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 2 

ABSTRACT 1 

Untargeted profiling of small molecule metabolites from microbial culture 2 

supernatants (metabolic footprinting) has great potential as a phenotyping tool. We 3 

employed time-resolved metabolic footprinting to compare one Escherichia coli and 4 

three Pseudomonas aeruginosa strains growing on complex media and showed that 5 

considering metabolite changes over the whole course of growth provides much 6 

more information than taking a single time-point. Most strikingly, there was 7 

pronounced selectivity in metabolite uptake, even when the bacteria were growing 8 

apparently exponentially, with certain groups of metabolites not taken up until others 9 

had been entirely depleted from the medium. Additionally, metabolite excretion 10 

showed some complex patterns. Fitting non-linear equations (four-parameter 11 

sigmoids) to individual metabolite data allowed us to model these changes for 12 

metabolite uptake, and visualize them by back-projecting the curve-fit parameters 13 

onto the original growth curves. These ‘uptake window’ plots clearly demonstrated 14 

strain differences, with the uptake of some compounds being reversed in order 15 

between different strains. Comparison of an undefined rich medium (LB) with a 16 

defined complex medium designed to mimic cystic fibrosis sputum showed many 17 

differences, both qualitative and quantitative, with a greater proportion of excreted to 18 

utilized metabolites in the defined medium. Extending the strain comparison to a 19 

more closely related set of isolates showed it was possible to discriminate two 20 

species of the Burkholderia cepacia complex based on uptake dynamics alone. We 21 

believe time-resolved metabolic footprinting could be a valuable tool for many 22 

questions in bacteriology, including isolate comparisons, phenotyping deletion 23 

mutants, and as a functional complement to taxonomic classifications.  24 



 3 

INTRODUCTION 1 

 2 

The increasing speed of gene discovery has exceeded our ability to understand gene 3 

function, and one of the bottlenecks is the need for new, high throughput tools to 4 

evaluate cellular phenotypes (22). Even in bacterial genomes less than 70% of genes 5 

have an assigned putative function and fewer still are characterized biochemically. 6 

Metabolic profiling approaches have shown great promise for providing these tools 7 

for functional genomics and hypothesis generation (1, 6, 10, 18, 28, 43, 49), because 8 

they offer complementary information to transcriptomics and proteomics, in particular 9 

giving an integrated picture of information downstream of the genome (51). Various 10 

aspects of cellular physiology like the levels of transcripts, proteins or protein activity 11 

are altered in response to environmental cues or metabolite concentrations 12 

themselves. In return, these changes are amplified in the metabolome to give an 13 

accumulated – and highly sensitive – description of the physiological state of the 14 

organism or cellular compartment (26, 45, 49). This extends to natural populations 15 

that have multiple uncharacterized genetic changes such as an accumulation of 16 

mutations, as well as sometimes-extensive genetic differences like pathogenicity 17 

islands (21), which may interact to give complex phenotypes. Molecular phylogenetic 18 

methods based on gene sequences have proved successful in classifying bacteria 19 

into taxonomic groupings, but these may not always correspond to easily identifiable 20 

pheno- or ecotypes (29, 33, 48). Hence additional methods for strain assessment 21 

that could be related to function would still be valuable.  22 

 23 

Metabolomics gives an integrated measurement of cellular phenotype, and is highly 24 

suited to quantitative analysis and description. In a microbial context, metabolomics 25 



 4 

offers the additional advantage that there is only a single cell type, and little 1 

compartmentation (at least in comparison to the equivalent problem in a multicellular 2 

organism). However, sampling intracellular metabolites without either changing their 3 

relative concentrations or introducing contamination from supernatant metabolites is 4 

not straightforward, and research methods are still under active development by 5 

different groups (7, 12, 15, 59, 62). In contrast, exometabolome or supernatant 6 

profiling (‘metabolic footprinting’) is simple, and extracellular metabolites can exhibit 7 

very large changes in pool size (1, 27, 40, 45). These multiple advantages mean that 8 

exometabolome analysis has already been employed for a number of diverse 9 

applications, such as phenotyping of both single-gene deletion mutants as well as 10 

isolates from natural populations, although so far mostly for fungi rather than bacteria 11 

(1, 2, 9, 25, 40, 48).  12 

 13 

Because metabolism integrates information from gene expression and a wealth of 14 

environmental cues, each organism will exhibit a distinct response, i.e. metabolic 15 

pattern that takes into account all these factors. It is therefore unsurprising that these 16 

patterns change with growth phase (1, 30). Despite this fact, it is currently common 17 

practice to sample only at one or two time-points, mostly the end of growth, in 18 

stationary phase (e.g. 48) and/or in mid-exponential phase (41, 52). In contrast, there 19 

is ample evidence that cellular biochemistry changes during growth (1, 3, 8, 39). 20 

Vertebrate studies have shown that explicitly considering ‘through time’ responses 21 

(metabolic trajectories) adds considerably to the description and understanding of 22 

biological events (16, 23, 58). We therefore argue that new approaches that are 23 

capable of integrating metabolic phenotypes over a range of conditions could be 24 

extremely beneficial for microbiology.  25 



 5 

 1 

In this study we have developed such an approach and evaluated it by monitoring 2 

metabolic changes over the course of time in growing batch cultures. Time Resolved 3 

