
UWL REPOSITORY

repository.uwl.ac.uk

On the performance of emerging wireless mesh networks

Bagale, Jiva Nath (2015) On the performance of emerging wireless mesh networks. Doctoral thesis,

University of West London. 

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/1279/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


On the performance of
emerging wireless mesh networks

Jiva Nath Bagale
Sustainable Computing Research Group

School of Computing and Technology

University of West London

A thesis submitted in fulfilment of the requirements for the
degree of

Doctor of Philosophy

September, 2015





I would like to dedicate this thesis to my wife, beloved parents, brother and
sweet daughter for their continuous inspiration, support and love. I am really
thankful to my parents for helping me to get the best education possible and

it would not have been possible to achieve this without you.





Declaration

I, Jiva N. Bagale, hereby declare that except where specific reference is made
to the work of others, the contents of this dissertation titled, ’On the perfor-
mance of emerging wireless mesh network’, are original and have not been
submitted in whole or in part for consideration for any other degree or qualifi-
cation in this, or any other University. This dissertation is the result of my own
work and includes nothing which is the outcome of work done in collaboration,
except where specifically indicated in the text. This dissertation contains less
than 40000 words including appendices, bibliography, footnotes, tables and
equations.

Jiva Nath Bagale
September, 2015





Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr.
John Moore for the continuous support during my Ph.D. study and research,
for his motivation, inspiration, enthusiasm and knowledge. I could not have
imagined having a better support and guidance for my study as the one I
received from him.

My sincere thanks also goes to my fellow Ph.D colleagues Antonio D.
Kheirkhahzadeh for stimulating discussions, for inspiring to never give up
and for always being there for motivation. The journey has definitely been
smoother with a colleague like you.

Last but not the least, I would like to thank the University of West London
and in particular the School of Computing and Technology for providing me
the platform for the journey. I would like to thank Maria Pennells, senior admin
officer in the graduate school, for all the administrative support throughout the
degree.





Abstract

Wireless networks are increasingly used within pervasive computing. The re-
cent development of low-cost sensors coupled with the decline in prices of
embedded hardware and improvements in low-power low-rate wireless net-
works has made them ubiquitous. The sensors are becoming smaller and
smarter enabling them to be embedded inside tiny hardware. They are al-
ready being used in various areas such as health care, industrial automation
and environment monitoring. Thus, the data to be communicated can include
room temperature, heart beat, user’s activities or seismic events. Such net-
works have been deployed in wide range areas and various levels of scale.
The deployment can include only a couple of sensors inside human body or
hundreds of sensors monitoring the environment.

The sensors are capable of generating a huge amount of information when
data is sensed regularly. The information has to be communicated to a central
node in the sensor network or to the Internet. The sensor may be connected
directly to the central node but it may also be connected via other sensor
nodes acting as intermediate routers/forwarders. The bandwidth of a typical
wireless sensor network is already small and the use of forwarders to pass
the data to the central node decreases the network capacity even further.
Wireless networks consist of high packet loss ratio along with the low network
bandwidth. The data transfer time from the sensor nodes to the central node
increases with network size. Thus it becomes challenging to regularly com-
municate the sensed data especially when the network grows in size. Due to
this problem, it is very difficult to create a scalable sensor network which can
regularly communicate sensor data.

The problem can be tackled either by improving the available network
bandwidth or by reducing the amount of data communicated in the network.
It is not possible to improve the network bandwidth as power limitation on the
devices restricts the use of faster network standards. Also it is not accept-
able to reduce the quality of the sensed data leading to loss of information
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before communication. However the data can be modified without losing any
information using compression techniques and the processing power of em-
bedded devices are improving to make it possible.

In this research, the challenges and impacts of data compression on em-
bedded devices is studied with an aim to improve the network performance
and the scalability of sensor networks. In order to evaluate this, firstly mes-
saging protocols which are suitable for embedded devices are studied and
a messaging model to communicate sensor data is determined. Then data
compression techniques which can be implemented on devices with limited
resources and are suitable to compress typical sensor data are studied. Al-
though compression can reduce the amount of data to be communicated over
a wireless network, the time and energy costs of the process must be con-
sidered to justify the benefits. In other words, the combined compression and
data transfer time must also be smaller than the uncompressed data transfer
time. Also the compression and data transfer process must consume less
energy than the uncompressed data transfer process. The network commu-
nication is known to be more expensive than the on-device computation in
terms of energy consumption. A data sharing system is created to study the
time and energy consumption trade-off of compression techniques. A mathe-
matical model is also used to study the impact of compression on the overall
network performance of various scale of sensor networks.
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Chapter 1

