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Abstract—Deep learning techniques have shown promise in audio steganalysis, which involves 

detecting the presence of hidden information (steganography) in audio files. However, deep learning 

models are prone to overfitting, particularly when there is limited data or when the model 

architecture is too complex relative to the available data for VoIP steganography. To address these 

issues, new deep learning approaches need to be explored. In this study, a new convolutional neural 

network for audio steganalysis, incorporating a multi-scale feature fusion method and an attention 

mechanism, was devised to enhance the detection of steganographic content in audio signals encoded 

with G729a. To improve the network's adaptability, a multi-scale parallel multi-branch architecture 

was employed, allowing characteristic signals to be sampled with varying granularities and adjusting 

the receptive field effectively. The attention mechanism enables weight learning on the feature 

information after multi-scale processing, capturing the most relevant information for steganalysis. 

By combining multiple feature representations using a weighted combination, the deep learning 

model's performance was significantly enhanced. Through rigorous experimentation, an impressive 

accuracy rate of 94.55% was achieved in detecting malicious steganography. This outcome 
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demonstrates the efficacy of the proposed neural network, leveraging both the multi-scale feature 

fusion method and the attention mechanism. 

 

Index Terms—audio steganalysis, deep learning, convolutional neural network, attention 

mechanism, multi-scale feature fusion. 

I. INTRODUCTION 

TEGANOGRAPHY and cryptography are different types of information security technologies. Cryptography, 

the use of special codes to keep information safe in computer networks, is a well-known technology that 

has been widely used in various fields to protect information [1]. On the other hand, steganography is the 

practice of concealing hidden messages in ordinary text, pictures, audio, video, and other mediums [2][3]. 

It allows secret data to be disguised by embedding it into a carrier. Unlike cryptography, which makes the 

existence of encrypted information obvious, hidden information using steganography 'disappears' in the 

carrier without subjective consciousness, making its detection challenging. Therefore, the importance of the 

carrier in steganography is self-evident. Carriers can take the form of images, voice, text, or videos, and 

they serve as essential means of transmitting information over the Internet. Hidden information conveyed 

through steganography is not noticeable at first glance. Throughout the process of information 

transmission, steganography generally does not alter the original attributes of the carrier, enabling the 

secret data to be sent out secretly, making it difficult to discover its existence. However, if steganography 

were to be applied to illegal activities, it would pose certain security risks. 

   To confront the issue of malicious use of steganography in transmitting information, steganalysis 

technology has come into play. Steganalysis technology is used to detect the presence of secret information 

in these carriers, which involves a reverse process of steganography. Generally speaking, pattern 

recognition, machine learning, and other tools can be employed for steganalysis. There are two basic types 

of steganalysis methods: Specific Steganalysis and Universal Steganalysis. 

S 
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    Specific steganalysis involves extracting corresponding proprietary features based on known data 

embedding methods, and analyzing and judging based on these proprietary features, which results in strong 

pertinence. This method has a high degree of accuracy but an obvious shortcoming, as it can only target a 

certain type of steganography, limiting its universality. 

On the other hand, Universal steganalysis, also known as blind steganalysis, does not aim at a specific 

algorithm or class of algorithms but instead judges by looking for features independent of any particular 

algorithm. Due to the ever-changing steganographic algorithms, a general analysis of steganography is 

more suitable and becomes the mainstream research method in order to cope with the seemingly endless 

variations of steganography. 

The method of steganalysis varies depending on the carrier used in steganography. A carrier typically 

serves as a medium for communication among people. For instance, images and texts are common forms of 

information transmission. However, information can also be conveyed through sound or video. When 

information is stored on a computer in formats such as images, text, audio, or video, it can be utilized as the 

carrier for steganography. As a result, different methods are required to effectively deal with the proprietary 

characteristics of the information and achieve better results. In the realm of machine learning, 

convolutional neural networks (CNNs) are frequently employed to process image information, while RNNs 

(recurrent neural networks) or LSTMs (long short-term memory networks) are generally used to handle 

audio and text information. 

