, and Kainz [22] conducted a comprehensive survey discussing
active learning and human-in-the-loop approaches in the field of medical imaging.
Gal and Ghahramani [34] introduced Monte Carlo dropout (MCD) as a Bayesian
approximation for modelling uncertainty in CNNs, primarily for image classifi-
cation. This technique involves generating multiple predictions for each image
and using various metrics such as variational ratios, maximum entropy, mean of
standard deviation, Bayesian Active Learning with Disagreement (BALD), and
random selection to calculate the uncertainty score [35].

Gorriz et al. [23] applied Cost-effective Active Learning (CEAL) with MCD
for melanoma segmentation, where MCD was used to estimate pixel-wise un-
certainty. They employed the CEAL approach proposed by Wang et al. [36] to
select uncertain images for subsequent training iterations and generate pseudo
labels for confident samples.

Other studies have explored representativeness sampling, such as the Core-set
method, which minimises the Euclidean distance between sampled and remaining
points in the feature space [37]. Nguyen et al. [27] and Xu et al. [38] utilised
clustering techniques to identify representative and diverse samples for querying.

Hybrid techniques that combine uncertainty and diversity sampling have also
been proposed [28, 39, 40]. For example, Kim et al. [41] introduced a selection
strategy that involves constructing a small representative core-set from the un-
labeled data and subsequently selecting the most uncertain images from the
core-set.

While AL techniques have been extensively studied in classification tasks
[35, 36, 42], their application to image segmentation is relatively limited. To our
knowledge, no approach utilises current state-of-the-art AL methods in echocar-
diography. Therefore, this study focuses on applying AL to improve image seg-
mentation tasks in echocardiography.

1.2 Main Contributions

The study makes several significant contributions to the field of active learning
for left ventricle segmentation in echocardiography:

– Comprehensive evaluation of active learning approaches, when ap-
plied in echocardiography: Our study conducts a thorough evaluation of
existing active learning approaches tailored specifically for medical image
segmentation. By systematically assessing the performance of various ac-
tive learning strategies, we establish a valuable baseline for comparing the
efficacy of our proposed framework.
This comprehensive evaluation not only highlights the strengths and weak-
nesses of different active learning techniques but also provides invaluable
insights to guide future enhancements in this field. Our findings contribute
to advancing the understanding of active learning methodologies tailored to
the complexities of echocardiographic data.

– Optimised surrogate metric for representativeness: We introduce an
innovative surrogate metric for representativeness, which serves as a simple
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yet highly effective addition to current active learning approaches. This met-
ric offers several advantages, including a notable reduction in the amount of
labeled data required to train deep learning models.
By minimising the issue of uncertainty-based methods commonly querying
samples with redundant information, our approach achieves substantial gains
in annotation cost reduction, up to 80%, while maintaining high segmenta-
tion performance. This novel contribution addresses a crucial aspect of active
learning and presents a promising avenue for improving efficiency in echocar-
diographic image annotation processes.

– Facilitation of data accessibility and standardisation: As part of
our study, we curate a dataset comprising echocardiography images anno-
tated by accredited and experienced echocardiography experts. By making
this dataset publicly available through our report, we aim to standardise
echocardiographic analysis practices and facilitate advancements in auto-
mated model development.

These contributions represent not only technical advancements but also sig-
nificant strides in advancing scientific knowledge, fostering reproducibility, and
facilitating collaboration within the realm of active learning-driven approaches
for left ventricle segmentation in echocardiography.

2 Methods

2.1 Patient datasets and expert annotations

– Unity: A large random sample of 1224 echocardiographic studies from dif-
ferent patients performed was extracted from Imperial College Healthcare
NHS Trust’s echocardiogram database. Ethical approval was obtained from
the Health Regulatory Agency for the anonymised export of large quantities
of imaging data. It was not necessary to approach patients individually for
consent of data originally acquired for clinical purposes.
The images were acquired during examinations performed by experienced
echocardiographers, according to the standard protocols for using ultrasound
equipment from the corresponding manufacturers. Automated anonymisa-
tion was performed to remove the patient-identifiable information. A detailed
description, including patient characteristics, can be found in Table 1.
A CNN model, previously developed in our research group to detect different
echocardiographic views [43], was then used to identify and separate the
apical 4-chamber (A4C) views. From these videos, a total of 2800 images
were subsequently automatically extracted from different time-points in the
cardiac cycle.
Each image underwent expert labelling by one individual from a pool of 6
experts using our web-based real-time platform (https://unityimaging.net).
This platform enables experts to accurately label the endocardial border;
they labelled the LV endocardial curve including specific points for the apex,
and for the two ends, namely the septal and lateral mitral hinge points.