Introduction

Wireless networks have been around in different forms since the 1980s. They
emerged in the form of wireless voice networks which is now commonly known
as mobile networks. Wireless data networks started emerging in the 1990s
in the form of second generation (2G) networks and have continued to evolve
until today where third generation (3G) and fourth generation (4G) networks
are about to overtake the data usage of fixed line broadband. Today, wireless
networks have become even more ubiquitous and the gap between physical
objects in human life and virtual world of Internet is becoming narrower than
ever. The new wave of wireless sense and control is about connecting every-
day objects to the virtual world in unprecedented manner. The phenomenon
is referred to with different terms including Internet of Things, Body Area Net-
works, Vehicular Area Networks or Wireless Personal Area Networks. All of
them have sensing and wireless communication in common and are differ-
ent forms of Wireless Sensor Networks. The aim is to automatically monitor,
control and respond to various environmental events (weather, tsunami, hur-
ricanes or forest fires), traffic, household utility equipment and more.

The development of Micro-Electro-Mechanical Systems (MEMS) technol-
ogy has facilitated the creation of small, low-cost and smart sensors. The
small size of the sensors allows them to be combined with tiny embedded
hardware or even used inside human body. The lower cost makes it possible
to deploy large number of sensors to create a network in an economical way.
The sensors have limited but powerful capabilities to collect data and perform
some processing before communicating to other sensors or directly to the
Internet. They are often deployed in extreme locations where it is difficult to
access them regularly and thus the data is communicated over a wireless net-
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work to a base station either directly or via a mesh network of similar sensors.
The sensor nodes mostly rely on battery or solar power in order to operate
on those difficult conditions. Thus, it is challenging to create wireless network
to provide continuous data collection, processing and communication while
operating on limited power resources.

Power limitation in wireless sensor networks is an ongoing research area
and there have been various efforts to save power consumption in order to
improve the life of the sensor nodes. The consumption has been reduced by
efficiently managing the communication process (e.g. turning off radio when
not in use). It is well known that network communication consumes significant
energy resources in comparison to the device computation. Thus it is also
beneficial to reduce the amount of data communicated over a network by
processing it on the device. However the trade-off between the savings from
data processing and data size reduction must be studied properly. If the data
processing on the device is proved to be beneficial, it can minimise usage of
the two of the most limited resources on the sensor network field, the power
and the network bandwidth.

1.1 Emerging wireless networks

Wireless networks are becoming increasingly pervasive with the popularity of
sensors to interact with its surroundings. The decline in price of embedded
hardware and sensors has made their implementation affordable and thus
more common. The development of open wireless networking standards suit-
able for resource-constrained systems has also been important. And as a
result, wireless networks are being deployed in a wide range of areas and
different levels of scale. They have been deployed in very small scale and in
extremely sensitive area such as human body to track patient’s heart beat,
blood sugar level or blood pressure. They have also been deployed in large
scale to monitor various environmental factors, industrial automation or infras-
tructure conditions.

The sensor data are often communicated to a central node (commonly re-
ferred as sink node) which is more powerful than the rest of the nodes and
is often connected to one or more networks outside the sensor network itself.
The sensor nodes are mostly connected directly to the sink node in order to
transfer the sensed data. However it becomes challenging to transfer the data
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to the sink node when it has to be communicated via other sensor nodes. The
data transfer speed which is already low decreases further with the increase
in the number of hops the data has to pass. The wireless network bandwidth
degrades with packet loss in the medium and packet collisions due to a large
number of wireless nodes. Thus it becomes interesting to reduce the amount
of data that needs to be communicated over the network to improve the trans-
fer time. However the quality and integrity of the data must be preserved in
the process.

A typical sensor node may provide some data processing along with the
task of sensor data collection and communication. Also embedded hardware
have been improving a lot recently in terms of processing power, lower power
consumption and the ability to run embedded OS. A minimal OS which can
be run on tiny embedded devices to create wireless sensor networks allows
improving the data processing features so that the sensor data can be com-
municated more efficiently. Sensor data are predictable in terms of data type
and range and naturally consist of robust structure. This feature of the sensor
data can be exploited to represent them in highly structured data formats such
as JavaScript Object Notation (JSON) or Extensible Markup Language (XML).
These data formats can be used for communication as well as for storage so
that there is no need of additional database to store these data. It saves valu-
able time normally spent during data format conversion while sending and
receiving these data.