Metabolic Footprinting (TReF) was used to compare the well-studied organisms 4 

Escherichia coli and Pseudomonas aeruginosa. We demonstrate that TReF is 5 

considerably more data-rich and informative than sampling at single time points and 6 

show the usefulness of the approach in hypothesis generation and as a phenotyping 7 

tool. We also show that TReF distinguishes isolates from the closely related 8 

Burkholderia cepacia complex (Bcc) at the species level for B. cepacia and B. 9 

cenocepacia, which is not the case for single timepoint analysis. The approach is 10 

very general and would therefore benefit the broader application of metabolomics to 11 

bacterial systems.  12 

 13 
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MATERIALS AND METHODS 1 

Bacterial strains. We used the following strains in this study: Escherichia coli 2 

MG1655; the Pseudomonas aeruginosa wild type strains PA01 and PA14 (50), P. 3 

aeruginosa PA0381 leu-38 str-2, a leucine auxotroph derived from PA01 (17); 4 

B. cenocepacia LMG 16654, B. cenocepacia LMG 16659, B. cenocepacia LMG 5 

18830, B. cenocepacia LMG 16656 (J2315), B. cenocepacia LMG 18863, B. cepacia 6 

LMG, B. cepacia LMG 6963, B. cepacia LMG 6988, and B. cepacia LMG 18821.  7 

Starter cultures for four biological replicates were set up by inoculating single 8 

colonies into 5 ml of LB medium (10 g/L tryptone, 5 g yeast extract, 5 g NaCl) and 9 

growing overnight at 37°C, shaking at 150 rpm. The growth of PA01 was compared 10 

under the same conditions in synthetic cystic fibrosis medium (SCFM), a complex 11 

defined medium designed to model nutrient status in sputum (46). These cultures 12 

were used to inoculate 20 ml of LB or SCFM in 250 ml conical flasks and then grown 13 

for 24 h at 37°C shaking at 150 rpm.  14 

 15 

Sampling: 1 ml was taken from the culture at 0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, and 24 16 

hours for E. coli, P. aeruginosa PA01 and all Burkholderia strains. The P. aeruginosa 17 

PA14 and P. aeruginosa PA0381 cultures were sampled at 0, 2, 3, 4, 5, 6, 8, 10, 12, 18 

14, 16, and 24 hours. (It should be noted that the total volumes sampled from each 19 

culture would potentially change the cell physiology in comparison to an unsampled 20 

flask; however, we were not aiming to model an unsampled culture.) For each 21 

sample, 0.1 ml was mixed with 0.9 ml culture medium for determination of cell 22 

density (OD600). The remainder of the sample was centrifuged (16000 x g, RT) and 23 

0.75 ml of the supernatant mixed with 0.2 ml NMR buffer (25 mM sodium azide, 0.25 24 

M phosphate buffer pH 7, and 5 mM sodium 3-trimethylsilyl-2,2,3,3-2H4-propionate 25 
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(TSP), in 2H2O). The 2H2O provided a field frequency lock for the spectrometer and 1 

the TSP served as an internal chemical shift reference.  2 

 3 

1H NMR measurement: spectra were acquired on a Bruker Avance DRX600 NMR 4 

spectrometer (Bruker BioSpin, Rheinstetten, Germany), with a magnetic field 5 

strength of 14.1 T and resulting 1H resonance frequency of 600 MHz, equipped with 6 

a 5 mm inverse flow probe. Samples were introduced using a Gilson flow-injection 7 

autosampler. Spectra were acquired following the approach given in (4). Briefly, a 8 

one-dimensional NOESY pulse sequence was used for water suppression; data were 9 

acquired into 32 K data points over a spectral width of 12 kHz, with 8 dummy scans 10 

and 64 scans per sample, and an additional longitudinal relaxation recovery delay of 11 

3.5 s per scan, giving a total recycle time of 5 s.  12 

 13 

Spectral processing and data analysis: Spectra were processed in iNMR 2.5 14 

(Nucleomatica, Molfetta, Italy). Free induction decays were multiplied by an 15 

exponential apodization function equivalent to 0.5 Hz line broadening, followed by 16 

Fourier transformation. Spectra were manually phased and automated first order 17 

baseline correction was applied. Spectral data between –0.5 and 10 ppm were then 18 

imported into Matlab 2007b (MathWorks, Cambridge, UK) and normalized to the 19 

integral of the TSP signal. Metabolites were assigned using in-house data, the 20 

Chenomx NMR Suite 3.1 (Chenomx Inc., Edmonton, Canada) and the Biological 21 

Magnetic Resonance Databank metabolomics database (14). Signature peaks, i.e. 22 

well-resolved resonances that could be easily assigned to one compound, were 23 

identified from the spectra. Difference spectra were calculated in order to eliminate 24 

the influence of (non-biological) variation in media composition. For this, the 25 
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spectrum at time-point 0 h was subtracted from the spectra of other time-points of the 1 

same strain-replicate pair (i.e. all spectra sampled from the same flask). In addition to 2 

full resolution spectra, all analyses were carried out on spectra binned integrals 3 

representing the dominant resonances detected in fresh, non-inoculated medium. 4 

153 integrals were fitted for LB, and 130 for SCFM. For the heatmap plots, the overall 5 

range of the resonance intensity changes was set to one and the changes were 6 

expressed relative to the starting values. 7 

 8 

Modeling and pattern recognition analysis 9 

We tested two different approaches to monitor the time-dependent changes in 10 

metabolite concentration: (a) Linear regression analysis was carried out with both 11 

optical density at 600 nm (OD) and time as X variable. A cut-off value for goodness 12 

of fit (R2=0.6) was determined by visual inspection of the fits. (b) Non-linear 13 

regression of the data against time using a sigmoid curve model (Eq. 1) was carried 14 

out using ‘nlinfit’ (Matlab statistics toolbox, Matlab). This resulted in fitting each 15 

variable with four parameters, the amplitude of the curve, the ‘half-life’ (t50) and the 16 

width of the decrease. Cut-offs for t50 (1-24 h), width (0-12 h) and relative error 17 

