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Abstract: Autonomous vehicles (AVs) play a crucial role in enhancing urban mobility within the
context of a smarter and more connected urban environment. Three-dimensional object detection
in AVs is an essential task for comprehending the driving environment to contribute to their safe
use in urban environments. Existing 3D LiDAR object detection systems lose many critical point
features during the down-sampling process and neglect the crucial interactions between local features,
providing insufficient semantic information and leading to subpar detection performance. We propose
a dynamic feature abstraction with self-attention (DFA-SAT), which utilizes self-attention to learn
semantic features with contextual information by incorporating neighboring data and focusing on
vital geometric details. DFA-SAT comprises four modules: object-based down-sampling (OBDS),
semantic and contextual feature extraction (SCFE), multi-level feature re-weighting (MLFR), and
local and global features aggregation (LGFA). The OBDS module preserves the maximum number
of semantic foreground points along with their spatial information. SCFE learns rich semantic and
contextual information with respect to spatial dependencies, refining the point features. MLFR
decodes all the point features using a channel-wise multi-layered transformer approach. LGFA
combines local features with decoding weights for global features using matrix product keys and
query embeddings to learn spatial information across each channel. Extensive experiments using
the KITTI dataset demonstrate significant improvements over the mainstream methods SECOND
and PointPillars, improving the mean average precision (AP) by 6.86% and 6.43%, respectively,
on the KITTI test dataset. DFA-SAT yields better and more stable performance for medium and
long distances with a limited impact on real-time performance and model parameters, ensuring a
transformative shift akin to when automobiles replaced conventional transportation in cities.

Keywords: smart cities; 3D object dejection; semantic features leaning; self-attention

1. Introduction

Smart sustainable cities use ICT for efficient operations, information sharing, better
government services, and citizen well-being, prioritizing technological efficiency over
availability for improved urban life [1–4]. Autonomous vehicles offer immersive user
experiences, shaping future human–machine interactions in smart cities [5,6]. Mobility
as a service is set to transform urban mobility in terms of sustainability [7]. Cities seek
smart mobility solutions to address transport issues [8]. AVs’ benefits drive their adoption,
mitigating safety concerns. AVs promise traffic improvements, enhanced public transport,
safer streets, and better quality of life in eco-conscious digital cities [9].
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At the core of AV technology lies 3D object detection, a fundamental capability en-
abling AVs to perceive their surroundings in three dimensions. This 3D object detection is
vital for safe autonomous vehicle navigation in smart cities [10,11]. It identifies and compre-
hends surrounding objects in 3D, enabling obstacle avoidance, path planning, and collision
prevention [12]. Advancements in this technology enhance urban life through improved
autonomous vehicle perception [13,14]. Autonomous vehicles are equipped with various
sensors, including cameras, LiDAR (light detection and ranging), radar, and sometimes
ultrasonic sensors. These sensors capture data about the surrounding environment [15].

Recent advancements in autonomous driving technology have significantly propelled
the development of sustainable smart cities [16–18]. Notably, 3D object detection has
emerged as a pivotal element within autonomous vehicles, forming the basis for efficient
planning and control processes in alignment with smart city principles of optimization
and enhancing citizens’ quality of life, particularly in ensuring the safe navigation of
autonomous vehicles (AVs) [19–21]. LiDAR, an active sensor utilizing laser beams to scan
the environment, is extensively integrated into AVs to provide 3D perception in urban
environments. Various autonomous driving datasets, such as KITTI, have been developed
to enable mass mobility in smart cities [22,23]. Although 3D LiDAR point cloud data are
rich in depth and spatial information and less susceptible to lighting variations, it possesses
irregularities and sparseness, particularly at longer distances, which can jeopardize the
safety of pedestrians and cyclists. Traditional methods for learning point cloud features
struggle to comprehend the geometrical characteristics of smaller and distant objects in
AVs [24,25].

To overcome geometric challenges and facilitate the use of deep neural networks
(DNNs) for processing 3D smart city datasets to ensure safe autonomous vehicle (AV)
navigation, custom discretization or voxelization techniques are employed [26–34]. These
methods convert 3D point clouds into voxel representations, enabling the application of
2D or 3D convolutions. However, they may compromise geometric data and suffer from
quantization loss and computational bottlenecks, posing sustainability challenges for AVs
in smart cities. Region proposal network (RPN) backbones exhibit high accuracy and recall
but struggle with average precision (AP), particularly for distant or smaller objects. The
poor AP score hinders AV integration in sustainable smart cities due to its direct impact on
object detection at varying distances [35,36].

Most RPN backbones, including region proposal networks, rely on convolutional
neural networks (CNNs) for Euclidean data feature extraction [34,37]. However, CNNs
are ill-suited for handling unstructured point clouds [38]. To address this, self-attention
mechanisms from transformers are introduced to capture long-range dependencies and
interactions, enhancing distant object representation and reducing false negatives [2,39,40].
By combining self-attention with CNNs, the performance of 3D object detection in AVs
can be enhanced, even with limited point cloud data [2,41,42]. The proposed DFA-SAT
approach shows promising results, addressing smart city challenges such as urban space
management, pedestrian and cyclist safety, and overall quality of life improvement, aligning
with eco-conscious city development goals. Figure 1 illustrates DFA-SAT’s performance
with a reduced number of point features.

This study aims to enhance 3D object detection in autonomous vehicles (AVs) to
address the challenges posed by smart cities, including pedestrian and cyclist safety and
reducing vehicle collisions [6,8,18]. It emphasizes the importance of foreground global
points for learning better semantic and contextual information among points, a crucial
aspect of 3D object detection. The study aims to overcome the limitations caused by
insufficient semantic information in point clouds, improving AVs’ 3D object detection
capabilities, which is essential for their adoption in smart cities [9,11]. To achieve this,
two key observations are made. First, a unified module can be developed to address
weak semantic information by leveraging both voxel-based and point-based methods.
Second, enhancing interactions between global and local object features can promote better
feature association. The proposed solution, called dynamic feature abstraction with self-
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attention (DFA-SAT), combines CNNs and self-attention mechanisms to augment semantic
information in both voxel-based and point-based methods. The proposed approach aims
to improve the effectiveness of 3D object detection by addressing the issue of insufficient
semantic information.

DFA-SAT is composed of four primary components: object-based down-sampling
(OBDS), semantic and contextual features extraction (SCFE), multi-level feature re-weighting
(MLFR), and local and global features aggregation (LGFA). The OBDS module preserves
more semantic foreground points based on the basis of spatial information as shown in
Figure 2. SEFE learns rich semantic and contextual information with respect to spatial
dependencies to refine the local point features information. MLFR decodes all the point
features using the channel-wise multi-layered transformer approach to enhance the rela-
tionship among local features. It adjusts the weights of these relationships, emphasizing the
most significant connections. In scenarios with sparse point clouds, distant points tend to
be far apart from their neighbors, potentially hindering detection accuracy. LGFA combines
local features with decoding weights for global features using matrix product key and
query embedding to learn the spatial information across each channel. Figure 3 illustrates
DFA-SAT, and Figure 4 demonstrates how it re-weights local and global encoded features.
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Figure 1. Comparison between various methods under varying point features.