The main advantage of these data formats can be achieved by defining
meta-data for the sensor data. The sensor data are expected to be within
pre-defined data range or of certain data type which enables them to be re-
stricted by using a meta-data file. The processing power of the embedded
device can then be used to compress the sensor data before communication.
Data compression definitely reduces the amount of data communicated over
network and thus eases the pressure on the limited bandwidth of the sensor
network. However it must be achieved without sacrificing other valuable re-
sources of the devices mainly time and energy. The trade-off between data
compression speed, data size reduction over network and energy consump-
tion needs to be studied to justify the advantages. If the compressed data
actually arrives slower than the original data as a result of time expensive
data compression process, it is not beneficial even if the data size is reduced
significantly. Also if the compressed data arrives faster than the original data,
it must be achieved without spending more energy than the data transfer of
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the original data. It is challenging to achieve the perfect balance between data
size reduction and spending the constrained resources of sensor networks in
order to create a scalable data sharing system.

1.2 Motivation

This research is motivated by the potential of wireless sensor networks to be
used for a wider range of scenarios to connect the physical world to the Inter-
net and to use it to sense, control and monitor the surrounding environment,
traffic or even human body. The information collected from these sensors can
be very valuable to predict future environmental activities like hurricane or
earthquake or to provide better health-care. The aim is to provide an efficient
data sharing system which can be used to improve resource limitations of the
wireless sensor networks and to enable to create low-cost large scale sensor
systems.

Initial studies (Moore et al., 2012) have demonstrated the potential of low-
cost sensors combined with embedded devices and low bandwidth to create
economical seismic detection and recording system. These sensors have
the potential to immediately provide valuable information to us which can cur-
rently be gathered only by using expensive large, often extremely expensive
and complex, sensor systems. Some of these systems are so expensive that
they are deployed only in some developing countries despite being known
for frequent seismic activities (Allen, 2008). The alternative sensor networks
have huge potential to be used where expensive systems cannot be deployed
or along with them to improve the data collection. However there are chal-
lenges to be solved before such sensor networks can be easily deployed.
The biggest challenge is to create a large scale network which can collect
and communicate data in real-time by using the technologies available in the
current market and achieve so in an economical manner. The limited process-
ing, network and energy resources available in the sensor networks must be
considered when implementing any data sharing system. In conclusion, this
research is motivated by the potential of the wireless sensor networks to be
used in ubiquitous computing and the challenges in implementing real-time
data sharing sensor networks when using low-cost technologies.



1.3 Research approach 5

1.3 Research approach

Wireless sensor networks have become ubiquitous as a result of the increas-
ing number of sensors coupled with a decline in the price of hardware. They
are already used in a range of areas including environment monitoring, logis-
tic tracking and health-care management. The embedded sensors regularly
produce a range of information such as temperature, location or blood glu-
cose level. However these devices consist of limited processing capabilities,
memory and bandwidth and they require running on limited power for longer
period of time. It is fairly simple to implement networks with few sensor nodes
(less than 5) in order to collect and communicate sensor data. The sensor
nodes are often connected directly to a base station, normally a more pow-
erful device e.g. laptop or PC, over wireless networks. The sensor nodes
do not need to perform any data processing as the network is relatively less
congested and scalability is not an issue. However the devices may have to
connect to one or more sensor nodes before communicating to the base sta-
tion as soon as the number of devices increases. A typical wireless network
normally operates in a short distance range restricting the possibility of con-
necting all sensor nodes to a single base station. Thus, sensor nodes often
form a mesh network where some sensor nodes act as intermediate relay
router and one acts a bridge/gateway to connect to the base station.

The network congestion increases with the number of sensor nodes and
the already limited network bandwidth is reduced even further. It becomes
difficult to provide a real-time data communication system which can be de-
ployed in a larger scale. However the sensor data can be processed on the
device to reduce its size without losing the quality before communication. The
data compression process reduces the network bandwidth usage but it also
consumes some resources too, namely time and energy.

1.3.1 Research questions

The main research question of this thesis is focused on the data compres-
sion on embedded devices to save network resources in the sensor networks.
Although it is always beneficial to reduce data size using compression tech-
niques in terms of network bandwidth usage, the time required to achieve this
must also be studied in order to validate the overall benefits. Most resources
(power, network and processing) in these devices are limited and thus must
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be managed carefully in order to lengthen the life of the network. In addition,
the compression time may impact the overall energy consumption if it is big-
ger than the actual data transfer time. Similarly the energy consumption for
the compression process must not exceed the energy savings achieved from
the bandwidth usage reduction.

Main question

“What are the impacts of using data compression before communi-
cating sensor data in wireless mesh networks?” This question focuses
on the overall impacts of using data compression on an embedded device
before communicating the sensor data over wireless mesh network. It will
be evaluated by combining the results of compression and network trans-
fer time for compressed and uncompressed sensor data with the results of
energy consumption during the data compression and transfer process.