(< 0.6) were imposed.  18 

       [1] 19 

 20 

The width is defined as the time that elapses for the exponent of e to go from 1 to -1. 21 

Growth rate differences (E. coli grows faster than the Pseudomonas strains) manifest 22 

themselves in higher t50 values for slower growing than faster growing strains, and 23 

these quantitative growth rate effects complicate the elucidation of qualitative 24 
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differences that are particularly interesting for strain comparison purposes. Therefore, 1 

the sigmoid parameters were corrected for growth-curve bias before pattern 2 

recognition: the OD values were also fitted to the same non-linear model (Eq. 1). The 3 

amplitude was divided by the amplitude of the OD, and the t50 was expressed relative 4 

to the t50 of the growth curve by subtracting the t50 of each individual growth curve 5 

and dividing the resulting values by the width of the growth curve (Eq. 2).  6 

 7 

         8 

 [2]….. 9 

 10 

The fitting parameters were then mean-centered and used as inputs for hierarchical 11 

principal components analysis (H-PCA, (61)). As a first step for H-PCA, PCA was 12 

carried out on the corrected amplitude, the corrected ‘half-life’ and the width. To 13 

account for the missing values introduced by employing cut-off values, the Non-linear 14 

Iterative Partial Least Squares (NIPALS)-PCA algorithm was used. The three 15 

resulting scores blocks were normalized by division by their highest values to give 16 

each ‘scores block’ equal importance and used as input variables for a second-level 17 

PCA.  18 
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RESULTS  1 

 2 

Time Resolved Metabolic Footprinting (TReF) provides additional biological 3 

information compared to single time-point analysis 4 

Initially, we monitored changes in Luria broth culture supernatant during the growth of 5 

the widely studied Gram-negative bacteria Escherichia coli (wild type MG1655) and 6 

Pseudomonas aeruginosa (wild types PA01, PA14 and the leucine auxotroph 7 

PA0381, which was derived from PA01 (17)). Additionally, growth of PA01 in a 8 

defined medium (SCFM) (46) was compared. The 1H NMR spectra showed a 9 

complex mixture of small molecules, the majority of which could be readily assigned 10 

by comparison of their multiplicity and chemical shift to published or online values 11 

(Table 1). There were also a smaller number of resonances, which we have not yet 12 

assigned (0.91d, 1.07d, 1.19m, 1.27m, 1.36d, 2.69m, 3.81s, 5.85d, 5.88d, 6.03d, 13 

6.08d, 6.15d, 6.30d, 6.86m).  14 

 15 

Over the course of growth there were major changes in the metabolite composition of 16 

the growth media. This is illustrated in Fig. 1A, which shows the chemical shift region 17 

from 2 to 4 ppm of one LB grown culture of P. aeruginosa PA01 over time. At 18 

compound level, TReF revealed differences in the rates of uptake of individual 19 

compounds, as shown for three amino acids in a P. aeruginosa PA01 LB cultures. 20 

Alanine was taken up first from the medium, followed by threonine and then leucine 21 

(Fig. 1B). This clear time separation shows different modes of compound utilization 22 

during growth, and this differential compound utilization was observed for multiple 23 

compounds and in all investigated isolates. Further, the order in which compounds 24 

were utilized varied, but was reproducible at isolate level. These differences would 25 
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have been missed by single time-point profiling at 12 or 24 h and clearly indicate that 1 

comparative metabolomics would benefit from the application of TReF-based 2 

approaches, as differences can be highly growth-phase dependent.  3 

 4 

Figure 2 provides a summary of the changes that were observed in the investigated 5 

cultures over time. Fig. 2A-E is a heatmap representation of averaged difference 6 

spectra depicting both uptake and secretion at compound level, clearly showing 7 

patterns of metabolite secretion and uptake that differed greatly between the different 8 

strains and media. Four different modes were identified. a) Constant depletion: the 9 

majority of metabolites in the medium decreased constantly over time (e.g. Fig. 1, 10 

Fig. 3B). b) Transient excretion, followed by depletion: some compounds (e.g. 11 

acetate, Fig. 2F) were excreted during one growth phase and taken up during 12 

another. c) Transient depletion, followed by excretion: all Pseudomonas strains first 13 

took up formate, only to excrete it at later time-points (Fig. 2H). d) Constant 14 

excretion: some compounds increased in a sigmoid fashion, e.g. an as-yet 15 

unassigned doublet resonance at δ 1.10 ppm (probable methyl group signal from an 16 

organic acid, Fig. 2G). As shown in Fig. 2, the growth medium itself has a large 17 

influence on the metabolite utilization and depletion patterns, with major differences 18 

between P. aeruginosa PA01 grown in LB and in SCFM. The uptake behavior at the 19 

compound level is summarized in Fig. 2 and Table 2. Based on these first 20 

observations, the differences in compound utilization and excretion were further 21 

investigated and are discussed below. 22 

 23 

Non-linear regression modeling can be used to describe metabolite utilization 24 

over time 25 
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Most of the NMR-detectable resonances decreased over the course of growth (Fig 1 