Deep learning is a type of artificial intelligence that uses algorithms (sets of mathematical instructions or 

rules) based on the way the human brain operates. As a sub-branch of machine learning, it is deeply rooted 

in the hearts of people because of its excellent performance. A neural network is a computer system or a 

type of computer program that is designed to mimic the way in which the human brain operates, forming 

the basis of deep learning. It is inspired by the biological nervous system and serves as a mathematical 

model that imitates the structure and function of a biological neural network. In the final analysis, deep 

learning is a mathematical expression, and mathematics provides the theoretical support for deep learning. 
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The process of deep learning is regarded as a journey to find the optimal solution of a mathematical 

function. 

The Convolutional Neural Network stands out as a highly effective algorithm in Deep Learning for both 

regression and classification tasks. Operating as a feed-forward neural network, CNN incorporates 

convolution calculations and possesses a specific depth structure. Typically, its structure comprises an input 

layer, convolutional layer, activation layer, pooling layer, and fully connected layer. The convolution 

operation resembles the use of filters, enabling the activation of pertinent data features while reducing the 

model's parameter count, thereby decreasing computational complexity. Through the activation function in 

the activation layer, a non-linear factor is introduced to normalize data and tailor it to the desired function. 

The pooling layer effectively reduces the feature matrix's size, aiding in processing efficiency. Lastly, the 

fully connected layer maps the learned distributed representation features to the corresponding sample label 

space. When utilized judiciously, this function can solve various problems, including the discovery of 

hidden information. Overall, the deployment of a well-designed CNN can significantly enhance the 

performance of numerous machine learning tasks. 

The performance of deep learning models in audio steganalysis depends on several factors: 

Data availability: Deep learning models require large and diverse datasets for effective training. The 

availability of sizable and diverse audio steganography datasets directly impacts the performance of these 

models. 

Feature extraction: Designing effective features or representations of audio signals is crucial for the 

success of deep learning models. Some approaches use spectrograms, mel-frequency cepstral coefficients 

(MFCCs), or other time-frequency representations as input to deep learning models. 

Model architecture: The choice of deep learning architecture plays a crucial role. Various architectures 

like CNNs, RNNs, Long Short-Term Memory (LSTM) networks, or hybrid models have been explored for 

audio steganalysis. 

Steganography techniques: The effectiveness of audio steganalysis models can be influenced by the 
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complexity and sophistication of the steganography techniques used to hide data in audio signals. 

The field of deep learning and steganalysis has been evolving rapidly, so new techniques and approaches 

need to be investigated. 

 

II. RELATE WORK 

In recent years, the field of deep learning has experienced rapid advancements and extensive applications 

across various industries. A comprehensive literature review reveals that deep learning has emerged as the 

dominant approach for steganalysis, providing the most reliable methods in recent times. Many deep 

learning models have been applied to the security field [4-13]. 

The evolution of convolutional neural networks for classification tasks began with the introduction of 

AlexNet in 2012. Since then, there have been remarkable strides in network architecture, resulting in the 

proposal of more sophisticated and deeper neural networks like VGG, GoogleNet, and the groundbreaking 

ResNet. The ResNet architecture effectively addressed challenges related to excessive network depth and 

gradient disappearance [14], further enhancing the capabilities of deep learning models. 

In 2018, Mehdi Boroumand et al. [15] harnessed the power of deep residual networks to construct a 

steganalysis model, specifically designed for detecting JPEG images. While the experimental results 

showed only a marginal improvement in detection, this marked a significant step towards leveraging deep 

learning techniques for steganalysis. 

Building upon this foundation, researchers have made continuous efforts to explore various improved and 

optimized neural network models for steganalysis, yielding promising results. These endeavors have 

demonstrated the potential of deep learning in detecting and analyzing hidden information within digital 

media. 

In the realm of steganalysis for speech signals, notable advancements have been made by various 

researchers. Initially, Chen et al. [16] introduced an audio steganalysis model called ChenNet, which relied 
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on a convolutional neural network to identify LSB (Least Significant Bit)-based steganography within the 

time domain. 

Following their work, Lin [17] and others further enhanced the convolutional neural network model by 

incorporating truncated linear units and residual modules for optimization purposes. The outcomes of their 

experiments substantiated the effectiveness of these model optimization techniques. 

Wang et al. [18] took a different approach and proposed a CNN-based MP3 audio steganalysis method. 