Sub questions

How much time can be saved during network transfer by applying data
compression on the device over a given bandwidth and what are the
possible impacts of data type or size on the time saving? The data size
reduction from compression is definitely beneficial if the network bandwidth
usage is considered. However the compression time may be an issue de-
pending upon its value as it can affect real-time transmission of data and
also the respective energy consumption could be higher. The compressed
data must always arrive faster than the uncompressed data and it will de-
pend highly on the available bandwidth and processing capabilities of the
sending device.

Is the overall energy consumption (compression and network trans-
fer) for compressed data smaller than that of (network transfer) the
uncompressed data? The energy resources are very constrained in sen-
sor networks and so if the data compression affects it in a negative way the
advantages on network bandwidth usage and scalability will be meaning-
less. The compression ratio could be crucial along with the compression
time for the data compression process to be energy friendly for the sensor
networks.
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1.3.2 Aims

The aims of this research work are to explore compression of highly struc-
tured sensor data on embedded devices and its impact on the overall network
performance and to evaluate the energy consumption trade-off between com-
munication of compressed and uncompressed data on such networks.

1.3.3 Objectives

• Review existing wireless technologies suitable for networking embedded
devices.

• Explore existing messaging protocols and their suitability for embedded
devices.

• Develop a prototype testbed to determine the best protocol candidate.

• Develop a light-weight data sharing system using the best messaging
protocol.

• Explore existing structured data compression techniques suitable for
embedded devices.

• Conduct an experiment by transferring compressed and uncompressed
structured data to evaluate the compression time, compression ratio and
the throughput of the network.

• Conduct an experiment to measure/estimate energy consumption of
data compression and network communication.

• Use a mathematical model to analyse the expected performance of the
mesh network in large scale deployments.
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1.3.4 Approach

The processing capabilities of embedded devices have been improving bet-
ter than the network capacity and power requirements. Most wireless sensor
networks are designed in such a way that sensor nodes send data to a sink
node which does the first data filtering and processing (Tsiftes and Dunkels,
2011). The nodes do not perform any data filtering or processing so all the
sensor data must always travel to the sink node. However this approach is
changing with better processing and memory capabilities of the nodes cou-
pled with demand for scalable networks. It is beneficial to process the data
on individual node if the applications are interested in particular events (e.g.
a noise above certain level) rather than unprocessed data (Taysi et al., 2010).
Also the data collected from the sensors are mostly highly structured in nature
and the nature of the data from a specific sensor is predictable. For example,
a typical temperature sensor always generates data that is within a certain
range and the structure is always same. Thus, it is beneficial to represent
them in highly structured data format instead of treating them as plain text or
a string. The data format is crucial for compression purpose because highly
structured data can be compressed very efficiently than plain text data when
compressed using meta-data (Moore et al., 2013).

Thus embedded devices, which are capable of doing compression on the
collected sensor data, are considered instead of tiny sensor nodes which can
only collect and communicate such data. The aim is to utilise existing data
compression libraries along with light-weight messaging middleware software
to create light-weight yet scalable wireless sensor network. Thus the embed-
ded devices should ideally run on minimal operating system (OS) such as
Linux so that the data compression can be performed on the highly structured
sensor data. It can be argued that the sensor data can always be communi-
cated to a powerful sink node which can perform all the data filtering, process-
ing and validation but that requires a complex database to store the received
data and often expensive computer to perform the processing. Therefore it
can contradict with the aim of creating an economical and affordable system
by using smaller low-cost sensors.
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1.3.5 Methodology

The research methodology is based on the development of a light-weight
data sharing model suitable for embedded devices with constrained resources
which can enhance the overall performance of networks of such devices. Ini-
tially messaging models and messaging protocols are evaluated for determin-
ing the most suitable model and protocol capable of running on embedded
hardware and minimal OS. Experiments are carried out to study messaging
protocols for their portability to embedded hardware/OS, control data over-
head per application data and simplicity of implementation. The control data
overhead is measured by analysing the TCP segments when communicated
over network and separating the application and control data sizes. Control
data are useful to provide extra information and to improve the messaging
protocol design but it is interesting to minimise the overhead specially when
the actual application data sizes are small and the network bandwidth is also
small.

The research focuses on highly structured text data to present various
sensor and configuration information. Sensor data in image and video format
is not considered but the research could apply to configuration data from such
sensor networks. The nature of sensor data is structured in nature as the data
generated are mostly predictable and of similar type.