Figure 2. Object-based down-sampling by passing the point features from multiple set abstraction
layers. The preserved points are further fed into the progressive DFA-SAT modules for semantic
feature learning.

Figure 3. The proposed DFA-SAT is illustrated. It has several abstraction layers for down-sampling
objectives to reduce the foreground global features in an engineered manner to control the compu-
tational and memory costs. Then, the abstract points are fed into the transformer–encoder module
along with their corresponding proposal to perform, proposal-to-point embedding. It learns global
and contextual information of points and transfers them to the transformer-based decoding module.
The encoded points features are decoded and re-weighted with the global and local features for
accurate prediction and bounding box regression to complete the end-to-end learning process.
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Figure 4. (a) The proposal-to-point embedding module is represented by a local encoding. (b) A
self-attention encoding module performs proposal-aware refinement. A multi-head self-attention
encoding layer, which is followed by a feed-forward network (FFN) with residual structure, receives
the proposal-guided point features to learn rich semantic and contextual information and spatial
dependencies to refine the point features. (c) The encoded point features are decoded and re-weighted
with the aggregation of the global and local features using a linear projection method. We apply
a straightforward approach to compute the decoding weights for each channel instead of overall
aggregation at the final stage of the decoder.

To validate the effectiveness of the proposed DFA-SAT module, it was integrated into
popular baseline algorithms such as SECOND [34] and PointPillars [37] which provide a
base into which to incorporate 3D object detection in AVs to achieve the perceived benefits
of smart mobility [2]. Through comprehensive experiments conducted on the widely
recognized dataset KITTI [43], the results substantiate the benefits of DFA-SAT. KITTI
and similar datasets play a significant role in the development of autonomous vehicles,
which are integral to the advancement of smart cities’ transportation infrastructure and
sustainability goals [44]. Our module enhances the extraction of semantic information and
significantly improves detection accuracy in AVs, especially for objects located at medium
and long distances, to increase the safety of cyclists and pedestrians in sustainable smart
cities. Importantly, the incorporation of the DFA-SAT module has a minimal impact on
both the number of model parameters required and the run-time performance. In summary,
the key contributions of this research can be outlined as follows:

1. We propose DFA-SAT, a versatile module that improves the detection of 3D objects by
preserving maximum foreground features and enhancing weak semantic information
of objects around AVs.

2. DFA-SAT performs semantic and contextual feature extraction and decodes these
features to refine these relationships by assigning weights to meaningful connections,
thus reinforcing their importance.

3. This module can be seamlessly integrated into both voxel-based and point-based
methods.

4. Empirical evaluations on the benchmark dataset KITTI. We validate its efficacy in
improving detection accuracy, especially for distant and sparse objects, to contribute
to sustainability in urban environments.

2. Literature Review
2.1. Sustainable Transportation and Urban Planning

Sustainability has become a paramount concern across industries, with particular
focus on the transportation sector. Numerous studies have addressed the implications
of autonomous vehicles (AVs) and their potential to revolutionize urban living in smart
cities [1–9,11]. Shi et al. [2] introduced a semantic understanding framework that enhances
detection accuracy and scene comprehension in smart cities. Yigitcanlar et al. [6] high-
lighted the need for urban planners and managers to formulate AV strategies for addressing
the challenges of vehicle automation in urban areas. Manfreda et al. [8] emphasized that
the perceived benefits of AVs play a significant role in their adoption, especially when it
comes to safety concerns. Campisi et al. [9] discussed the potential of the AV revolution to
improve traffic flow, enhance public transport, optimize urban space, and increase safety for
pedestrians and cyclists, ultimately enhancing the quality of life in cities. Duarte et al. [10]
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explored the impact of AVs on the road infrastructure and how they could reshape urban
living and city planning, akin to the transformative shift brought about by automobiles
in the past. Heinrichs et al. [11] delved into the unique characteristics and prospective
applications of autonomous transportation, which has the potential to influence land use
and urban planning in distinct ways. Stead et al. [18] conducted scenario studies to an-
alyze the intricate effects of AVs on urban structure, including factors like population
density, functional diversity, urban layout, and accessibility to public transit. Li et al. [26]
proposed a deep learning method combining LiDAR and camera data for precise object
detection, while Seuwou et al. focused on smart mobility initiatives, emphasizing the
significance of CAVs in sustainable development within intelligent transportation systems.
Seuwou et al. [45] present a study that examines smart mobility initiatives and challenges
within smart cities, focusing on connected vehicles and AVs. Xu et al. [46] introduced a
fusion strategy utilizing LiDAR, cameras, and radar to enhance object detection in dense
urban areas. These studies collectively underscore the importance of developing 3D ob-
ject detection methods to ensure safe and efficient transportation systems in smart cities,
addressing critical sustainability challenges.

2.2. Point Cloud Representations for 3D Object Detection

LiDAR is vital for AVs, generating unstructured, unordered, and irregular point
clouds. Processing these raw points conventionally is challenging. Numerous 3D object
detection methods have emerged in recent years [2,26–31,33,34,37,47–51]. These methods
are categorized based on their approach to handling 3D LiDAR point cloud input.

2.2.1. Voxel-Based Methods

Studies have aimed to convert irregular point clouds into regular voxel grids and
use CNNs to learn geometric patterns [25,30,34,37]. Early research used high-density vox-
elization and CNNs for voxel data analysis [26,50,51]. Yan et al. introduced the SECOND
architecture for improved memory and computational efficiency using 3D sub-manifold
sparse convolution [34]. PointPillars simplified voxel representation to pillars [37]. Existing
single-stage and two-stage detectors often lack accuracy, especially for small objects [29,32].
ImVoxelNet by Danila et al. increased the memory and computational costs for image to
voxel projection [25]. Zhou et al. transformed point clouds into regularly arranged 3D
voxels, adding 3D CNN for object detection [30]. Noh et al. integrated voxel-based and
point-based features for efficient single-stage 3D object detection [50]. Shi et al. proposed a
voxel-based roadside LiDAR feature encoding module that voxelizes and projects raw point
clouds into BEV for dense feature representation with reduced computational overhead [2].
Voxel-based approaches offer reasonable 3D object detection performance with efficiency
but may suffer from quantization loss and structural complexity, making optimal resolution
determination challenging for local geometry and related contexts.