This method employed MP3 quantization to enhance the discrete cosine transform coefficients, which were 

then used as input for the neural network. This novel approach demonstrated promising results in detecting 

steganography in MP3 audio. 

In a related endeavor, Ren et al. [19] introduced a steganographic analysis method tailored for MP3 and 

AAC (Advanced Audio Coding) audio. They utilized a deep residual network (ResNet) and employed 

audio spectrogram data as the input for the network. This approach proved to be effective in detecting 

steganography in these audio formats. 

Within the domain of VoIP steganography analysis, Yang et al. [20] employed a bi-directional long-term 

and short-term memory circulation neural network (Bi-LSTM) to effectively capture long-term contextual 

information within the carrier. Subsequently, they utilized CNN to capture both local and global features, 

as well as the temporal carrier features. 

Furthermore, Yang [21] and his colleagues introduced a lightweight neural network called the Fast 

Correlation Extraction Model (FCEM). This innovative model represents a variant of multi-head attention 

and exhibits distinct advantages over relatively complex cyclic neural networks like RNN (recurrent neural 

Network) and CNN in terms of both accuracy and time efficiency. 

Steganalysis research has seen significant advancements through the adoption of a multi-scale model 

structure, inspired by the inception module proposed by Li [22] and others [23]. In this approach, the CNN 

architecture incorporates convolution kernels of varying widths, interconnected with diverse activations. 

This novel design, known as the DAM module, has yielded exceptional experimental results, 
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outperforming existing models. 

The multi-scale network structures can be categorized into three main types: multi-scale input, multi-

scale feature fusion, and multi-scale output. By employing convolution kernels of different sizes, the study 

generated diverse outputs that were then combined through depth superposition, resulting in new output 

features. In CNN, the high-level network and the low-level network exhibit distinct perceptual fields, 

extracting target features through layered abstraction. It is important to note that the characteristics of 

different scales significantly influence the results of classification tasks, and this model can be optimized 

through multi-scale convolution kernels. 

The inception module, first introduced in [23], lays the foundation for the multi-scale model. Notably, the 

inception module played a pivotal role in implementing state-of-the-art classification and detection 

techniques during the ILSVRC 2014 (ImageNet Large-scale Visual Recognition Challenge). One key 

feature of this architecture is its ability to effectively utilize computing resources within the network. 

In a neural network, the attention mechanism plays a crucial role in determining the significance of 

various sub-projects within a larger project. Its primary task is to prioritize important objectives and 

enhance the influence of essential sub-tasks, leading to improved results. Commonly used attention 

mechanisms in Convolutional Neural Networks encompass spatial attention, channel attention, visual 

attention, among others. For instance, Yang et al. [24] introduced a lightweight neural network named 

FCEM (Fast Correlation Extraction Model), which relies solely on a variant of attention called multi-head 

attention to extract features from VoIP frames.  

In this study, the network structure incorporates the channel attention mechanism based on SeNet. By 

assigning weight ratios to different feature channels, the researchers obtained new features that helped 

optimize the CNN model. 

This study introduces a novel convolutional neural network model for audio steganalysis, addressing the 

lack of research on the effectiveness of a multi-scale feature fusion method and the attention mechanism in 

this domain. The proposed model incorporates a multi-scale convolution module and integrates the channel 
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attention mechanism. By learning features from audio signals, it aims to distinguish steganographic features 

from non-steganographic ones. The model's efficacy in audio steganalysis was assessed through various 

experiments, demonstrating its strong performance. 

III. PROPOSED DEEP LEARNING MODEL FOR AUDIO STEGANALYSIS 

A new model for audio steganalysis is illustrated in Fig. 1. First, it normalizes the characteristic data of an 

input network through a normalization layer. Convolution, activation, and normalization operations are then 

carried out. Next, it enters the multi-scale module to perform sub-multi-scale convolution operations four times. 

After that, the weight is added from the channel attention module to obtain the new characteristics of average 

pooling operation. The features are then flattened on the completely connected layer, and the linear layer is 

added, followed by activation with Relu. Dropout is then applied to prevent overfitting. Finally, the 

classification results are activated with the softmax function. 