A light-weight data sharing system is created by combining ZeroMQ mes-
saging protocol with Pub/Sub messaging model and highly structured data
format, XML. The dataset consists of files with different text-based data types
including numerical, string, time, enumeration choice and IPv4 address. The
files represent typical sensor data types along with other common data types
possibly used in the context. The files range from 72 to 5142 bytes in size.
The XML dataset is compressed with popular text-based, schema-based com-
pression techniques and compression speed and ratio are recorded. Fur-
ther analysis is provided to demonstrate the benefits of communicating com-
pressed data over uncompressed data. The compression techniques are also
evaluated for their energy consumption to justify the energy savings of data
size reduction is not negated by extra energy consumption during the com-
pression process. The energy is measured by connecting a smart power
measurement tool to the embedded device which monitors the current drawn
from it.
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1.4 Contributions

This research investigates the compression of data to be communicated over
wireless mesh networks in embedded devices. The study of data compres-
sion in sensor networks is not new and compression of text, image, sound and
video data formats have been discussed. This research focuses on the study
of sensor data in the form of highly structured text data and does not include
other data formats such as image, sound and video. However the concept
of compression of sensor data in highly structured text format with the use
of its meta-data is relatively new. Such compression methods commonly re-
ferred as schema-aware compression has been used in traditional networks
for their efficient compression ratio. And they can be beneficial for reducing
network bandwidth in sensor networks too. However the usage of extra re-
sources required to achieve such compression on sensor network must be
studied carefully to determine any possible side-affects. This research evalu-
ates the trade-off of compression time and energy consumption between com-
pressed and uncompressed structured sensor data communication over wire-
less mesh networks in these devices. The result of the experiment with the
testbed network is validated for scalability by using a mathematical model. All
the software and the wireless testbed created during this research are made
public as Open-Source software. The wireless testbed and the messaging
framework can be reused by researchers to improve the research area. More
specifically, the contributions of this thesis are:

1. The possibility and challenges of embedded devices to communicate
data on a regular basis using wireless mesh network is studied. IP-
based wireless networks are mainly focused where the devices can
communicate directly to other devices on the Internet without using any
intermediate network gateway. It is found that regular data communica-
tion quickly becomes challenging as the network size grows, mainly due
to the low bandwidth availability and high packet loss in such networks.

2. ZeroMQ and Spread messaging protocols are studied to analyse their
suitability for embedded devices with limited resources and the extra
control overhead required to communicate user data is compared. They
have been previously studied with the focus on the supported messag-
ing models and their suitability on enterprise networks. Both protocols
are tested by running them on a range of embedded devices and the
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control overhead is compared while communicating sample sensor data
in a publish/subscribe model.

3. A light-weight data sharing system for communicating highly struc-
tured data on embedded devices is developed. Existing systems focus
on communicating a sample of the data or communicating the data at
a later time to adjust to the limited bandwidth availability. However the
knowledge about the data can be used to perform efficient loss-less
compression. The amount of data can thus be reduced before com-
municating it over the network. It is achieved by combining XML data
format, Packedobjects compression and ZeroMQ messaging protocol.
The data sharing system can be reused to create sensor networks to
collect, process and communicate data in structured format in a range
of areas such as environmental monitoring, health care or ICT for devel-
opment.

4. An experiment is conducted by transferring the compressed and un-
compressed structured data to evaluate the compression time, the data
transfer time and the respective energy consumption for those processes.
The time and energy consumption trade-off between communicating
compressed and uncompressed data over low bandwidth network us-
ing embedded device is then analysed. The results of the experiments
can be reused to decide if sensor data compression will be beneficial for
saving resources such as bandwidth and energy in wireless networks.

5. A mathematical model of the low bandwidth wireless mesh network is
discussed to estimate the effective network throughput of such networks
and to analyse the impact of compression on the overall performance of
such networks in large scale deployments when communicating com-
pressed or uncompressed data. The model can be reused to study
such impacts in future wireless networks deployments that communi-
cate structured sensor data.
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1.5 Published materials

The following work has has been disseminated during the research so far.

1. Moore, J., Bagale, J., Kheirkhahzadeh, A., Komisarczuk, P. "Finger-
printing seismic activity across an internet of things", 5th IFIP Interna-
tional Conference on New Technologies, Mobility and Security (NTMS
2012), May 2012

2. Bagale, J., Moore, J.,Kheirkhahzadeh, A., Komisarczuk, P. "Compar-
ison of messaging protocols for emerging wireless networks", NTMS
Workshop on Wireless Sensor Networks: Architectures, Deployments
and Trends (WSN-ADT 2012), May 2012

3. Moore, J., Bagale, J., Kheirkhahzedah, A., “Teaching networking fun-
damentals with sound.” The 13th IEEE International Conference on Ad-
vanced Learning Technologies, July 2013.