https://unityimaging.net
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The dataset was then split into three parts to generate training, validation,
and testing sets (70%, 15%, 15%, respectively). We ensured that a single
study’s images did not appear in more than one set.
This dataset (images and labels) are available under the Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 International license at
https://intsav.github.io/efficient annotations.html. The release of associated
dataset received a Favourable Opinion from the South Central − Oxford C
Research Ethics Committee (Integrated Research Application System iden-
tifier 279328, 20/SC/0386).

Table 1. A summary of the patient datasets used in this study.

Unity CAMUS

Size
1224 A4C videos
2800 frames were
randomly selected

450 A4C videos
450 end-diastolic frames

Source and
year enrolled

Random selection of
echo studies from
7 UK laboratories
during 2015-16

Sequential echo studies
from University Hospital

St Etienne (France)

in 2019

Sex and Age

M: 401 (33%);

F: 753 (62%)

Unspecified : 70 (5%)

Unkown

Original size

(pixels)
(400×300) to (1024×768)

resized to 512×512

Unkown; resized to
512×512

Manufacturer
/Model

Philips Healthcare

(iE33, Affinity 70C,

Epic 7C, Affinity

50G, CX50) and GE

Healthcare
(Vivid I, Vivid q, Vivid S70,

Vivid S6, Vivid E9, Vivid 7)

GE Healthcare (Vivid E95)

Format DICOM MHD

– CAMUS: The second dataset is a publicly available dataset for which de-
tailed information can be found elsewhere [44]. We used 450 end-diastolic
images from 450 distinct patients. This dataset was divided into training,
validation, and testing sets in a ratio of 70%, 15%, and 15%, respectively.

2.2 Network architecture

Fig. 1 presents the MCD U-Net architecture with a depth of 5 designed for
Bayesian AL in LV segmentation. Dropout layers are integrated after each en-
coder and decoder block to enable the MCD for uncertainty estimation. The
encoder blocks consist of Conv2D layers with a 3×3 kernel size, followed by

https://intsav.github.io/efficient_annotations.html
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Fig. 1. Adapted U-Net model of depth 5 with dropout for uncertainty: features Conv2D
layers with 3×3 kernels, batch normalization, and ReLU in encoder and decoder blocks.
Includes 2×2 maxpooling and dropout (0.1 probability) in each block, with a dropout
(0.25) at the bottleneck. Decoder employs Conv2DTranspose with concatenation and
batch normalization. Output is a 1×1 Conv2D layer with Sigmoid activation.

batch normalization, ReLU activation, and 2×2 Maxpooling. A Dropout layer
(probability of 0.1) is applied. The network bottleneck contains two Conv2D
layers, and a Dropout layer (probability of 0.25) is employed. In the decoder
blocks, Conv2DTranspose with a 2×2 kernel size is used, followed by concate-
nation, Dropout (probability of 0.1), batch normalization, and ReLU activation.
Two Conv2D layers with a 3×3 kernel size, batch normalization, and ReLU ac-
tivation are included. The output layer consists of a Conv2D layer with a 1×1
kernel size and the Sigmoid activation function. The architecture visualization
in Fig. 1 was created using the PlotNeuralNet tool.

2.3 Sampling strategies

This study follows a standard pool-based AL methodology, illustrated in Fig. 2.
The AL process comprises four steps:

1. Initial training of the model using labelled data (L).
2. computation of model uncertainty scores and/or representativeness scores

(depending on the sampling approach adopted) for the unlabeled data pool
(U).