2.2.2. Point-Based Methods

Different to voxel-based methods, point-based methods generate the 3D objects by
direct learning of unstructured geometry from raw point clouds [28,49]. To deal with the
unordered nature of 3D point clouds, point-based methods incorporate PointNet [48] and
its different variants [29,39] to aggregate the point-wise features employing symmetric
functions. Shi et al. [29] presented a regional proposal two-staged 3D object detection
framework: Point-RCCN. This method works in quite an interesting way as it generates
object proposals from foreground point segments and then exploits the local spatial and
semantic features to regress the high-quality 3D bounding boxes.

Qi et al. [52] proposed voteNet, a deep Hough voting-based one-stage point 3D
object detector to predict the centroid of an instance. Yang et al. [53] proposed 3DSSD,
a single-staged 3D object detection framework. It uses farthest point sampling (FPS), a
very popular approach, and Euclidean space as a fusion sampling strategy. PointGNN [54]
is a generalized graph neural network for 3D object detection. Point-based methods are
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not as resource intensive as voxel-based methods. Point-based methods are intuitive and
straightforward and do not require any extra pre-processing and simply take raw point
clouds as input. The drawback of point-based methods is their limited efficiency and
insufficient learning ability.

2.2.3. Weak Semantic Information for 3D Object Detection

In autonomous driving, point cloud sampling often yields sparse coverage. For ex-
ample, when aligning KITTI dataset color images with raw point clouds, only about 3% of
pixels have corresponding points [42,55]. This extreme sparsity challenges high-level se-
mantic perception from point clouds. Existing 3D object detection methods [29–31,33,34,37]
typically extract local features from raw point clouds but struggle to capture comprehensive
feature information and feature interactions. Sparse point cloud data, limitations in local
feature extraction, and insufficient feature interactions lead to weak semantic information in
3D object detection models, notably affecting performance for distant and smaller objects.

Both voxel-based [30,34,37] and point-based [29,48] methods face weak semantic
information challenges in sparse point clouds. For example, Yukang et al. [56] proposed a
complex approach with focus sparse convolution and multi-modal expansion but with high
computational costs and complexity. Qiuxiao et al. [57] introduced a sparse activation map
(SAM) for voxel-based techniques, and Pei et al. [58] developed range sparse net (RSN) for
real-time 3D object detection from dense images but with spatial depth information issues.
Mengye et al. [59] introduced a sparse blocks network (SBNet) for voxel-based methods.
Shi et al. [2] incorporated multi-head self-attention and deformable cross-attention for
interacting vehicles. Existing methods focus on downstream tasks, under-utilize object
feature information, and are often limited to either voxel-based or point-based models,
reducing their generalizability.

2.3. Self-Attention Mechanism

The recent success of transformers in various computer vision domains [42,60] has led
to a new paradigm in object detection. Transformers have proven to be highly effective
in learning local context-aware representations. DETR [60] introduced this paradigm by
treating object detection as a set prediction problem and employed transformers with
parallel decoding to detect objects in 2D images. The application of point transformers [42]
in self-attention networks for 3D point cloud processing and object classification has gained
attention recently. Particularly, the point cloud transformer (PCT) framework [21] has been
utilized for learning from point clouds and improving embedded input. PCT incorporates
essential functionalities such as farthest-point sampling and nearest-neighbor searching.
In the context of 3D object detection, Bhattacharyya et al. [61] proposed two variants of
self-attention for contextual modeling. These variants augment convolutional features
with self-attention features to enhance the overall performance of 3D object detection.
Additionally, Jiageng et al. [62] introduced voxel transformer (VoTr), a novel and effective
voxel-based transformer backbone specifically designed for point cloud 3D object detection.
Shi et al. [2] employed multi-attention and cross-attention to establish a dense feature
representation through feature re-weighting.

Overall, these studies highlight the importance of 3D object detection techniques in
enhancing the perception capabilities of autonomous vehicles and contribute to the devel-
opment of safer and more efficient transportation systems in smart cities. Our approach
distinguishes itself from previous methods by incorporating the concepts of dynamic fea-
ture abstraction with self-attention (DFA-SAT) to preserve maximum foreground features
and to improve the interaction between features to significantly reduce the number of
accidents on the road and ensure cyclist and pedestrian safety when AVs meet. It utilizes
self-attention to learn semantic features with contextual information by using neighboring
information and focusing on vital relationships among the local and global point features.
This novel approach leads to significant improvements in the detection of 3D objects and
the extraction of meaningful semantic information.
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3. Methodology
3.1. Overview

Three-dimensional object detection by AVs plays a crucial role in enhancing the ca-
pabilities and safety of smart cities. Existing 3D object detection networks seldom focus
on point-wise dense 3D semantic segmentation, rather they target the smaller yet impor-
tant and informative foreground points that do not require point-wise prediction, i.e.,
car, bike, pedestrian, etc. Sustainability demands the safety of pedestrians and cyclists
and as few collisions in smart cities as possible to achieve the goal of real-time automa-
tion in transpositions. But, the current point-based 3D object detection networks follow
sharp down-sampling and task-oriented feature selection like farthest point sampling
(FPS) [35,53] or random sampling [63], which sharply reduces the important geometric in-
formation which is crucial for global feature learning. Following this finding, we introduce
the DFA-SAT framework in this section, as shown in Figures 3 and 4. It includes four pri-
mary components: object-based down-sampling (OBDS), semantic and contextual features
extraction (SCFE), multi-level feature re-weighting (MLFR), and local and global features
aggregation (LGFA). The OBDS module preserves more semantic foreground points based
on the basis of spatial information. SEFE learns rich semantic and contextual information
with respect to spatial dependencies to refine the local point features information. MLFR
decodes all the point features using the channel-wise multi-layered transformer approach to
enhance the relationship among local features. It adjusts the weights of these relationships,
emphasizing the most significant connections.

3.2. Object-Based Down-Sampling (OBDS)

It was discussed earlier that the object recall rate is inversely proportional to the
number of points in the sample encoded features. Random down-sampling techniques
sharply reduce foreground point features which results in a significant decrease in recall
rate. It is observed that Feat-FPS [53] and D-FPS [35,63] yield good object recall rates at
the early encoding stage but they do not preserve enough foreground global features for
the final encoding stage. This reduces the precise object detection of the targeted object,
especially in the case of distant or comparatively smaller objects like pedestrians and bikes,
due to the limited availability of foreground global point features. Therefore, we have
incorporated object-oriented down-sampling to preserve maximum foreground features
by learning richer semantic information for the local encoding process followed by a
further feature learning pipeline. This engineered down-sampling approach enables the
learning of semantic features for each local point by the addition of two extra MLP layers
to the encoding layers to learn the semantic category of point features. Here, a supervised
semantic hot-label for each point is generated from the annotation of the original bounding
box by the implementation of vanilla cross-entropy loss.

p = −
M

∑
m=1

(yilog(ŷi) + (1− yi)log(1− ŷi)) (1)

where M denotes the categories count, yi is one hot-label, and −ŷi is predicted logit. We
have selected only the top k foreground points as representative features and fed them to
the second encoding layer to achieve a comparatively higher recall ratio.