2I,J). In order to further describe the changes in exometabolome composition over 2 

time, the concentration changes of individual metabolites were modeled by 3 

regression. Linear regression against time was a poor descriptor of metabolite 4 

consumption. Most of the NMR resonance intensities did not describe a straight line 5 

when plotted against time and thus each modeled variable usually contained an 6 

unacceptable amount of fitting error (as an example, the dotted line in Fig. 3B shows 7 

the linear fit of the pyroglutamate resonance at 2.40 ppm in one P. aeruginosa PA01 8 

culture). Only about one-third of the fitted resonances had an R2 value greater than 9 

0.6. For many compounds, the change in the resonance intensities roughly mirrored 10 

a growth curve and thus more closely resembled a straight line when plotted against 11 

OD (data not shown). The fits were indeed slightly improved when cell density 12 

(OD600) rather than time was used as the X variable: about half the fitted resonances 13 

had R2 values bigger than 0.6. However, the average correlation across all 14 

resonances was still poor for both time and OD (R=0.48 for time, 0.56 for OD). 15 

Instead, fits were significantly improved by using an appropriate non-linear model. A 16 

bacterial growth curve typically describes a sigmoid shape over time. Though the 17 

intensities of most NMR resonances did not exactly mirror this growth curve, they did 18 

decrease in a sigmoid fashion. Consequently, fitting sigmoid curves to the evolution 19 

of the resonances over time markedly decreased errors for ‘real’ peaks as opposed 20 

to noise (solid line in Fig. 3B). Even after imposing stringent cut-off values for fit (see 21 

methods), the dataset still contained about two-thirds of the resonances. Non-linear 22 

fitting is well suited to study media depletion, but was less useful for secreted 23 

metabolites. 24 

 25 
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For the data successfully fitted by non-linear modeling, the time course of each 1 

metabolite resonance was described by four parameters (Fig. 3A). Three parameters 2 

summarize the uptake characteristics for each metabolite: the relative decrease of 3 

the resonance with time (amplitude); the time of uptake (t50); and the duration of 4 

uptake (width). The fourth parameter, the offset, i.e. the intensity at the start of the 5 

experiment, does not represent meaningful information in this case, as we used 6 

difference spectra for the analysis. Hence, the offset was zero (for the original data) 7 

or close to zero (fitted data).  8 

 9 

Uptake window plots visualize compound utilization  10 

The parameters of the sigmoid equation can be used to obtain physiological 11 

information for individual compounds. Both the t50 and the width are in units of time 12 

with the t50 defining the time point at which the amplitude has reached its half-way 13 

point, i.e. when half of the compound has been utilized. The width is defined as the 14 

time that elapses for the exponent of e to go from 1 to -1 (see methods) and roughly 15 

translates to the duration in which the compound is taken up at the maximum rate, 16 

and thus defines a time span or “uptake window” for any fitted compound / resonance 17 

lying around the compound t50 value (Figure 3). These ‘uptake windows’ can be 18 

projected onto the OD600 growth curves of the individual strains to visualize 19 

differential compound uptake. Figures 4A-D show the projections of the uptake 20 

windows of seven compounds (alanine, leucine, threonine, asparagine, valine, 21 

succinate, and the disaccharide trehalose) onto the growth curves of the E. coli and 22 

the three P. aeruginosa strains for LB. Each circle represents the t50 value of one 23 

compound for one biological replicate with the bars on either side representing the 24 

width of the same compound. 25 
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 1 

These uptake window plots illustrate how TReF is able to elucidate similarities in and 2 

difference of compound utilization of strains, summarized with a single plot. Not only 3 

did the uptake windows differ dramatically for the individual metabolites, but there 4 

was very clear separation between them – i.e. the different amino acids fell into 5 

different ‘utilization groups’, which were separated along the growth curve. For 6 

example, P. aeruginosa PA01 (grown in LB) did not take up threonine until after the 7 

simultaneous depletion of alanine and asparagine. Leucine was then taken up after 8 

threonine had been removed. This order was also observed for the two other 9 

P. aeruginosa strains but was different in E. coli, with trehalose taken up before 10 

alanine, and leucine not taken up at all.  11 

 12 

Additionally, the plots provide evidence for significant differences between the three 13 

P. aeruginosa strains. PA14 does not take up succinate in a sigmoidal fashion, 14 

however the compound was quickly removed from the medium in all strains. 15 

Interestingly, PA0381, originally derived from PA01, was shown to have lost its ability 16 

to utilize trehalose. This loss of function could be a side effect of the leucine 17 

auxotrophy causing a metabolic network rearrangement. However, a more 18 

parsimonious explanation is that the non-specific mutagenesis used to obtain the 19 

leucine auxotroph phenotype (53) also affected one of the genes necessary for 20 

trehalose breakdown (the transporter or the trehalase).  21 

 22 

Transient changes in the exometabolome and metabolite excretion  23 

Apart from metabolite uptake, a large proportion of the detected resonances 24 

transiently increased or decreased during growth in both LB and SCFM (Fig. 2). As a 25 
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positive confirmation, we detected acetate production by E. coli, a known example of 1 

overflow metabolism. Acetate is a fermentation product that accumulates at high 2 

growth rates, probably due to a rate bottleneck in aerobic metabolism (38); it was by 3 

far the clearest example of overflow metabolism in our current study. When grown in 4 