3. Selection of a batch of highest-ranked images (K), followed by expert anno-
tation and addition to L.

4. Iterative model retraining using the updated labelled data (L).

These steps are repeated until the desired number of AL iterations is reached,
or a desired level of model performance is achieved. This approach enables the
active selection of the most informative samples for annotation, achieving high
segmentation performance with a limited number of labelled images.

https://github.com/HarisIqbal88/PlotNeuralNet
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Fig. 2. A typical active learning cycle: Begins with initial training on labelled data,
followed by scoring unlabeled data for uncertainty or representativeness. Selects and
annotates top-ranked images for addition to the labelled pool and concludes with iter-
ative retraining using the expanded labelled dataset

Random sampling and a variety of different selective sampling approaches
were used for selecting the next batch of images from the unlabelled pool:
– Random is the baseline technique for randomly acquiring the next batch

of images to be labelled. The random uniform distribution allocates random
scores over the interval [0,1] for each image in U.

– Uncertainty scoring We explored various uncertainty techniques, including
classification uncertainty and Entropy, and adapted BALD and MCD Entropy
to improve segmentation performance [35, 42, 45, 46].
• Pixel-wise, known as the least confident[22]. Since our model’s output
layer is sigmoid, it gives a probability P for each pixel in an image between
0 and 1, where 0 is for the background, and 1 is for the foreground (the
mask), which can be described in Equation 1 as follows:

f(P ) =

{
1 if P ≥ 0.5

0 otherwise
(1)

The closer the pixel probabilities are to 0.5, the more uncertain the model’s
prediction is. By calculating the absolute value of the difference between
each pixel probability and 0.5, one can measure the uncertainty of each
prediction. Summing up these values for all pixels in the image gives us an
overall uncertainty score for that image.
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Images with low uncertainty scores are the ones where the model is relatively
confident. On the other hand, images with high uncertainty scores are the
ones where the model is less certain about its predictions, and their labels
will be acquired for the next training iteration.

• Predictive Entropy, also called Maximum Entropy (Max-entropy), is a
commonly used metric for quantifying uncertainty, utilising Shannon En-
tropy [47]. This measure focuses on epistemic uncertainty, which represents
the level of information required to encode a given distribution [24]. The
predictive entropy can be computed using the following equation:

H(X) = −
C∑

c=0

P (c) logP (c) (2)

where P is the probability estimated for a class C given an image X be-
longs to U. In the context of image segmentation, predictive entropy can be
applied to assess the uncertainty of the model’s predictions on a per-image
basis. We adapted the predictive entropy for segmentation by deriving prob-
abilities for foreground and background pixel classes. The probability for
the foreground class is obtained directly from the sigmoid output, while the
probability for the background class is derived as 1 - P . Then, we used the
probabilities vector for each pixel within an image to calculate an Entropy
score per pixel using Equation 2.
In this modified approach, we replaced the original probability value P
in Equation 2 with Pi, a list containing both P and 1 - P , representing
the probabilities for foreground and background classes, respectively. The
updated Equation 3 is as follows:

H(X) = −
N∑
i=0

C∑
c=0

Pi (c) ∗ logPi (c) (3)

where Pi denotes the pixel probabilities for each pixel i belonging to an
image X, and N represents the number of pixels of an image X belonging
to U. In the context of active learning, images with high predictive entropy
are considered more uncertain and informative because the model is less
confident about its predictions for those images.

• Ensembles-based methods, where we incorporated dropout layers into
the U-Net model (Fig. 1), use the MCD technique for Bayesian approxi-
mation [34]. The concept behind MCD is the activation of dropped neurons
during inference, leading to multiple predictions for each image and allowing
us to compute uncertainty scores for the unlabeled images.
In our study, we performed T forward passes for each image in U, employing
T = 100 to achieve satisfactory performance. Next, uncertainty measures
are used, including:
Variance (Var), where this measure calculates the uncertainty of a pixel
by considering the variance of its predicted probabilities across the multiple
predictions generated by the MCD technique [23]. We averaged the pixel
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variances to get an uncertainty score per image, and the images with high
scores were queried.
MCD-entropy, where this measure calculates the uncertainty of a pixel
by considering the distribution of its predicted probabilities. We calculated
the entropy of the mean predictions for each image in U over T times as
below, and images with high scores are selected for annotations.