Moreover, this stage filters the points with respect to the central point feature and
weights those point features according to their distance from the center of the object using
the six spatial attributes of the bounding box as shown in Equation (2).

pi =
3

√
min(b∗, f ∗)
max(b∗, f ∗)

× min(r∗, l∗)
max(r∗, l∗)

× min(d∗, u∗)
max(d∗, u∗)

(2)

where coordinates values top, down, right, left, front, and back values of the masked point
bounding box are represented as u∗, d∗, r∗, l∗, f ∗, and b∗ of the bounding box, respectively.
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Points closer to the central point of instance probably have a higher mask value (max = 1)
and the points closer to the surface are likely to have the lowest value (min = 0). We have
implemented a soft-point-mask approach to allocate different weights to point features as
per their spatial distance from the central point feature in the training pipeline. The spatial
distance of each point is learned and loss is also calculated for this process and given in the
coming section in Equation (10). At this level, our explicitly engineered down-sampling
approach preserves high-scoring k points for the model training pipeline.

Lsem = −
M

∑
m=1

(pi.yilog(ŷi) + (1− yi)log(1− ŷi)) (3)

3.3. Proposal Refinement (PR)

The proposal refinement process aims to reduce the deviation between the object pro-
posal and its corresponding ground truth box by encompassing all possible and important
object points. Such particular points are simply called RoI. Following the selection of im-
portant points from the proposal bounding box, we are going to target the RoI to refine the
features learning process. The scaled RoI has a specific length l, width w, and height and ra-

dius r = α

√(wm

2
)2

+
(

lm

2

)2
, where α is a hyperparameter. Then, we apply our customized

sampling approach within the scaled RoI ((N = {pi, · · · , pN})) to obtain point features
for further processing. In our object-based and class-based down-sampling strategy, we
compute the spatial relationship between the center point and each surrounding point with
respect to the given k value.

Considering the importance of key-points for geometric information learning [64,65],
the down-sampled proposal information is taken for the key-point information learning
process. Our key-point extraction strategy calculates the relative coordinate between a
point and eight corners of the respective proposal. The relative coordinate calculation is
performed as ∆pc

i = pi − pc, where c is the corner of the proposal p with the coordinate
range (1, · · · , 8). Note that the distance information of lm, hm, wm, θm is kept in a different
dimension, as shown in the encoding module in Figure 4. Here, we have a better proposal
representation of the newly generated ∆pc

i relative coordinate. Now, the proposal-oriented
point features for each point pi are given as:

f = J
([

∆pm
i , ∆p1

i , · · · , ∆p8
i , ∆ f r

])
∈ RD (4)

where J (·) is the linear projection layer that embeds the proposal point features to a
high-dimensional feature set.

3.4. Semantic and Contextual Features Extraction (SCFE)

A multi-head self-attention encoding layer, which is followed by a feed-forward net-
work (FFN) with residual structure, receives the proposal guided point features to learn rich
semantic and contextual information and spatial dependencies to refine the point features.
Except for the position encoding scheme, our proposed self-attention encoding architecture
has a similar structure to that of NLP transformer [66]. Let A = [ f1, · · · , fN ]

T ∈ RN×D

be an embedded D-dimensional point feature. We have query Q, key K, and value V
an embedding and Wq, Wk, and Wv ∈ RN×N in the form of Q = Wq A, K = Wk A, and
V = Wv A. The multi-head self-attention mechanism processes these three embeddings
with h-head attentions. For each h-head attention, we have Qh, Kh, Vh ∈ RN×D́, where
h = 1, · · · , H. This multi-head self-attention applies softmax to each attention layer and
gives the following output:

Semb(A) =W(F (W(Satt(Q, K, V)))) (5)
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whereW(·) andF (·) represent normalization and ReLU activation, respectively. This multi-
level self-attention approach constructs the encoding module of the proposed approach.

3.5. Multi-Level Feature Re-Weighting (MLFR)

We have established point features Â from local encoding, and engineered the down-
sampling strategy, RPN, and the multi-attention network so far. This subsection explains
the decoding module of the proposed approach, i.e., how we decode all the point features
A using the transformer approach. The standard transformer decoder uses self-attention
and an encoder–decoder approach for N queries embedding, but our proposed transformer
encoder–decoder approach transforms only one query embedding as N query embedding
is computationally resource intensive and has high memory latency and is directly propor-
tional to the number of proposals. The standard transformer approach embeds N objects
while our approach needs to refine only one proposal for prediction.

3.5.1. Global Feature Decoding (GFD)

We aim to calculate the decoding weights allocated to each point feature and their
sum to generate the final representation, which is equal to the weighted sum of all point
features. We decided to apply and analyze the standard transformer decoding strategy
and then implement and evaluate an improved decoding scheme to learn highly effective
decoding weights and to measure the difference between the standard and improved
decoding weight acquisition schemes.

The standard decoder applies a query embedding approach or learnable vector of
D-dimensions for the point features aggregation process across the channels of attention
heads. The final decoding vector calculates the weights for all the point features received
from each attention head as shown in Figure 4. This weight aggregation is calculated as:

z(N)
h = σ

(
q̂hK̂T

h√
D́

)
, h = 1, · · · , H (6)

where q̂h and K̂h are the corresponding query embedding and key embedding, respectively,
of h attention heads which are computed by encoder output projects. Here, each key
embedding or individual point is a global aggregation of each point of the q̂hK̂T

h vector,
and then each vector is assigned a decoding value by the subsequent so f tmax function
according to the normalized vector probability. However, these decoding weights are
directly derived from global aggregations and lack the local information of each h-channel.
Along with global aggregation, local channel-wise information plays a vital role in 3D point
cloud data to obtain important geometric information about each channel.

3.5.2. Local Feature Decoding (LFD)

We have decided to apply a straightforward approach to compute the decoding
weights for each h-channel of K̂T

h instead of overall aggregation at the final stage of the
decoder. This is obtained by generating D decoding vectors to obtain the corresponding
decoding values for each. These decoding vector values are unified using a linear projec-
tion to form an aggregated decoding vector. The new multi-vector decoding scheme is
summarized below:

z(V)
h = r.σ̂

(
K̂T

h√
D́

)
, h = 1, · · · , H (7)

where r linear projection generates aggregated D decoding values into a re-weighting
scalar along the N-dimension to compute softmax using σ̂. σ̂ computes decoding weights
of local features associated with each channel and omits the global aggregation for each
point. Thus, both decoding approaches have local and global targets that do not encom-
pass the overall feature point domain. Therefore, we have incorporated the combined
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approach to collectively target the potential of both local and global features to compute
the decoding weights.