LB, all Pseudomonas strains transiently excreted the amino acids valine and 5 

tyrosine. In PA01 cultures, a singlet resonance at 2.24 ppm (putatively assigned as 6 

acetaldehyde) showed similar excretion dynamics to those of valine. Interestingly, 7 

this was not observed for the other Pseudomonas strains. In contrast, formate (Fig 8 

2H) was taken up from the medium during the first couple of hours of growth, but was 9 

excreted in stationary phase. In addition to these transient changes, a number of 10 

resonances increased proportionally to cell number over the course of growth, 11 

including 6-hydroxynicotinate (all Pseudomonas strains), indole (E. coli), and uracil 12 

(all strains). 13 

 14 

Compound utilization and excretion are dramatically influenced by the 15 

constituents of the growth media 16 

It could be argued that the complexity of the responses we observed were partly 17 

down to our using a complex and undefined growth medium. To that end, we 18 

compared the exometabolome of P. aeruginosa PA01 grown in LB to that grown in 19 

SCFM, a defined medium designed and shown to mimic conditions and utilization 20 

dynamics in cystic fibrosis sputum (46). Even though the cell density (as OD600) in 21 

different media did not differ greatly (data not shown), the choice of growth medium 22 

had a dramatic effect on the dynamics of the exometabolome, affecting both 23 

compound uptake and excretion (Figures 2 and 4E,F). Concerning compound 24 

utilization, a comparison of the uptake windows for selected amino acids in the two 25 
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media (Table 2 and Figure 4E,F) revealed several trends. Some amino acids, such 1 

as lysine, phenylalanine and leucine, were taken up later from LB than SCFM, which 2 

might hint at some sort of catabolite repression-like regulation in LB (see discussion). 3 

In contrast, the uptake dynamics of alanine, glutamate or aspartate and arginine 4 

were relatively unaffected as they were taken up at an early stage in both cultures. In 5 

terms of compound secretion, many more resonances increased when PA01 was 6 

grown in SCFM compared to LB. The transient increases in tyrosine and valine were 7 

also not observed in SCFM, but other resonances (1.07 d, 2.51 and 2.53 s) were 8 

observed to increase transiently. Finally, the pattern of formate change (transient 9 

decrease, followed by increase) was even more pronounced in SCFM. 10 

 11 

Potential application of TReF as a functional genomics tool 12 

Pattern recognition algorithms like PCA are widely used for multivariate data to 13 

visualize and summarize metabolic differences by dimension reduction. It was 14 

possible to separate E. coli and all P. aeruginosa strains using PCA on stationary 15 

phase samples and the approach very clearly showed the metabolites responsible for 16 

the strain differences (Fig. 5). However, the plots also show how single time-point 17 

profiling would miss the ‘big picture’, i.e. the metabolite concentration changes that 18 

occur at other time-points. If, for example, the cultures were sampled at 12 h, valine 19 

would appear to be excreted only by PA01 (Fig. 5E). In fact, PA14 and PA0381 also 20 

excrete valine at earlier time-points. Had the exometabolome been sampled at 24 h 21 

only, valine would appear to be utilized by all three P. aeruginosa strains to roughly 22 

the same extent. Additionally, the strains’ leucine (Fig. 5F) utilization would look 23 

roughly equivalent after 12 h, whereas, in fact, leucine uptake was slower and had a 24 

slightly greater amplitude in PA01 cultures. Of the discriminatory metabolites at 12 h, 25 
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only trehalose (Fig. 5D) would show the same qualitative difference between the 1 

strain at all time-points. One advantage of the non-linear metabolite fitting is that the 2 

fit parameters summarize key biological endpoints (e.g. compound uptake rates) in a 3 

compact way. Thus, by using the fit parameters as input for the multivariate analyses, 4 

it is possible to compare data in a principled way from different strains, which might 5 

have slightly different growth rates, lag phase, etc. Naturally, each parameter could 6 

be analyzed separately, but it is also possible to combine these in a single 7 

hierarchical model (Fig. 5C).  8 

 9 

As a test case for the resolution the TReF/H-PCA approach could offer, we analyzed 10 

culture supernatants of two species (nine strains in total) of the closely related 11 

Burkholderia cepacia complex. Single time-point profiling like that shown for 12 

stationary phase (t=24h) samples only provided some possible species separation, 13 

but with considerable overlap between the species groups (Fig. 6A, similar results for 14 

other time-points, data not shown). An added complication for this data set was that 15 

the strains showed large variations in growth rate, which were picked up by standard 16 

multivariate methods. However, the non-linear H-PCA approach showed a separation 17 

of B. cepacia and B. cenocepacia along PC1 (Fig. 6B). Thus, while ‘standard’ 18 

footprinting based on single time-points may be adequate for showing large 19 

metabolic differences, it failed to fully represent the subtle metabolic differences 20 

between the Bcc strains, which required the non-linear fit data. (We also tested H-21 