H(x) = −
N∑
i=0

C∑
c=0

(
1

T

T∑
t=1

Pi(c) log

(
1

T

T∑
t=1

Pi(c)

))
(4)

BALD, which aims to select the unlabelled images with the highest dis-
agreement between the predictions of different models for annotation, op-
erates by maximising Mutual Information (MI). MI measures the degree
of dependency between the model’s parameters and its output (i.e., predic-
tions) [48]. Essentially, it quantifies how much the uncertainty in the model’s
predictions can be reduced by knowing the true label for a particular image.
We used MCD and sampled many networks, so when they disagreed on an
image, some of them were wrong. We adapted BALD for binary segmen-
tation using Entropy as described in Equation 4. To calculate the MI and
have an uncertainty score for an image, we used the following equation:

MI(x) = H(x)− E[H(x)] (5)

To plug BALD with MCD, we calculate Entropy1 H and Entropy2 E over
T predictions; the first is H, similar to MCD-Entropy; the second is E,
computed by calculating the Entropy for each prediction and averaging
these Entropies as follows:

E[H(x)] = −
N∑
i=0

(
1

T

T∑
t=1

C∑
c=0

Pi(c) logPi(c)

)
(6)

By substituting H and E in Equation 5, we get the following equation for
MI (i.e. BALD) scoring:

MI(x) = −
N∑
i=0

C∑
c=0

(
1

T

T∑
t=1

Pi(c) log

(
1

T

T∑
t=1

Pi(c)

))
+ (7)

∑N
i=0

(
1
T

∑T
t=1

∑C
c=0 Pi(c) logPi(c)

)
Images with high MI are selected for annotations.

– Representativeness sampling
Methods that solely consider uncertainty have a drawback; they may concen-
trate only on limited regions of the data distribution because the models tend
to be uncertain for similar types of images. If these methods train on samples
from the same region, this could lead to redundancy or bias. Introducing a
representativeness measure addresses this issue by promoting selection strate-
gies that sample from diverse regions of the distribution. We first applied
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simple representativeness sampling and later optimised it using feature-based
outliers:
• Simple representativeness sampling (SRS) This approach aims to se-
lect images that represent the remaining data but are unseen by the model.
To achieve this, we initially extracted image features from both the labelled
(L) and unlabeled (U) datasets using two different methods: VGG16 [49]
and GLRM [50], to compare the performance of the two models. Then, we
used cosine similarity to measure the similarity between samples [51]:

Cos Sim(x, y) =
x · y

∥x∥∥y∥
, where x, y ∈ U (8)

Cos Sim(x, z) =
x · z

∥x∥∥z∥
, where x ∈ U , z ∈ L (9)

For each image x in the unlabeled set, we calculated the maximum similarity
(max sim) score between x and the other images in the unlabeled set U and
the maximum similarity score between x and all the images in the labelled
set L. We then calculated the representativeness score (Rep score) for each
image x in the unlabeled set by subtracting the two scores:

Rep score(x) = max sim(x, U)−max sim(x, L) (10)

We sorted the unlabeled images in descending order based on their represen-
tativeness scores, applying Equation 10, and selected the K highest-ranked
samples for annotation.

• Optimised representativeness sampling (ORS) One limitation of the
SRS is that it tends to select images from the unlabeled pool that are
highly representative of the remaining images, thus excluding images with
significantly different characteristics. This can lead to a lack of diversity in
the training data, hence hindering the performance of the model.
Therefore, we propose ORS, a density-based sampling approach to address
the limitation of SRS by identifying regions of high data density in the
feature space, and selecting samples from both high- and low-density areas
to ensure coverage of different data distributions. To achieve this, we select
some samples for annotation that are feature-based outliers, i.e., images
with lower similarities to other unlabeled images that are also unseen by
the model. By including feature-based outliers in the selected images, ORS
improves the diversity of the training data.
To implement ORS, we first divided the unlabeled set U into two lists: list-1,
most representative images, and list-2, feature-based outliers. We followed
the same steps as in the previous section to sort the most representative
images in descending order.
For feature-based outliers, we pick the images with similarities to other un-
labeled images below a threshold which can be tuned; here, it was the mean
similarity of the unlabeled set. We then calculated their representativeness
scores and ranked them in ascending order.
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Finally, to get the K samples, we used both lists as follows: K1 = 0.75% of
K from list-1, K2 = 0.25% of K from list-2, and then K = K1 + K2. This
split can be tuned; we tried different splits and achieved optimal results
with this approach.