As shown in Fig. 1, BN is the data normalization operation, Conv represents the convolution operation, and 

the convolution kernel used consists of 16 3*3 convolution kernels. The activation functions used in the model 

are the ReLU and softmax classification functions. MultiScale_Block is the multi-scale convolution module, 

and Ch_Block is the channel attention module, both of which are described in detail in the next section. 

Avg_pooling represents the average pooling operation. Dense is a fully connected neural network, and the 

number of output neural units is 128. The final output result distinguishes steganographic and non-

steganographic data. 

In the first layer, a feature is normalized with the help of BN (Batch Normalization), which resets the 

distribution of the input values for each neuron in every layer of the neural network to a normal distribution with 

a mean value of 0 and a variance of 1. This one-step operation prevents the gradient of the neural network from 

exploding and vanishing. 

Immediately after entering the convolutional layer, there are 16 3*3 convolution kernels. The step size is set 

to 1, and zero padding is used. The output features have a depth of 16. The convolution operation can be 
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regarded as the perception of local features. Through the perception of local features again and again, an 

enhanced global feature is then obtained, which improves the expressive ability of features. The BN operation is 

performed to normalize the features, and the ReLU activation function is used to add nonlinear factors and 

increase the expressive ability of the model. The formula is as follows: 

𝑓𝑥=max⁡(0,𝑥)                            (1) 

 

 

 

Figure. 1. Multiple-scale and channel attention-based neural network model. 
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The ReLU function is a piecewise linear function. It 

suppresses negative data by setting them to 0, while 

leaving positive values unchanged. The ELU function, 

on the other hand, is a modification of the ReLU 

function. When the input is negative, it produces a 

certain output with a specific anti-interference ability. 

However, there are issues with gradient saturation and 

exponential calculations. 

A. Multi-scale Module 

In the multi-scale module, a multi-scale convolution operation is shown in Figure 2. In Fig. 2, Conv 

represents the convolution operation, 16@1*1 denotes the use of 16 1×1 convolution kernels, Maxpooling 

denotes the maximum pooling operation, Concat represents the splicing operation, and axis=3 indicates the 

feature depth direction. In the multi-scale module, the input features go through three different paths to 

achieve the same depth output result. 

 

 

 

Figure. 2.   Multiple-scale convolution module 
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The first path uses 16 1x1 convolution kernels to obtain the output result. The second path goes through 

16 3x3 convolution kernels, and after the convolution operation, the output result is obtained through a 1x1 

convolution operation. The third path involves the maximum pooling operation, and the output result is 

then obtained through a 1x1 convolution operation. Finally, the three outputs are stitched by depth to 

achieve the total output result. 

   The 1 * 1 convolution kernel in the model can effectively compress data and reduce the amount of 

computation. It significantly reduces the size of the input layer without compromising the network 

performance, thus greatly improving the learning efficiency. The width of the network can be increased by 

using convolution operations of different scales. Although raising the width of the network layer increases 

the amount of computation and memory overhead to a certain extent, increasing the width of each 

convolution layer can be more beneficial for expressing local information. For steganalysis, it also provides 

a good solution, extracting as much scale information as possible through the different receptive fields of 

various branches. 

B.  Channel Attention Module 

The attention module uses the channel attention mechanism.  

Figure. 3.   Channel attention module 

Given a feature channel number of c 1, the output channel number is c 2 after a series of operations of 

convolution, pooling, and full connection. By learning to obtain the weight of each feature channel, the 

importance of useful channels is strengthened, and the importance of less effective channels is reduced.  

In Fig. 3, avg_pooling represents average pooling, FC is a fully connected operation, ReLU and Sigmoid are 

activation functions. WHC represents the width, height, and depth (that is, the number of channels). 'r' 

represents a certain ratio, and the model uses 16. 

The channel attention mechanism can be divided into two steps: Squeeze and Excitation. 

Squeeze uses global average pooling to perform feature compression in the spatial dimension and encodes all 

features in the channel into a global feature that has a global receptive field to some extent. The formula for this 
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operation for a given input feature H*W*C is as follows:  

𝑧=𝐹𝑠𝑞𝑢𝑐=𝑖=1𝐻𝑗=1𝑤𝑢𝑐𝑖,𝑗																				(2) 

 

Formula 1: The formula represents the Squeeze operation, where c represents the depth of the feature channel, 

H represents the height of the image, and W represents the width of the image. 