PCA alone, i.e. a hierarchical model based on PCA for individual time-points without 22 

any curve fitting, but this offered no advantages in comparison to analyzing single 23 

time-points, and failed to separate the Bcc species; data not shown).  24 

 25 
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 1 

DISCUSSION 2 

We have developed a time resolved metabolic footprinting approach for bacteria that 3 

should be widely applicable. Considering changes in the culture medium over the 4 

whole course of growth provides information that would be lost in a single time point 5 

analysis. 6 

 7 

Bacteria show ‘multiauxic’ uptake behavior on complex media 8 

TReF revealed differential compound uptake for all investigated strains, and for both 9 

a rich and a defined medium (LB and SCFM). The existence of a complex regulatory 10 

network leading to highly adaptable uptake dynamics is not surprising. In rich (or 11 

defined multi-compound) media, expression and translation of the transporter 12 

systems and catabolic pathways need to be controlled. The genomes of the 13 

Pseudomonas species group contain over 300 known or putative nutrient uptake 14 

systems (56). Expressing all inducible transporters and catabolic pathways at once 15 

will not be energetically favorable, and so a form of multiauxic growth and sequential 16 

compound uptake, like that observed here, is the likely outcome – although the 17 

extent of the differentiation between compound utilization classes during apparently 18 

exponential growth was surprising. A number of previous studies, albeit mostly not 19 

using rich media, have hinted at the complexity of the regulation at hand (e.g. 3, 19, 20 

30).  21 

 22 

Catabolite repression is a generic mechanism for regulation of substrate usage, and, 23 

for example, succinate represses arginine catabolism in Pseudomonas aeruginosa 24 

(42). ArgR controls the aerobic catabolism of arginine in P. aeruginosa (47), and also 25 

controls the levels of OprD, a porin for basic amino acids (44) and a serine 26 
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transporter (32). It is therefore logical that our data show that succinate depletion 1 

precedes the utilization of not only arginine, but also a number of other amino acids 2 

(Fig. 4). As a second example, lysine was depleted at an earlier growth phase in 3 

SCFM than in LB. Lysine can be imported by the specific permease LysP (54), but 4 

also by the putative basic amino acid ABC transporter PA5152-PA5155 (24). 5 

Transposon mutants within this operon were severely impaired in growth on ornithine 6 

as a single carbon source (24), so this transporter clearly contributes to P. 7 

aeruginosa’s ability to use ornithine. Hence it is highly probable that the high 8 

concentrations of ornithine in SCFM would induce expression of PA5152-PA5155, 9 

thereby potentially simultaneously increasing the potential rate of lysine uptake. 10 

These examples show how an untargetted approach can generate eminently testable 11 

hypotheses. 12 

 13 

The influence of media composition on uptake and excretion 14 

In addition to utilization, we studied compound excretion. Various compounds like 15 

acetate, valine and tyrosine were excreted transiently, whereas others like 6-hydroxy 16 

nicotinic acid or indole constantly increased over the course of growth for P. 17 

aeruginosa and E. coli, respectively. Formate had a particularly surprising utilization 18 

profile, with depletion followed by subsequent excretion; the precise reason is not 19 

clear at this moment. Compound excretion is a well-known phenomenon for 20 

biotechnologically interesting compounds in bacteria like Corynebacterium 21 

glutamicum (11, 40). A number of fundamental principles that lead to compound 22 

excretion have been formulated (11). The obvious explanation for a compound 23 

entering the culture medium is excretion of a product that bacteria “want” to excrete. 24 

This is the case for signaling molecules like quorum sensing (QS) signals. Our data 25 



 20 

show excretion of indole in E. coli, which was suggested to have extracellular 1 

signaling properties (60). It should be noted that P. aeruginosa in particular is known 2 

for producing a suite of QS metabolites, which might be expected to be visible in the 3 

medium; the reason that we do not identify more QS-related changes is probably just 4 

that NMR has relatively high detection limits. However the TReF principle would be 5 

identical if using a more sensitive analytical platform, such as many techniques 6 

based on mass spectrometry. Additionally, compounds might also be excreted 7 

because of overflow metabolism, limited catabolism, and deregulated anabolism (11). 8 

This “relief-valve”-function has previously been suggested for the aromatic amino 9 

acid exporter (ArAE, formerly AaeAB) in E. coli (57). This transporter has recently 10 

been functionally annotated in P. aeruginosa (24), so tyrosine could be excreted by 11 

P. aeruginosa when grown in LB to relieve intracellular stress. Valine might be 12 

excreted due to similar reasons by a so-far unindentified transporter. Interestingly, 13 

tyrosine and valine were only excreted into LB, not SCFM. Finally, the increase of 6-14 

hydroxynicotinic acid in P. aeruginosa cultures is probably due to limited catabolism 15 

of NAD or niacin, and has been used as a diagnostic marker of P. aeruginosa 16 

infection (20). 17 

 18 

Species discrimination in the Burkholderia cepacia complex 19 

An important and general question is to what degree phenotypic metabolomic data is 20 

informative about genotype, i.e. strain relatedness, as opposed to, say, ecotype, 21 

which could be a convergent result of adaptation. Previous studies have used both 22 

endo- and exometabolome profiling to address this in yeast and bacteria (33, 34, 48); 23 

it is clearly a complex question, as metabolomic data have shown both apparent 24 



 21 

clustering by ecotype, with additional genetic within-cluster separation, and also high 1 

between-strain metabolic variability that mostly correlated with genotype divisions.  2 

 3 

The P. aeruginosa and E. coli profiles were dramatically different, with the order of 4 

uptake of specific metabolites reversed (Fig. 4). However this is perhaps not 5 

surprising given these are very different organisms. We decided to carry out a more 6 

realistic test: whether differences could still be observed for a set of much more 7 

closely related bacteria. We chose two species of the Bcc (Burkholderia cepacia and 8 