3.6. Local and Global Features Aggregation (LGFA)

This strategy maintains the differences in the decoding weights calculation of points
for each channel and then combines them with decoding weights for global points using the
matrix product of the key embedding and query embedding to learn the spatial information
across each h-channel. This combined re-weighting scheme creates the following vector
decoding weights for all the feature points.

z(lg)h = r.σ̂

(
h̄(q̂hK̂T

h ) ◦ K̂T
h√

D́

)
, h = 1, · · · , H (8)

where the h̄(·) operation repeatedly creates R1×N → RD́×N . In this way, we have calcu-
lated the global encoding weights and each local h-channel’s information as compared to
individual local and global encoding schemes. As compared to the standard transformer
encoding–decoding approach, our global and local aggregated approach increases the min-
imum computational resources, which is easily adjustable as an accuracy vs. computation
trade-off. The final embedding vector as the deciding proposal is given as:

y =
[
z(lg)1 .V̂1, · · · , z(lg)H .V̂H

]
(9)

where the V̂ value’s embedding is the linear projection which is obtained from Â.

3.7. 3D Detection Head

The D-dimensional embedded decoding weights as the vector y are fed to the pro-
posal generation head (FFN) for bounding boxes confidence prediction according to their
corresponding classes. We have utilized IoU evaluation as the training targets between
the 3D proposals and their corresponding 3D boxes. The given IoU between the 3D pro-
posal representation and the corresponding ground truth 3D box. We incorporate scaling,
location, and orientation information to encode multi-dimensional encoding representa-
tion. We have filtered all the proposals using post-processing 3D-NMS under specific IoU
threshold values.

End to End Learning

We have trained our proposed 3D object detection for AVs in an end-to-end fashion. A
multi-task loss strategy is employed in the form of summation for overall optimization. The
total loss Ltotal comprises a customized down-sampling strategy loss Ldsample, confidence
prediction loss Lcon f , and box regression loss Lreg.

Ltotal = Ldsmaple + Lcon f + Lreg (10)

The binary cross-entropy loss is incorporated to predict the IoU-guided confidence
loss. The box generation loss is also calculated under the size, location, angle-res, angle-bin,
and corner areas:

Ltotal = Lsize + Lloc + Lang-res + Lang-bin + Lcorner (11)

4. Experiment and Results

In this segment, we outline our experimental setup and present a sequence of valida-
tion test outcomes. We integrate the newly suggested DFA-SAT module into two estab-
lished 3D object detection frameworks: PointPillars [37] and SECOND [34]. The outcomes
generated by different versions of this model are succinctly summarized as follows.
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4.1. Experimental Setup

We build our DFA-SAT based on an encoder–decoder architecture to achieve better
accuracy without sacrificing efficiency. We incorporate set-abstraction layers for point-wise
feature extraction. We target and steadily extract local geometric features by multi-scale
grouping. We target the features in a layer-wise manner as we add two MLP layers before
the RPN [34] to perform object-based down-samplings at each layer using custom down-
sampling instead of standard down-sampling approaches like D-FPS. We refine the region
proposal using a transformer-based decoding weights calculation by utilizing combined
local and global points along each attention layer. We empirically evaluate DFA-SAT on
the well-known publicly available dataset KITTI [55]. We also verify the effectiveness and
contribution of each module of DFA-SAT through comprehensive ablation studies.

4.1.1. Dataset

The KITTI benchmark has three levels of difficulty (“hard”, “moderate”, and “easy”)
and objects are classified into car, cyclist, and pedestrian. Most of the studies consider
moderate-level results as the main indicator. The KITTI 3D dataset contains a total of
15,062 LiDAR samples with 7481 training and 7518 testing LiDAR samples. For experi-
mental training and evaluation, we split the KITTI training dataset into 3713 samples and
3769 samples for training and validation, respectively, following previous work [67]. The
easy, moderate, and hard classification sets are part of KITTI and evaluated with different
difficulty levels as well as maximum occlusion, minimum height, bounding box (Bbox),
and maximum truncation.

The 3D detection results were assessed by measuring 3D and bird’s eye view (BEV)
average precisions (APs) at a 0.7 intersection over union (IoU) threshold specifically for
the car class. The evaluation involved calculating the average precision (AP) for 40 recall
positions on both the validation and test sets. For a fair comparison with prior works, a
validation AP was also determined using 11 recall positions. Server submissions were
evaluated using a training to validation ratio of 9:1, where 6733 samples were randomly
selected from the training point cloud, and the remaining 784 samples were used for
validation purposes. To compare the results, the PointPillars [37] and SECOND [34]
baselines were utilized with a comprehensive network setup. This setup involved employ-
ing non-maximum suppression (NMS) with an overlap threshold of 0.7 IoU, applying a
range filter of [(0, 70.4), (40, 40), (3, 1)] specifically for cars, and utilizing an anchor filter of
[3.9, 1.6, 1.56] for cars. OpenPCDet [68] was employed to implement data augmentation
techniques. Overall, these evaluation procedures and comparisons aimed to assess the
performance and effectiveness of various 3D detection approaches in accurately detecting
and localizing objects, particularly cars, in the given datasets.

4.1.2. Implementation Details

Our custom down-sampling approach provides up-to-the-mark inference and good-
quality proposal boundary selection without an aggressive reduction in features. For the
KITTI dataset, we set the x-, y-, and z-coordinate ranges as (0, 71.21), (−40, 40), (−3, 1) and
the x-axis, y-axis, and z-axis of the voxels are set as 0.05 m, 0.05 m, and 0.1 m. We conduct
our experiments using the OpenPCDet [68] toolbox and readers are encouraged to read
this reference for more details.