Excitation employs a fully connected neural network to perform a nonlinear transformation on the results of 

Squeeze. It comprises two fully connected layers: the first layer serves as dimensionality reduction using ReLU 

activation, while the second layer restores the original dimensionality. Subsequently, it utilizes sigmoid 

activation to obtain the weight of each feature channel. The formula is as follow: 

𝑠=𝐹𝑒𝑧,𝑤=𝜎𝑔,𝑧,𝑤=𝑠𝑖𝑔𝑚𝑜𝑖𝑑𝑤2𝑅𝑒𝐿𝑢𝑤1𝑧(3)	

 

Formula 2: W represents the convolution operation, z is the output of Squeeze, ReLu and sigmoid are the 

activation functions, and the weight value of the output is between 0 and 1. 

The excitation result is used as the weight and multiplied by the input features to obtain the final result. 

After the two preceding blocks, the neural network enters the pooling layer to reduce feature dimensionality, 

mitigating overfitting and enhancing the model's fault tolerance. The pooling operations employed are the 

average pool, which captures global context crucial for effective classification, and the maximum pool, which 

discards certain feature map information, potentially detrimental to steganalysis. 

Subsequently, the learned distributed feature representation undergoes mapping into the sample label space 

through a fully connected layer. The first layer of this fully connected network consists of 128 neurons, derived 

from the transformation of collected feature data. To combat overfitting, a Dropout function with a coefficient 

of 0.5 is employed, preventing excessive reliance on specific connections within the network. 

   Lastly, the softmax activation function is utilized to produce two classification results, providing the final 

output of the model. 
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IV. RESULTS AND DISCUSSION 

A. Experiments 

The model designed in this paper was realized using Python language based on Tensor-flow2.4 deep learning 

framework, and run on win10 system with Intel ® Core™ I7-12700kf, GPU adopts NVIDIA GeForce 

RTX4090. The experiment employed speech samples, consisting of 94,599 segments of both steganography 

and non-steganography audio encoded by PCM codec. Out of these, 50,000 samples were allocated for training 

the deep learning model for audio steganalysis, while the remaining 44,599 samples served as the test set. 

The audio samples, whether steganographic or non-steganographic, were obtained using the same WAV 

audio encoding. For creating the steganographic samples, data embedding methods were randomly selected 

from CNV-QIM [21] [28] and the pitch steganographic method. The data embedding rates varied between 10%, 

20%, 30%, and 40%, with each rate being randomly chosen. 

To facilitate analysis, each sample was divided into 100 time frames. From each frame, 7 data points of LPC 

feature and PD feature in the speech signal were extracted. Consequently, the input data shape for the model 

was 7*100, wherein the feature data was augmented with a depth value. 

   By following this process, the deep learning model was trained and evaluated for audio steganalysis. 

The QIM steganographic algorithm conceals confidential information by establishing a quantitative 

mapping relationship between features and information bits. In the context of steganography on LPC 

(Linear Prediction Coding), it has been observed that the correlation of split vector quantization codewords 

of the linear prediction coding filter coefficients undergoes changes after QIM steganography. Leveraging 

this insight, a quantization code word correlation network model was constructed. This model utilizes deep 

learning to construct steganalysis algorithms, surpassing traditional approaches not only in terms of 

accuracy but also in real-time performance.  

In general, mainstream speech recognition systems commonly rely on two primary feature extraction 

techniques: Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC). LPC, 

specifically, is designed based on the characteristics of the human vocal mechanism and plays a crucial role 
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in speech acoustics. It helps distinguish between different human voices and vowels, mainly by analyzing 

the distribution of resonant peaks in the frequency spectrum. Consequently, the LPC parameters effectively 

characterize the formant frequency and bandwidth. 

In this experiment, a steganographic method was utilized, and it involved modifying the LPC parameters 

that had undergone steganography. The extracted LPC features were then used as learning parameters for 

the model. During the pitch steganography process, a small modification determines the value of the pitch 

period, which allows the model to effectively learn and classify the information encoded in the extracted 

features. 