Burkholderia cenocepacia, represented here by 4 and 5 independent isolates 9 

respectively) as a model comparison. The Bcc is a collection of genotypically distinct 10 

but phenotypically similar species within the genus Burkholderia (13, 37). Some Bcc 11 

members are opportunistic pathogens that can cause serious infections in patients 12 

with chronic granulomatous disease (CGD) or cystic fibrosis (35, 37), while some are 13 

found in the rhizosphere of important crops like maize and can protect these plants 14 

from fungal infection (5). Species-level identification of Bcc members is difficult and 15 

species are still frequently misidentified, especially using commercial identification 16 

systems (31). Single-gene phylogenies showed that B. cepacia and B. cenocepacia 17 

are especially similar genetically even within the Bcc (36, 55), meaning these two 18 

species formed a stringent test for our approach. The non-linear fitting TReF 19 

approach was nevertheless able to discriminate the isolates into species groups. It 20 

cannot be concluded at this point that this could therefore be used as a general tool 21 

for Bcc taxonomy (more isolates would need to be tested to derive robust 22 

conclusions about metabolic differences in these species), but serves as a proof-of-23 

principle that our approach of modelling the full time course of metabolic changes 24 



 22 

can provide additional and biologically meaningful data over single timepoint 1 

analyses.  2 

 3 

Conclusion 4 

 We have shown potential microbiological applications of time-dependent 5 

exometabolome profiling. Modeling of the amino acid utilization of E. coli and 6 

P. aeruginosa demonstrated an unexpected complexity of regulation. In addition, the 7 

same approach was shown to have clear advantages over single-time point profiling. 8 

TReF allowed comparison of the physiology of bacteria in different nutritional 9 

environments, and our data clearly demonstrates that marked differences could be 10 

found. We believe time-dependent metabolic profiling could be a valuable addition to 11 

the fields of bacterial physiology, functional genomics, and as a tool for strain 12 

comparison, both as a complement to traditional taxonomies, and also for 13 

investigating properties such as strain-specific virulence. It is still likely that single-14 

time-point metabolic footprinting will be preferred for many studies, simply because it 15 

requires analysis of fewer replicates. We see TReF having a complementary role, for 16 

in-depth phenotype analysis of a smaller number of strains – which might well, for 17 

instance, have been initially selected through single-time-point profiling. 18 

 19 
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TABLES AND FIGURE LEGENDS 1 

 2 

 3 

Table 1. List of assigned NMR-visible resonances in LB (note that the metabolites 4 

listed here may have other resonances: table includes only the most 5 

characteristic and well-resolved resonances). Resonances in bold font were 6 

used for non-linear fitting of compounds. 7 

Compound Assigned resonance frequency (ppm) 
Acetatea 1.92           
Acetaldehydea 2.24      
Adenosinea 6.08 8.26 8.34     
Alaninea 1.48 3.79         
Argininea 1.69 1.73 1.75 1.91 3.25 3.78 

Asparagineb 1.72 2.86 2.96 4.00    

Aspartatea 2.68 2.82 3.91       
Formatea 8.46           
Glucosea 3.39 5.24       

Glutamatea 2.07 2.35 3.74     

Glycinea 3.57           
Glycine-betainea 3.27  3.90         
Histidine (not 
fitted)a 3.11 3.14 3.31 7.07 7.88   
6-
hydroxynicotinateb 6.62 8.07     
Indoled 6.61 7.18 7.27 7.42 7.56 7.72 
Isoleucinea 0.94 1.01 1.25 1.26 3.68 3.74 
Lactatec 1.33 4.12     
Leucinea 0.96 0.97 1.72 3.74     
Lysinea 1.46 1.48 1.73 1.89 1.91 3.03 
Methioninea 2.12 2.14 2.65       
Methionine-S-
oxideb 2.74 2.76 2.93       
Nicotinic acida 8.61 8.94         

Pyrimidine 
nucleotidea 5.91      
Ornithinec 3.81      
Phenylalaninea 3.11 3.28 4.01 7.33 7.39 7.43 
Pyroglutamateb 2.06 2.39 2.42 2.51 7.98   
Serinea 3.79 3.85 3.96       
Succinateb 2.41           
Threoninea 1.33 3.59 4.26       
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Trehalosea 3.46 3.65 3.83 3.86 3.88 5.20 
Tryptophanb 3.31 7.29 7.55 7.74     
Tyrosinea 3.07 3.22 3.31 3.94 6.90 7.20 
Uracila 5.82 7.55         
Valinea 0.99 1.05 2.28 3.62     
Unassigned 
metabolite 
(potential 
quinolone).  7.68 8.10     

a: observed in both LB and SCFM. 1 

b: observed in LB only. 2 

c: observed in SCFM only. 3 

d: observed for E. coli only (not tested in SCFM). 4 
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Table 2. Comparison of fitted metabolite t50 values (h) for P. aeruginosa PA01 grown 1 

in LB and SCFM. 2 

 3 

 LB SCFM Differencea 

Tyrosine 14.8 6.5 -8.3 

Valine 15.8 8.5 -7.3 

Phenylalanine 8.8 5.0 -3.8 

Lysine 11.3 8.0 -3.3 

Leucine 9.6 7.0 -2.5 

Isoleucine 8.1 7.0 -1.2 

Aspartate 3.1 2.2 -0.9 

Arginine 4.0 3.5 -0.5 

Glycine 5.3 5.0 -0.3 

Glutamate 2.9 2.8 -0.2 

Alanine 3.5 3.4 -0.1 

Serine 2.7 4.3 1.6 

Threonine 5.8 7.7 2.0 

Asparagine 2.3 
not 
observed - 

Methionine not utilized 11.8 - 

Ornithine 
not 
observed 4.0 - 

Tryptophan 4.7 
not 
observed - 

a: ‘Difference’ refers to difference between t50 in SCFM compared to LB medium, i.e. 4 

the lower the value, the earlier metabolite was taken up in SCFM compared to LB. 5 