– Combined uncertainty with ORS sampling To leverage the benefits of
both uncertainty-based and representativeness-based active learning, we com-
bined both approaches as follows: (1) Initially, we trained the model using
the available labelled images. (2) Next, we employed the ORS technique to
select the top 50 representative images from the pool of unlabeled data. (3)
We then applied the predictive entropy method to measure uncertainty on
these 50 images. (4) We selected K samples for labelling from the subset of
images with the highest uncertainty, which were used to retrain the model.

2.4 Implementation and training settings

Tensorflow [52] and Keras [53] frameworks are used to develop the DL models.
The training was conducted using an Nvidia RTX3090 GPU. The U-Net was
trained using binary cross-entropy loss and ADAM optimiser, with a learning
rate of 0.0001 for 200 epochs. In order to avoid overfitting, early stopping was
applied with a patience of 10. Variable-sized images (and corresponding ground
truth) were zero-padded to a uniform size and then resized to 512 × 512 pixels.
A fixed batch size of 8 was used.

For the CAMUS dataset, we selected 10% (35 images) of the initial training
data as L (labelled pool), and U (unlabelled pool) was the remaining 90%. For
the Unity dataset, we chose 4% (82 images) as the initial L, and the remaining
was U. For each dataset, all experiments using different approaches for selective
sampling started with the same model, trained on the initial labels in L. The
size of the K samples was 5% and 1% of the total CAMUS and Unity datasets,
respectively.

2.5 Evaluation metrics

The Dice-Coefficient (DC), also known as Sorensen-Dice or Dice Similarity Co-
efficient, is a similarity measure over sets [54]. The original formula of the Dice
coefficient formula is defined as follows:

DC =
2|A ∩B|
|A|+ |B|

(11)

where A represents the ground truth, and B represents the predicted mask.
This equation calculates the degree of overlap between the predicted mask and
its corresponding ground truth.

The models were evaluated after every AL iteration using the DC metric,
widely used for evaluating image segmentation accuracy, using Equation 11. DC
was computed between the ground truth and the inferred prediction for each
image in the testing dataset. Then, the mean of DC scores of all images is
calculated to present the model’s accuracy.
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Fig. 3. Performance profiles for various uncertainty-based sample selection strategies
at each active learning iteration; lower panel shows a magnified version of early stages
presented at the upper panel. Black and pink horizontal broken lines indicate the upper
bound (training on the full dataset) and 98% of the upper bound, respectively. Shaded
areas denote ± half of the standard deviation. As it is evident, the predictive entropy
was the best uncertainty strategy for the two echo datasets used in this study, especially
at the initial active learning iteration stages.

Each AL selection strategy was trained three times, and the average DC at
each AL iteration was computed and used to plot the results.

3 Results

All results are reported for the testing dataset to evaluate different AL ap-
proaches. Each acquisition method is trained three times, and the average of
their Dice Coefficient scores is used.
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3.1 Uncertainty sampling

Fig. 3 shows that all uncertainty methods outperformed random selection except
MCD-entropy. Predictive entropy was the best uncertainty strategy for the two
echo datasets used in this study, especially at the initial AL iteration stages. It
achieved 97.7% of the upper bound (maximum accuracy achievable) using the
entire CAMUS dataset with only 25% of the annotations, while other approaches
required approximately 35% or more to achieve similar performance. This would
reduce the cost of labelling images by 10%.

For the Unity dataset, the predictive entropy significantly outperformed all
other methods from the early stages of AL, achieving 98.3% and 98.6% of the
maximum achievable performance. After using 30% of the annotations, the pixel-
wise selection approach almost converged to the best performance, outperform-
ing all other uncertainty techniques.

Additionally, the shaded areas indicate that results from all selection ap-
proaches, except random and MCD-entropy, are highly reproducible.

3.2 Representativeness sampling

Fig. 4 illustrates performance plots for representativeness sampling strategies.
Evidently, our proposed optimised method (ORS) outperformed the existing
approaches for both datasets, improving the performance, particularly at the
early stages of AL interactions. This is likely due to ORS selecting images with
various distributions in the dataset.

ORS method achieved 98% of the maximum achievable performance (upper
bound) using only 25% of labels in the CAMUS dataset, outperforming the SRS
method, which required 35% of the annotations to approach the same perfor-
mance level.