Overall, the integration of LPC-based steganography and feature extraction proves to be a valuable 

approach for enhancing speech recognition systems and facilitating efficient information encoding and 

decoding. 

 The deep learning framework used in this study was TensorFlow 2.0, and the Adam optimizer was 

employed during the experiment. Optimal convergence results were achieved when the batch size was set 

to 64, and the number of epochs was set to 6. The training was conducted on core graphics devices with an 

i5-1135G7 processor. Throughout the learning process, the model's training set loss consistently decreased, 

leading to a gradual improvement in accuracy. The evaluation metric used in the experiments was detection 

accuracy. 
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Figure. 4.   Model learning test 

In the test set, the loss initially decreased at a slower pace but eventually stabilized. As a result, the 

accuracy reached an impressive 94.55%. 

Figure 4 displays the outcomes of a specific experiment. The left figure illustrates the accuracy of 

training, with the blue line representing training accuracy and the orange line indicating test accuracy. On 

the other hand, the right figure showcases the training set's loss (blue line) and the test set's loss (orange 

line). The figure unequivocally demonstrates the exceptional performance of the model. 

Remarkably, these impressive results were attained with a lightweight network model, highlighting the 

reliability and precision of the proposed deep learning approach in detecting malicious steganography.. 

B. Comparisons of Different Neural Network Structures 

To evaluate the effectiveness of the proposed model for audio steganalysis, a series of experiments were 

conducted, constantly tuning and testing the model. Several key observations were made during the 

evaluation: 
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Impact of Multi-Scale Convolution Module: Removing the multi-scale convolution module from the 

model resulted in a noticeable decrease in accuracy. Hence, it was evident that this module played a crucial 

role in improving the model's performance. 

Attention Mechanism Module: When the attention mechanism module was removed, the model's stability 

was negatively affected, leading to a reduction of approximately 1% in prediction precision. Hence, the 

attention mechanism was deemed important for enhancing model stability and prediction accuracy. 

Convolution Kernel Size Selection: After testing different convolution kernel sizes and numbers, it was 

found that 3*3 convolution kernels performed better in the ordinary convolution layer. Consequently, all 

convolution kernels of this size were utilized in the model's convolution layer. 

Multi-Scale Module with Larger Convolution Kernels: Although using larger convolution kernels in the 

multi-scale module slightly improved stability and accuracy, it came at the cost of significantly increased 

computation and reduced training efficiency. As a result, it was determined that the benefits did not 

outweigh the drawbacks, and the larger kernels were not adopted. 

Multi-Channel Attention Mechanism Module: The experiment involving the use of the multi-channel 

attention mechanism module did not yield a significant positive effect. Therefore, this approach was not 

favored in the final model. 

Activation Functions and Pooling Layers: Different activation functions and pool layers were tested 

during the evaluation, but no significant advantage was observed in adopting alternative choices. 

Based on considerations of training efficiency and accuracy from the experimental results, the proposed 

model for audio steganalysis was finalized with the following key components: the multi-scale convolution 

module, the attention mechanism module, and the use of 3*3 convolution kernels in the ordinary 

convolution layer. These choices were found to provide the best balance between performance and 

efficiency, making the model well-suited for the task at hand. 

 

 



17 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT)  

 

 

TABLE I 

ACCURACY OF DIFFERENT NETWORK STRUCTURES 

 

INDEX NETWORK 

DESCRIPTION 

ACCURAC

Y 

#1 Full Proposed CNN 94.55% 

#2 Remove the multi-

scale module 

70.57% 

#3 Remove the channel 

attention module 

93.06% 

#4 Use the ELU function 93.11% 

#5 Use the Tanh function 93.70% 
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C. Comparison With Other Related Methods 

  In this part, several audio steganalysis methods are compared, and they have similar experimental 

preconditions. 

  Experiments were carried out with the CNV-QIM steganographic algorithm [21], setting the embedding 

rate at 50%. The accuracy of the final model was 92.67% for Chinese audio samples and 92.95% for 

English audio samples, resulting in significant improvements in the steganalysis rates. 

  Samples of LSB steganography were tested using the method in [6], achieving a steganalysis accuracy of 

88.30 percent, which improved by 25% and 34%, respectively, compared with typical steganalysis methods 

using traditional artificial features and classification techniques. 