4.1.3. Network Configuration

For the KITTI dataset training, we set a batch size of 24 and used eight V100 GPUs
to train the entire DDFA-SAT network. The whole DFA-SAT is trained in an end-to-end
fashion from scratch with transformer channels H = 4, the ADAM optimizer, learning
rate = 0.0001 with cosine annealing strategy, and epochs = 100. We select random proposals
to calculate the confidence loss and regression loss using the IoU measurement.
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4.2. Main Results
4.2.1. Detection Results

We compare the proposed DFA-SAT with existing studies on the KITTI benchmark
dataset. Following [27,29,34,37], the average precision (AP) calculations are performed
for the test set and value set with 40 recall positions and 11 recall positions, respectively,
to conduct a comparison with previous methods. Tables 1 and 2 illustrate a performance
comparison between our method and existing studies. It can be seen that our method
achieves good performance in 3D object detection in comparison to other methods also
shown in Table 3. This was achieved only by preserving global foreground point features
using a customized down-sampling approach before the incorporation of the RPN module.
Our DFA-SAT also yields better results for ‘cyclist’ detection against other point-based
methods, as shown in Tables 1 and 2. Our DFA-SAT also shows better efficiency along
with competitive object detection performance and it is worth mentioning that the mean
AP is improved by 8.03% and 6.86% using the SECOND RPN for BEV and 3D detection,
respectively. Also, the mean AP was improved by 5.22% and 6.43% using the PointPillars
RPN for BEV and 3D detection, respectively. Our DFA-SAT also achieved the highest AP,
of 80.54%. This shows its efficiency by detecting at a speed of 32 FPS on an Intel I9-10900X
CPU@3.7 GHz with a single NVIDIA RTX 2080Ti. Our DFA-SAT is based on a custom
down-sampling strategy for LiDAR point cloud and transformer-based encoder-decoder
architecture, which is able to be trained with multiple classes at the same time instead of
separate training for each object type in the training dataset. Tables 1 and 2 and Figure 5
demonstrate the empirical and qualitative results achieved by DFA-SAT in comparison
with other methods from various perspectives. It is clear from Tables 1 and 2 and Figure 5
that DFA-SAT demonstrates a good ability to detect smaller as well as far away objects like
cyclists and pedestrians. DFA-SAT also yields better detection results in comparison to
different down-sampling approaches as shown in Table 4. Except for test split detection
results, the KITTI dataset validation set performance comparison is also reported in Table 5.
Among point-based detectors, DFA-SAT performs better in the detection of all classes. Our
DFA-SAT is efficient in working with larger and smaller objects and decreasing points
of faraway objects. DFA-SAT achieves better results at a moderate and easy level for car
detection with the LiDAR modality. Many studies share the same RPN, SECOND and
PointPillars, as ours; DFA-SAT achieves good results and stands comparable to them in
terms of time efficiency for parameter tuning, as shown in Table 6. Figure 5 shows the
visualization results with considerably better visualization and refinement. The empirical
results and comparison verify the effectiveness of our proposed method in terms of better
context information of feature points with respect to each other in an object. In addition to
quantitative results, we also provide some visualizations of the 3D object detection results
in Figure 5, which show accurate 3D bounding box prediction for objects across the road
for both BEV and 3D objects. This is achieved by the proposed method due to its ability
to absorb foreground semantic features and sharp geometry feature learning, which are
distinctions of our method as compared to [26,27,29,30,34].

4.2.2. DFA-SAT Efficiency

We quantify the memory and computational efficiency of the proposed DFA-SAT. We
have made a fair comparison of our proposed method with other existing methods in
terms of hardware configuration variations and other parameter variations like speed and
memory. We feed a similar quantity (16,384) of input point clouds and OpenPCDet [68]
configuration is followed for memory. Our method also shows average results in GPU
memory consumption reports, as shown in Table 6.
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Table 1. BEV object detection quantitative performance evaluation using AP (%) on the KITTI test set
and comparison with different methods.

Method Category Mod Year mAP Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [33] Parallel C+L 2017 78.45 86.62 78.93 69.80 -
Contfuse [47] Sequential C+L 2018 85.10 94.07 85.35 75.88 -

F-PointNet [48] Parallel C+L 2018 83.54 91.17 84.67 74.77 57.13 49.57 45.48 77.26 61.37 53.78
Avod [49] Parallel C+L 2018 85.14 90.99 84.82 79.62 -

PIXOR++ [31] Multi-View L 2018 83.68 89.38 83.70 77.97 - - - - - -
VoxelNet[30] Voxel L 2018 82.0 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55
SECOND [34] Voxel L 2018 81.80 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars [37] Voxel L 2019 84.76 88.35 86.10 79.83 58.66 50.23 47.19 79.19 62.25 56.00
PSIFT+SENet [28] Point C+L 2019 82.99 88.80 83.96 76.21 -
PointRCNN [29] Point L 2019 87.41 92.13 87.39 82.72 54.77 46.13 42.84 82.56 67.24 60.28

PI-RCNN [27] Parallel C+L 2020 86.08 91.44 85.81 81.00 - - - - - -
MVMM [26] Point–Voxel C+L 2023 88.78 92.17 88.70 85.47 53.75 46.84 44.87 81.84 70.17 63.84

SECOND+DFA-SAT Point–Voxel C+L 2023 89.83 93.55 89.04 83.91 55.14 47.28 45.41 83.68 71.82 64.27
PointPillars+DFA-SAT Point–Voxel C+L 2023 89.98 92.67 88.34 83.18 55.42 47.63 44.90 81.79 70.75 63.27

Table 2. Three-dimensional object detection quantitative performance evaluation using AP (%) on
the KITTI test set and comparison with different methods.

Method Category Mod Year mAP Car Pedestrian Cyclist
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [33] Parallel C+L 2017 64.20 74.97 63.63 54.0 - - - - - -
Contfuse [47] Sequential C+L 2018 71.38 83.68 68.78 61.67 - - - - - -

F-PointNet [48] Parallel C+L 2018 70.86 82.19 69.79 60.59 50.53 42.15 38.08 72.27 56.17 49.01
Avod [49] Parallel C+L 2018 67.70 76.39 66.47 60.23 36.10 27.86 25.76 57.19 42.08 38.29

Avod-FPN [49] Parallel C+L 2018 73.52 83.07 71.76 65.73 50.46 42.27 39.04 63.76 50.55 44.93
PointPillars [37] Voxel L 2019 74.11 82.58 74.31 68.99 51.45 41.92 38.89 77.10 58.65 51.92

VoxelNet[30] Voxel L 2018 66.77 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37
SECOND [34] Voxel L 2018 74.33 83.34 72.55 65.82 48.96 38.78 34.91 71.33 52.08 45.83

PSIFT+SENet [28] Point C+L 2019 77.14 85.99 72.72 72.72 - - - - - -
PointRCNN [29] Point C+L 2019 77.77 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53

PI-RCNN [27] Parallel C+L 2020 76.41 84.37 74.82 70.03 - - - - - -
HVPR [50] Point–Voxel L 2021 79.11 86.38 77.92 73.04 53.47 43.96 40.64 -

TANET [51] Voxel L 2020 76.38 84.39 75.94 68.82 53.72 44.34 40.49 75.70 59.44 52.53
MVMM [26] Point–Voxel C+L 2023 80.08 87.59 78.87 73.78 47.54 40.49 38.36 77.82 64.81 58.79

SECOND+DFA-SAT Point–Voxel C+L 2023 81.19 88.36 79.24 73.97 48.87 41.37 39.12 78.95 65.74 59.22
PointPillars+DFA-SAT Point–Voxel C+L 2023 80.54 88.45 79.05 74.16 48.91 41.37 38.43 78.36 66.82 59.09

Table 3. Performance comparison of AP of DFA-SAT with different RPNs under 3D and BEV.