With GLRM, ORS achieved almost the same accuracy as the full dataset
using 50% of annotations, while the SRS method needed 90% of the labelled
data to reach that performance. With VGG16, however, the ORS method out-
performed the SRS at the early AL stages until 30% of labelled data was added
to the training dataset; after that, both methods performed similarly.

For the Unity dataset, ORS with GLRM converged to upper bound perfor-
mance using only 15% of the labelled data, significantly reducing the labelling
effort. SRS required 33% of the annotations to approach that performance. With
VGG16, the improved performance of ORS over SRS was less pronounced in later
stages, following the pattern observed in the CAMUS dataset.

3.3 Combined uncertainty with ORS results

The results of integrating the ORS technique with the Max-Entropy uncertainty-
based method are illustrated in Fig.5. The combination of ORS with Max-
Entropy enhanced the performance of AL on the CAMUS dataset compared
to using each method individually. It achieved 98.6% of the maximum perfor-
mance using only 25% of the annotations, while utilising Max-entropy alone
required 35% of annotations to reach the same performance level.
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Fig. 4. Performance profiles for various representativeness sampling strategies versus
the proposed optimised approach. Black and pink horizontal broken lines indicate the
upper bound (training on the full dataset) and 98% of the upper bound, respectively.
haded areas denote ± half of the standard deviation. Evidently, our proposed optimised
method (ORS) outperformed the existing approaches for both datasets, improving the
performance, particularly at the early stages of active learning interactions.

However, on the Unity dataset, the combined approach achieves a more sub-
stantial boost, mainly at the early stages of active learning, when compared
with Max-entropy. The proposed ORS method performed as well as the early
stages combined approach. Afterwards, all three methods exhibited similar per-
formance.

Fig.6 shows the improvement of the model in segmenting the left ventricle at
the early stages of active learning when different image selection strategies are
adopted.

Table 2 outlines the percentage of full data required to attain various up-
per bound performance levels; upper bound denotes the maximum achievable
accuracy when trained on the complete dataset for each utilised dataset in this
study.
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Fig. 5. Performance profiles comparing the best of each approach (uncertainty and
representativeness) and also a combination of both (ORS and Max Entropy). The
lower panel shows a magnified version of the early stages presented in the upper panel.
Black and pink horizontal broken lines indicate the upper bound (training on the full
dataset) and 98% of the upper bound, respectively.

To reach a 99% upper bound performance in CAMUS and Unity datasets,
only 30% (combined method) and 20% (ORS GLRMmethod) of the images need
to be labelled, respectively. This translates to a remarkable reduction of 70% (245
fewer images) and 80% (1680 fewer images), resulting in substantial savings in
annotation costs.

If we consider a 95% upper bound performance as acceptable, this implies
that 280 and 1995 fewer images need to be annotated for the CAMUS and Unity
datasets, respectively. This demonstrates a notable efficiency in achieving high
accuracy with a reduced annotation burden.
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Table 2. Percentage of labelled data needed to achieve various levels of performance in
terms of Dice score for different sampling strategies; performance is given as the ratio of
upper bound accuracy where upper bound is the maximum achievable accuracy when
training on the full dataset.

Datasets CAMUS Unity

Ratio of upper bound 0.93 0.95 0.98 0.99 0.93 0.95 0.98 0.99

Max entropy 15% 23% 28% 50% 5.5% 6% 7.5% 20%
ORS GLRM 17% 23% 28% 50% 4.5% 5% 7.5% 20%
Combined 13% 20% 24% 30% 4.5% 5% 8% 20%
Random 30% 45% 50% 75% 7% 15% 25% 40%

4 Discussions

The efficacy of AL methods may vary depending on the dataset, limiting their
generalizability across different datasets [24]. As shown in Fig.3, uncertainty-
based AL strategies have varied performance on two datasets from the same
domain.

Our proposed method, ORS, outperforms SRS in the initial phases of active
learning, possibly because ORS deliberately selects images with diverse distri-
butions (see Fig.4. While SRS focuses on representative images for the entire
dataset, it overlooks the consideration of diversity within those distributions. In
contrast, ORS is designed to specifically choose images that encapsulate various
distributions present in the dataset. This targeted approach proves advanta-
geous, particularly in the early stages of active learning when the model is still
acquainting itself with the dataset’s diverse distributions.