4. Bagale, J., Moore, J., Kheirkhahzadeh, A., and Shiyanbola, A. Towards
a real-time data sharing system for mobile devices. In Next Genera-
tion Mobile Apps, Services and Technologies (NGMAST), 2014 Eighth
International Conference on, September 2014

5. Bagale, J., Moore, J., Kheirkhahzadeh, A., and Rosunally, Y. Energy
consumption trade-offs for XML compression on embedded devices. In
Sustainable Internet and ICT for Sustainability 2015 (SustainIT 2015),
2015 4th IFIP/IEEE Conference on, April 2015

These publications present some of the contributions listed in section 1.4.
Paper [1] presents the early studies about potential and challenges of com-
municating sensor data over low bandwidth network in real-time. This paper
elaborates on contribution 1. Paper [2] presents the initial evaluation of mes-
saging models and protocols which are suitable for embedded devices with
constrained resources. This paper elaborates on contribution 2. Paper [3]
presents the use of the messaging models discussed in paper 2 to teach
wireless networking fundamentals to students. Paper [4] presents the results
from data sharing system which analyses the impact of schema-informed
XML compression on the overall network performance of the wireless net-
works. This paper elaborates on contribution 3. Paper [5] presents the results
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from energy consumption experiments which determines the impact of com-
pression speed and ratio on the overall energy consumption of the wireless
networks. This paper elaborates on contribution 4 discussed above.

Presentations/Posters

1. Bagale, J. (2011) On the performance of emerging wireless mesh net-
works. In UWL annual MPhil/PhD conference, 11th May 2011, London
(Poster)

2. Bagale, J. et al (2011) Energy efficient location-based disaster detection
and reporting system Summer school of communications (University of
Edinburgh) 13th -17th June 2011
(Awarded best collaborative research proposal)

3. Bagale, J. (2012) On the performance of emerging wireless mesh net-
works. In UWL annual MPhil/PhD conference, 16th May 2012

4. Bagale, J. (2012) On the performance of emerging wireless mesh net-
works. In PhD forum on 10th International conference on Mobile sys-
tems, Applications and services, 25th June 2012

5. Bagale, J. (2013) Real time mobile trading. In Brentford dragon’s den,
University of West London, 30th April 2013

6. Bagale, J. (2013) Mobile distributed real-time search system. In UWL
annual MPhil/PhD conference, 22nd May 2013, London (Oral)

7. Bagale, J. (2014) Towards scalable real-time data sharing system for
mobile and embedded devices In UWL annual MPhil/PhD conference,
21st May 2014, London (Poster)
(Awarded joint best poster presentation)

1.6 Organisation of the thesis

The rest of the thesis is structured as below.
Chapter 2 introduces wireless technologies used to communicate sensor
data in mesh network. The focus is on the wireless networks which can be
connected directly to Internet without using any intermediary gateway. It anal-
yses the limitations/challenges of such networks for communicating highly
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structured sensor data. Then it presents results from a prototype wireless
network which communicates accelerometer sensor data over low bandwidth
network.

Chapter 3 presents existing messaging protocols which can be used on
embedded devices and compares ZeroMQ and Spread for analysing the sup-
ported messaging models and the control data overhead required for commu-
nicating application data.

Chapter 4 presents a real-time data sharing system for mobile and em-
bedded devices which uses the messaging protocol selected in Chapter 3.
XML, a highly structured data format, and its meta-data (Schema) is dis-
cussed along with publish/subscribe messaging model. They are combined
with ZeroMQ messaging protocol to create a light-weight data sharing system
which is suitable for low bandwidth networks.

Chapter 5 presents the experimental results from comparison of com-
pressed and uncompressed data communication on embedded devices over
low bandwidth network. The main focus of the experiment is on the com-
pression time, compression ratio and data transfer time and the overall time
required to communicate compressed and uncompressed data is compared.
The importance of compression time and ratio on the overall time is then
analysed. Similarly the energy consumption during the data compression
and communication processes is analysed to evaluate the trade-off between
compressing with various XML compression techniques and uncompressed
data transfer.

Chapter 6 discusses a mathematical model to estimate TCP throughput
for a 6LoWPAN network. The impact of small application data payload, TCP
fragmentation and packet loss on the overall throughput of the network is
analysed in the context of such networks. The result of this model is used to
recalculate the data transfer time for various data in Chapter 5.

In Chapter 7, the research work is concluded and the contributions, limi-
tations and future work of this thesis are presented.
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Related Work

This chapter provides background information about low bandwidth wireless
networks with particular focus on IP-based networks. These networks present
unique challenges in terms of quantity of the data that can be communicated
over them and the speed that can be achieved. In addition, various mes-
saging models which are suitable for communicating data over low bandwidth
networks are also studied. Finally, the results from a prototype experiment is
presented in order to highlight the challenges in communicating sensor data
about seismic activities in real-time. The next section provides background
knowledge about various low bandwidth wireless networks.