Method AP3D (%) APBEV (%)
Mean Easy Mod. Hard Mean Easy Mod. Hard

SECOND 74.33 83.34 72.55 65.82 81.80 88.07 79.37 77.95
SECOND+DFA-SAT 81.19 88.36 79.24 73.97 89.83 93.55 89.04 83.91

Delta +6.86 +5.02 +6.69 +8.15 +8.03 +5.48 +9.67 +5.96

PointPillars 74.11 82.58 74.31 68.99 84.76 88.35 86.10 79.83
PointPillars+DFA-SAT 80.54 88.45 79.05 74.16 89.98 92.67 88.34 83.18

Delta +6.43 +5.84 +4.74 +5.17 +5.22 +4.32 +2.24 +3.35
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Table 4. Ablation study of DFA-SAT with different down-sampling approaches. DFPS and Feat-FPS
are traditionally used while we have incorporated the object-based down-sampling method and used
AP (%) to demonstrate the results.

DFPS Feat-FPS Object-Based Class-Based Car Mod Ped. Mod Cyc. Mod

X 77.24 42.98 66.72
X X 79.09 44.43 73.24

X X X 79.54 45.96 70.36
X X X 79.23 46.33 72.53
X X X 80.75 46.98 72.89

Table 5. Three-dimensional object detection quantitative performance evaluation on the KITTI test
set using AP (%) and comparison with different methods.

PointPillars SECOND 2SR Par (M) Moderate AP Car Pedestrian Cyclist

Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

X 20 77.48 86.12 78.56 76.06 62.40 40.14 38.05 76.85 63.28 57.34
X X 28 79.21 88.45 78.59 73.13 62.98 40.58 38.24 77.86 64.32 58.17

X 20 80.57 87.87 78.54 73.28 63.29 41.05 38.39 77.73 64.38 58.48
X X 32 81.19 88.36 79.24 73.97 48.87 41.37 39.12 78.95 65.74 59.22

Table 6. Ablation studies for different transformer-based encoding and decoding layers with two
different RPNs to show the generalization ability of the proposed DFA-SAT approach.

Method OBDS SCFE MLFR LGFA ms/Image FPS Param/MB

SECOND

X X 17 63 71.5
X 19 58 71.8
X X X 22 49 72.3
X X X X 20 49 75.1

PointPillars

X X 39 27 63.6
X 52 21 64.5
X X 57 19 64.8
X X X 61 20 66.2

Figure 5. KITTI dataset visualization and prediction results. Sub-figures show predictions for
PointPillars and SECOND RPNs at various angles with the DFA-SAT 3D object detection approach.

4.3. Ablation Studies

In the ablation experiments, we have utilized the KITTI dataset for validation of our
customized down-sampling and transformer-based encoder–decoder network which is
trained with multi-class objects and 40 recall positions using the AP metric. DFA-SAT
comprises four modules: object-based down-sampling (OBDS), semantic and contextual
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features extraction (SCFE), multi-level feature re-weighting (MLFR), and local and global
features aggregation (LGFA). OBDS is one of the major contributions of this study while
SCFE and MLFR depend on feature extraction, which is conducted based on engineered
down-sampling. Therefore, a series of ablation experiments was conducted by gradually
inserting each module to demonstrate and verify the effectiveness of the DFA-SAT mod-
ules. We used similar settings and hyperparameters (64 filters, k = 10) for 80 epochs and
evaluated the 3D network with the KITTI benchmark validation set. We have applied the
0.7 IoU threshold and 40 recall points on the official KITTI evaluation metric to the car
class. Tables 4–8 present the ablation studies of DFA-SAT using different down-sampling
approaches, RPN incorporation, semantic and contextual features extraction, multi-level
feature re-weighting, and local and global features aggregation with two different RPNs,
respectively.

Table 7. Ablation studies for different modules of GFA-SAT architecture using AP (%).

PR OBDS SCFE MLFR LGFA Easy Mod. Hard

X X 85.42 77.79 72.45
X X 86.79 78.1 72.81

X X X 87.18 78.35 73.13
X X X 87.75 79.06 73.65
X X X 88.36 79.24 73.97

Table 8. Ablation study of DFA-SAT with various choices of k-nearest neighbors.

Method k-Points AP3D (%) APBEV (%)

Easy Mod. Hard Easy Mod. Hard

SECOND
9 87.36 79.24 73.97 93.55 89.04 83.91
16 87.12 78.83 73.15 92.67 88.35 83.02
32 88.36 79.24 73.97 93.55 89.04 83.91

PointPillars
9 86.47 78.35 72.98 92.46 88.15 82.86
16 86.23 77.94 72.26 91.78 87.46 82.59
32 88.45 79.05 74.16 92.67 88.34 83.18

4.3.1. Ablation on OBDS

We verify the effectiveness of our proposed customized down-sampling approach by
replacing it with Feat-FPS and D-FPS. Our down-sampling approach gives better results
even with a reduced number of point features due to better localization of instance fore-
ground features, as shown in Table 4. This approach achieves good results for even smaller
and faraway objects like cyclists, as shown in Tables 1 and 2. This shows that the proposed
down-sampling approach is better able to preserve and learn object features to improve
detection. Our sampling strategy focuses on the center of the 3D point cloud object and
its foreground features and their relationship with the center point feature and does not
learn the geometric details of the object with a larger aspect ratio. We have incorporated a
customized down-sampling algorithm to explicitly learn relationships among the adjacent
points in the k-nearest-neighbors feature domain. It is a distance adjustment approach
that uses a dot product to multiply features to suppress the distance to tackle the issue of
sparseness which occurs due to aggressive down-sampling.

4.3.2. Ablation on RPN Backbone

We verify the effectiveness of the RPN networks “SECOND [34] and PointPillars [37]”
that we used as the backbones of our detection framework. We integrate our encoder–
decoder architecture with the existing RPN “SECOND” and “PointPillars” as voxel-based
representatives to verify that our DFA-SAT is able to be integrated on top of readily
available RPNs for strong proposal refinement. Tables 5 and 6 show the ability of the
proposed method to give good refinement results with controlled parameters. To verify the
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efficiency and stability of the proposed approach DFA-SAT was added in the ‘SECOND’ and
‘PointPillars’ models following its two sparse convolutional layers and the pillar encoding,
respectively. All the comparison tests and evaluations were conducted using the KITTI test
and validation sets. These experiments proved our claim that our proposed approach is
not bound to a specific RPN.