To demonstrate the significance of our proposed ORS approach compared
to SRS, we conducted a paired-sample t-test analysis. The results indicate sig-
nificant differences between ORS and SRS for the Unity dataset, with p values
of 0.005 and 0.0003 when utilising GLRM and VGG16, respectively. For the
CAMUS dataset, the t-test revealed a significant difference (p = 0.007) between
ORS and SRS when using GLRM. However, when using VGG16, no significant
difference was found (p = 0.094).

The distinction in performance between GLRM and VGG16 can be at-
tributed to their architectural differences. Despite VGG16’s superiority with
SRS, its performance levels align more closely with GLRM under the influence
of ORS, emphasizing the efficacy of ORS in enhancing the performance of less
complex models like GLRM, especially in comparison to the data demands of
deep neural networks such as VGG16.

For the Unity dataset, the performance of ORS and combined methods was
mostly similar throughout all stages of active learning. This could be attributed
to the high similarity of image features within this large dataset, making selecting
images from various distribution regions more crucial for labelling. Consequently,
it is recommended to use ORS, as it provides similar performance while requiring
less training time than the combined approach.
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Fig. 6. Segmentation of left ventricle at different steps of active learning when us-
ing different sampling strategies: baseline (Random), uncertainty-based (max-entropy),
proposed optimised representativeness sampling method (ORS), and the combined ap-
proach. Green and red contours represent manual and automated segmentations, re-
spectively. The value of the DC metric has also been provided in the top right corner
for each image.

4.1 Study limitations and future work

Our study showcases the effectiveness of our proposed ORS approach over other
representativeness and uncertainty-based AL methods. However, it’s crucial to
acknowledge inherent limitations and areas for further enhancement within this
domain, which warrant deeper discussion.

While our ORS approach, which emphasises dataset features, demonstrates
improved generalisability compared to dataset-dependent uncertainty-based meth-
ods, its effectiveness remains subject to the feature distribution of the unlabeled
pool. This highlights the importance of meticulous dataset analysis for future
implementations.

An additional challenge in ORS lies in ensuring sample diversity during the
selection of the most representative batches. Although our ORS technique is effi-
cient, enhancing the sampling process by considering the dissimilarity of samples
to previously chosen ones in each AL iteration could yield further improvements.
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However, such enhancements may come at the cost of increased computational
demands.

The iterative nature of AL renders it a resource-intensive framework. While
our study conducted multiple experiments with consistent settings to compare
competing methods fairly, the scope of our experimentation was limited, omitting
certain potential setups. Therefore, extensive testing under varied conditions is
imperative to comprehensively understand the applicability and performance of
AL methods.

In future endeavours, we aim to address these limitations and expand upon
our current method. This involves integrating self-supervised and semi-supervised
learning techniques to merge high-quality image predictions with expert annota-
tions as pseudo-labels. Furthermore, it’s essential to examine the generalisability
of the proposed method when applied to other medical imaging modalities and
tasks, such as classification. This broader exploration will provide valuable in-
sights into the versatility and efficacy of our approach across diverse medical
imaging scenarios.

5 Conclusions

In this study, we address the challenge of limited annotations in medical image
segmentation, specifically focusing on left ventricle segmentation in echocardiog-
raphy. We introduce and adapt active learning techniques, including uncertainty-
based and representativeness sampling methods, to improve model training effi-
ciency.

Our findings demonstrate the effectiveness of these methods in reducing an-
notation costs while maintaining high segmentation performance. The integra-
tion of uncertainty-based methods leads to significant improvements in the early
stages of active learning, allowing for the strategic selection of informative sam-
ples and optimisation of annotation efforts.

Additionally, our proposed optimised representativeness sampling method
outperforms existing representativeness sampling techniques, providing a bal-
anced and diverse set of samples for annotation. The combination of uncertainty-
based and representativeness sampling can further enhance the efficiency of ac-
tive learning, achieving close-to-maximum performance with reduced annotation
efforts.

Our study also contributes a unique dataset of echocardiogram images anno-
tated by accredited experts, which is made publicly available for further research
and model development. Additionally, we introduce a majority-based consensus
dataset, offering a robust benchmark for performance evaluations in left ventricle
segmentation.
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