2.1 Low bandwidth wireless networks

Large standalone sensors have been traditionally deployed to sense/detect
various events and to transfer the sensed data to other nodes for computation
and processing. These sensors are normally capable of distinguishing noise
from the data but are mostly expensive and thus large scale deployments are
not always feasible due to the associated cost. However the rise of MEMS
technology has enabled the development of low-cost, low-power sensors and
multi-functional sensor nodes (Akyildiz et al., 2002). These nodes are gener-
ally capable of doing some data computation along with data collection and
can also be used to communicate data over a short distance. Thus it is pos-
sible to create a network of large number of sensor nodes to collect, process
and communicate the sensed data. Although these nodes are less accurate
than the larger expensive sensors, more data can be collected from large
number of smaller sensor nodes and can be deployed with lower cost.



16 Related Work

A sensor network is defined as a collection of large number of smaller
sensor nodes which are deployed densely within or nearby the area to be
sensed. Sensor network may consists of one or more types of sensor nodes
such as thermal, visual, acoustic, infrared, magnetic and seismic which can
monitor a range of ambient conditions that include but are not limited to the
following (Estrin et al., 1999):

• temperature,

• humidity,

• vehicular movement,

• lightning condition,

• pressure,

• noise levels,

• heartbeat,

• air pollution levels and more

Sensor networks are becoming more and more popular and are already
used in many areas such as vehicular tracking (Ahmed et al., 2010), environ-
mental monitoring (Werner-Allen et al., 2006), industrial automation (Krishna-
murthy et al., 2005), infrastructure monitoring (Kim et al., 2007) and health-
care monitoring (Chen et al., 2011; Hao and Foster, 2008; Jafari et al., 2005;
Lai et al., 2013; Latre et al., 2011; Singh et al., 2009). The sensors networks
are often interchangeably referred to as low power and lossy networks (LLNs)
due to their association with wireless networks and often require running on
limited power for long periods of time. The potentially harsh environmental
condition (e.g. monitoring a remote glacier) or complexity of deployment (e.g.
sensors with human body) can make it difficult to recharge or replace the
power source of such nodes. Thus, it’s extremely important to manage the
power consumption during the data sensing and communication process.

The Institute of Electrical and Electronics Engineers (IEEE) have specified
the physical layer and media access control (MAC) layer standard targeted
for low-power low data rate wireless person area networks. The standard is
maintained by the IEEE 802.15.4 working group which was started in 2003
(IEEE, 2003). The main features of the standard are low transmitter power,
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small maximum transmission unit (MTU) size at MAC layer and low cost. They
can operate on several wireless bands which includes 2.4GHz, 915 MHz and
868 MHz but 2.4GHz is used mostly as it can be used worldwide (not re-
stricted in any region/country) and also provides better data rate. The data
rate can be 20-250 Kilo bit per second (Kbps) depending on the band and
mode implemented. However it does not define upper network and transport
layers and thus various specifications are created by defining upper layers on
top of the currently defined physical and MAC layer. These specifications can
mainly be divided into category of IP-based and non IP-based standards.

Major non IP-based specifications

• ZigBee,

• WirelessHART,

• ISA100.11a and

• MiWi

The ZigBee standard builds on the IEEE 802.15.4 standard by adding net-
working and application support functionality (ZigBee, 2006a,b). It has been
widely used in areas including home automation, industrial control and wire-
less sensor networks. A typical ZigBee network consists of three types of
devices: ZigBee coordinator, ZigBee router and ZigBee end device. How-
ever the network cannot be connected to the Internet without using interme-
diate gateway which can provide application and network level conversions.
Also, it is a closed standard maintained only by the ZigBee alliance which
makes it almost impossible to be used with open standard software such as
Linux based OS. A new specification called ZigBee IP is being developed
which can support IP network without the need of gateway (ZigBee, 2013).
Similarly, WirelessHART uses IEEE 802.15.4 and proprietary network layer
to provide non-IP based low-power sensor network and have been mostly
used for industrial process control (Song et al., 2008). ISA100.11a, devel-
oped by International Society of Automation (ISA), is similar to WirelessHART
but it supports multiple network protocols by using tunnelling whereas Wire-
lessHART only supports it own HART protocol (Petersen and Carlsen, 2011).
MiWi is another protocol targeting short distance low data rate networks but
is not widely used as ZigBee and WirelessHART.
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IP-based specifications