4.3.3. Ablation on SCFE

We validate our strategy of selecting key-points for proposal-to-point embedding. The
key-point-subtraction approach is used against existing size-oriented strategies commonly
used in proposal-to-point embedding approaches. Our approach to applying key-point
subtraction is significantly important for fair results achievements as our results decreased
when we replaced it with the existing approach, as shown in Tables 6 and 7.

4.3.4. Ablation on MLFR

The self-attention-based encoding scheme enables the DFA-SAT model to learn more
critical features through local feature dependency learning and global features context
aggregation. Tables 6 and 7 demonstrate the performance impact of the self-attention
encoding approach. We add checkpoints at random epochs and analyze the different
attention layers of the trained model by visualization of their attention maps. We observe
that the trained model gives more attention to the object car even with sparse points and
ignores the background points, as is the objective of this work, as shown in Figure 4. This
study reveals the importance of foreground features as well as their prospective results
in the trained model. It can be seen from Tables 1–3 that the APs of BEV and 3D for
the PointPillars and SECOND (baseline RPNs) were improved when using the DFA-SAT
module. The baseline performance was also enhanced by using key-points for geometric
information learning using self-attention encoding. From Tables 6 and 7, we inferred that
the number of parameters and run-time settings were similar to the baselines. For example,
DFA-SAT as a core detection module outperformed the baselines with 57 FPS, with the
fastest run-time for PointPillars.

4.3.5. Ablation on LGFA

We have employed three decoding schemes in our trained model and the combined
transformer-based local and global features decoding scheme outperformed both individ-
ual local and global schemes with micro-margins. The combined features re-weighting
approach performs effective weight decoding and integrates both local and global weights,
as shown in Tables 6 and 7.

4.3.6. Ablation on the Choice of Different k Features in Neighboring

Table 8 illustrates the impact of the hyperparameter k in the DFA-SAT, where values
of 9, 16, and 32 were chosen for additional validation. Notably, the KITTI dataset yielded
the most favorable outcome when k was set to 9, which was subsequently employed as the
hyperparameter in subsequent experiments. These findings lend further support to the
notion that the sparsity of point clouds has a notable influence on the experimental results,
as shown in Table 8.

5. Discussion

The incorporation of autonomous vehicles (AVs) into urban settings marks a pivotal
development in the evolution of smart cities. At the core of AV technology lies 3D ob-
ject detection, a fundamental capability enabling AVs to perceive their surroundings in
three dimensions. The paper’s primary contributions include the proposal of DFA-SAT,
a versatile module for 3D object detection in AVs, and its integration into established
frameworks like PointPillars and SECOND. DFA-SAT addresses the challenges of weak
semantic information in point clouds, particularly for distant and sparse objects. It achieves
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this by preserving foreground features, refining semantic and contextual information, and
enhancing feature associations.

The significance of DFA-SAT lies in its potential to improve the safety of AVs in smart
cities by better detecting pedestrians, cyclists, and other objects by 8.03% and 6.86% using
the SECOND RPN for BEV and 3D detection, respectively. The module’s minimal impact on
the model’s parameter (75.1 param/MB) and run-time performance (49 FPS) is crucial for
practical applications. The experimental setup is comprehensive, and the authors provide
detailed information about the dataset, implementation details, and network configuration.
They use the KITTI dataset, a well-established benchmark for 3D object detection, and
conduct evaluations on multiple difficulty levels (easy, mod., and hard) and use AP% and
mAP% as evaluation metrics. The custom down-sampling approach, encoder–decoder
architecture, and transformer-based decoding weight calculations distinguish DFA-SAT.
The authors also emphasize the efficiency of their approach, demonstrating its suitability
for real-world applications.

The paper presents extensive results comparing DFA-SAT with existing methods. It
achieves competitive performance in 3D object detection, particularly for detecting smaller
and distant objects like cyclists and pedestrians. The improvement in mean average preci-
sion (AP) for both the PointPillars and SECOND frameworks demonstrates the effectiveness
of DFA-SAT. It also exhibits efficient performance, achieving high AP while running at
32 FPS. The paper’s qualitative results showcase accurate 3D bounding box predictions
and refined object detection, emphasizing the importance of semantic and contextual in-
formation with meticulous deliberation and strategic implementation. Three-dimensional
object detection holds the potential to reshape the functioning of cities, rendering them
more habitable, eco-conscious, and responsive to the needs of their inhabitants.

6. Conclusions

The proposed DFA-SAT dynamic feature abstraction with self-attention architecture
for 3D object detection in autonomous vehicles has significant implications for smart city
applications. By improving the detection performance of LiDAR 3D point-cloud-based
object detectors, this research contributes to the advancement of autonomous driving
technology, which is a vital component of smart cities. This study presents a dynamic
feature abstraction with self-attention (DFA-SAT), encoding decoding architecture for 3D
object detection in autonomous vehicles to assist autonomous driving using LiDAR 3D
point clouds. It thoroughly examines existing issues with 3D object detectors and proposes
a novel methodology called DFA-SAT to extract detailed geometric information among
the local semantic features and applies a features re-weighing mechanism. DFA-SAT sets
itself apart from existing methods by utilizing a convolutional neural network (CNN)
and a self-attention mechanism to learn high-dimensional local features and combine
them with low-dimensional global features, leading to significant improvements in detec-
tion performance. Experimental evaluations conducted on the KITTI 3D object detection
dataset demonstrate the advantages of DFA-SAT, as it achieves noticeable performance
enhancements. The research outcomes of DFA-SAT, evaluated on the KITTI 3D object
detection dataset, highlight its potential in enhancing autonomous driving and smart city
development. Improvements in 3D object detection methods are essential for safer, more
efficient, and sustainable urban environments as autonomous vehicles become integrated
into smart city infrastructures. The study’s insights pave the way for future developments
in object detection techniques, driving the progress of autonomous vehicles in urban plan-
ning and smart cities. Combining technological advancements with supportive policies
and responsible adoption will lead to a more sustainable and environmentally friendly
transportation future.

Limitations

The DFA-SAT model demonstrates impressive efficiency in detecting objects within
extensive LiDAR point clouds. However, it is not without its limitations. Notably, the
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semantic prediction of individual points can be problematic when dealing with imbalanced
class distributions. Its accuracy may be hampered in the case of uneven distribution of
points for a given semantic context. To address this challenge, in future research, we intend
to explore and implement advanced techniques aimed at mitigating the effects of class
imbalances. With this, we aim to enhance the model’s overall performance and robustness
in complex real-world scenarios to provide a more comprehensive understanding of the
method’s implications for smart city development.
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