 6 

 7 

 8 
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 1 

Figure 1. A: section of 600 MHz 1H NMR spectra (4—2 ppm) for a single P. 2 

aeruginosa PA01 culture over a growth curve. Time-specific metabolic changes are 3 

clearly seen. B: single compound utilization data for three selected metabolites for P. 4 

aeruginosa PA01. Error bars = SEM (n = 4).  5 

 6 

 7 

Figure 2: Metabolite changes in different media and different strains across the 8 

course of growth. Heatmaps (panels A – E): each row represents a metabolite, or a 9 

peak from an as-yet unassigned metabolite. Blue represents decrease in 10 

concentration, and red represents increase in concentration. Note that panels B – E 11 

can be directly compared visually, but the metabolites in panel A do not line up 12 

directly with B – E. Row for metabolite ‘6HN / indole’ represents 6-hydroxynicotinate 13 

for P. aeruginosa strains, and indole for E. coli. 14 

A: P. aeruginosa PA01, synthetic cystic fibrosis medium.  15 

B: P. aeruginosa PA01, LB.  16 

C: P. aeruginosa PA14, LB.  17 

D: P. aeruginosa PA0381, LB.  18 

E: E. coli, LB.  19 

Selected metabolites with different modes of utilization/production are then shown in 20 

detail in the bottom half of the figure (error bars represent ± SEM):  21 

 F: acetate, E. coli. Transient increase in metabolite concentration. 22 

 G: unassigned metabolite, E. coli, peak at δ 1.10 ppm. Steady increase in 23 

metabolite concentration. 24 

 H: formate, P. aeruginosa PA01, LB. Transient decrease in metabolite 25 

concentration followed by subsequent production. 26 
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An overall comparison of the different modes is then shown as pie charts 1 

(percentage of assigned metabolites that change in some way during growth). 2 

 I: P. aeruginosa PA01, SCFM. 3 

 J: P. aeruginosa PA01, LB. 4 

 5 

 6 

 7 

Figure 3. A: Schematic showing the parameters for non-linear curve fitting. B (inset): 8 

curve fit for a representative compound (pyroglutamate) for P. aeruginosa 9 

PA01. Solid line indicates sigmoid fit; dotted line indicates much poorer linear 10 

fit. 11 

 12 

 13 

Figure 4. Uptake window plots for seven example compounds for all four bacterial 14 

strains. Compound t50 is back-projected upon the actual culture growth curve, 15 

i.e. all biological replicates are shown. The ‘error bars’ represent calculated 16 

width (see Fig. 2 for illustration of t50 and width). Note that both abscissa (time) 17 

and ordinate (OD600) have been scaled such that growth curve maxima are set 18 

at 100%, to facilitate comparison across different strains.  A: E. coli. B: P. 19 

aeruginosa PA01. C: P. aeruginosa PA14. D: P. aeruginosa PA0381. The 20 

remaining two panels compare uptake windows for P. aeruginosa PA01 for 21 

two different media, LB and synthetic cystic fibrosis medium (SCFM). Note 22 

that glucose is plotted (not trehalose as for panel A), as glucose is higher 23 

concentration in SCFM. E: F: 24 

 25 
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 1 

Figure 5. A: Principal components analysis for 12 h data, scores plot of axes 1 and 2. 2 

Filled circles: E. coli. Empty circles: P. aeruginosa PA01. Empty triangles: P. 3 

aeruginosa PA14. Empty squares: P. aeruginosa PA0381. PCs 1 and 2 4 

explained 87% and 8% of the variance in the data, respectively. 5 

B: loadings plot for analysis shown in A. Variables corresponding to assigned 6 

metabolite bins for leucine, valine, and trehalose are labelled directly on the 7 

plot.  8 

C: Hierarchical principal components analysis of fitted time-course data. Figure 9 

symbols are the same as for A. PCs 1 and 2 explained 50% and 33% of the 10 

variance in the data, respectively. 11 

D: Trehalose utilization during growth for four strains. Solid black line: E. coli. 12 

Solid grey line: P. aeruginosa PA01. Dashed line (long dashes): P. aeruginosa 13 

PA14. Dashed line (short dashes): P. aeruginosa PA0381. 14 

E: Valine utilization during growth for four strains. Line styles as for D. 15 

F: Leucine utilization during growth for four strains. Line styles as for D. 16 

 17 

 18 

Figure 6. Comparison of single-timepoint and nonlinear fitted metabolite data for four 19 

Burkholderia cepacia (unfilled symbols) and five Burkholderia cenocepacia (filled 20 

symbols) isolates: principal components scores plots, axis 1 v axis 2. Different 21 

symbol shapes represent different individual isolates.  22 

 A: Single-timepoint analysis does not discriminate all isolates into species. 23 

PCs 1 and 2 explained 55% and 39% of the variance in the data, respectively. 24 
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 B: Fitted metabolite data (TReF) shows that species are discriminated along 1 

PC 1 across different isolates. PCs 1 and 2 explained 35% and 25% of the variance 2 

in the data, respectively. 3 

 4 
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