  The model proposed by Wang et al. [25] was tested on the EECS steganography algorithm at a bit rate of 

128k bps and a relative load of 2 samples, achieving a prediction accuracy of 90.39 percent. 

  The model of Lin [17] detected steganography with 90.50% accuracy under the condition that the 

embedding rate of LSB steganography was 1 bps. 

  Lee et al.’s model [26] achieved an impressive accuracy of 89.14% when the embedding rate was set to 

0.5 bps in LSB samples. 

  Under the condition that the relative load of the same sample was w = 4, the accuracy rate achieved was 

80.44 percent [25]. 

Additionally, Lin [27] and others made a detailed comparison between English and Chinese audio 

samples. They found a minor effect of the embedding rate and the sample length on the accuracy rate, and 

the average accuracy rate of the model reached more than 90%. 

TABLE II 

ACCURACY COMPARISONS WITH RELATED METHODS	

METHOD SAMPLE EMBEDDING SAMPLE ACCURACY 
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Table II provides a comprehensive comparison of the accuracy between the proposed model in this study 

and existing related models. In the table, "-" denotes unknown values, while "Mixed" indicates that the 

experimental data consist of samples with different embedding rates (0.1, 0.2, 0.3, and 0.5), which were 

randomly used during the experiment. 

METHOD SAMPLE 

STEGANOGRAPHY 

METHOD 

EMBEDDING 

RATE 

SAMPLE 

LENGTH 

ACCURACY 

PROPOSED  CNV-QIM and the pitch 

steganography 

Mixed 1s 94.55%. 

 

YANG [21] CNV-QIM 50% 1s 92.95% 

 

CHEN [16] LSB 0.5bps - 88.30% 

 

WANG [25] EECS (The bit rate is 

128kbps and the relative 

load w is 2) 

0.5bps 10s 90.39% 

 

LIN [17] LSB matching - 1s 90.50% 

 

LEE [26] LSB 0.5bps 1s 89.14% 

 

WANG [18] EECS (The bit rate is 

128kbps and the relative 

load w is 4) 

- 10s 80.44% 

 

LIN [27] CNV-QIM Mixed - Over 90% 
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According to Table II, the proposed deep learning model for audio steganalysis achieves an outstanding 

accuracy of 94.55 percent, surpassing all other related models. This indicates that the neural network, when 

combined with a multi-scale feature fusion method and attention mechanism, can effectively detect 

malicious steganography with remarkable precision. 

Collectively, these studies have contributed significantly to the advancement of steganalysis in speech 

signals, showcasing various successful techniques and approaches for detecting hidden information in 

audio data. 

V. CONCLUSION 

 This paper has described a lightweight convolutional neural network model that combines multi-scale 

feature analysis and the channel attention mechanism. This study has shown that using a multi-scale 

convolution method can enhance feature information for different receptive fields and improve the learning 

ability of the model for audio steganalysis. Additionally, adding the attention mechanism can help obtain 

the importance of feature information from different channels and facilitate key learning. Both of these 

enhancements effectively improve the model's performance. 

   The findings of this study suggest that to achieve better model performance, the sampling data needs to 

be increased or a larger convolution kernel needs to be added in the multi-scale module, such as a 5 * 5 

convolution. Considering the efficiency of model learning, the initial module can also be split into 51*5 

convolution kernels or 23*3 convolution kernels. 

In terms of the attention mechanism of audio steganalysis, further studies are necessary to determine the 

effects of different attention mechanisms on the model's performance. For example, a spatial attention 

mechanism would extract effective information from space to optimize the model. Adding the attention 

mechanism to the process of extracting feature information from the spectrum would improve the model's 

performance. 
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The Transformer's entire network structure is composed solely of an attention mechanism, primarily 

consisting of self-attention and a feedforward neural network. This architecture has demonstrated 

significant advantages in the NLP field. However, abandoning the traditional CNN and RNN led to the loss 

of its ability to capture local features, and simultaneously, it also lost the location information, which is 

crucial in NLP. Therefore, further research should concentrate on combining CNN or RNN with the 

characteristics of steganalysis.  
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