• 6LoWPAN

The concept of IP-based specification was started to connect everything
to the Internet. It allows collection of sensor data from anywhere over the
Internet without using any intermediate gateway and also allow the sensor
nodes to be controlled remotely. A simple network bridge or a router can
be used to connect the sensor network to the Internet instead of a complex
application/network conversion gateway as required by the non IP-based net-
works. It also simplifies the device naming and addressing model as IP can
be used in all the nodes. The use of IP within the network means existing net-
work configuration, management and debugging tools can be used Mulligan
(2007). For example, Simple Network Management Protocol (SNMP) (Case
et al., 1988) can be used to manage an IP-based sensor networks and it is
not necessary to write a new management protocol from scratch for the same
purpose. The network administrators do not need to learn any proprietary
protocols when IP is used throughout.

Fig. 2.1 6LoWPAN frame format

In 2005, the Internet Engineering Task Force (IETF) finalised 6LoWPAN
which allows data to be communicated from IEEE 802.15.4 standard based
devices to the Internet by using IPv6 (Mulligan and Bormann, 2005). Initially,
there were some reservations about connecting sensor nodes and devices
using IP but the 6LoWPAN working group was formed and they started to
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formalise the standard (Mulligan, 2007). The main challenge of implement-
ing IPv6 over IEEE 802.15.4 was to balance the extremely small MTU of 127
bytes and relatively large IPv6 headers of 40 bytes (Deering and Hinden,
1998). The IPv6 header consumes around 30% of the available MTU which
leaves very minimum space for application data when other necessary head-
ers are considered as shown in figure 2.1. The 6LoWPAN working group have
developed a method of compressing and decompressing the IPv6 headers
when they enter and leave the IEEE 802.15.4 networks (Kushalnagar et al.,
2007) and has been improved further by RFC 4944 and RFC 6282 (Hui and
Thubert, 2011; Montenegro et al., 2007).

6LoWPAN implementations

There are various open source implementations of 6LoWPAN standards al-
ready which offer different levels of features (Mazzer and Tourancheau, 2009;
Yibo et al., 2011) and the major implementations are briefly discussed in this
section. Berkeley Low power IP (BLIP) is one of the most advanced 6LoW-
PAN implementation and currently supports TinyOS (Levis et al., 2005). It
provides most features defined in RFC 4944 namely header compression,
fragmentation, addressing and neighbour discovery and supports mesh un-
der routing (Culler, 2008a). µIPv6 is another 6LoWPAN implement which sup-
ports Contiki OS (Dunkels et al., 2004). It also provides addressing, header
compression, fragmentation and neighbour discovery but does not support
mesh under and route over routing (Culler, 2008b). Similarly, Nanostack, also
referred as nstack, provides addressing, fragmentation and header compres-
sion but does not support neighbour discovery and mesh under routing but it
is no longer supported Lembo et al. (2010).

BenWPAN is another 6LoWPAN implementation which is still under de-
velopment and is different from others because it supports embedded Linux
OS Almesberger (2012). It enables the use of 6LoWPAN network with variety
of hardware such as single board computers, home routers and embedded
hardware which can run minimal Linux OS. Unlike the previous implemen-
tations which can run only on specific hardware. It also enables the use of
existing data processing and middleware software along with the 6LoWPAN
network. In this research, it is assumed that the 6LoWPAN implementation
runs on general purpose operating system such as Linux instead of TinyOS
or Contiki so that existing software can be utilised.
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The 6LoWPAN frame format and IPv6 header compression is explained
in more detail in Chapter 6. In the next section, different messaging models
which can be used for data sharing system are discussed.

2.2 Messaging models

Message passing is crucial for the functioning of distributed systems which
form the basis for the Internet itself. The simplest message communication
model for such systems is point-to-point where two nodes talk to each other
directly. The nodes must know each other before the communication and must
remain active throughout the communication cycle. The messages can be
optionally stored in a virtual channel commonly known as a queue temporarily.
The message is guaranteed to be delivered to one and only one receiver even
if there is more than one receiver in the queue. The message remains in
the queue until read by a receiver unless it expires after the message expiry
time. The messaging model is synchronous in nature and request-reply, as
shown in figure 2.2, is one of the most common implementation. The client
sends a message to the server and waits for the reply before sending another
message.

Fig. 2.2 Point to point messaging with request-reply (Hintjens, 2011)
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There are different variations of the point-to-point messaging model which
improve the limitations caused by the synchronous nature of the model. As
shown in figure 2.3, the sender can send a message to the queue but does
not expect an immediate reply from the receiver which provides some decou-
pling between the two nodes. Similarly, as shown in figure 2.4 the sender
can send its messages on one queue and receive on another which provides
decoupling between the two nodes.

Fig. 2.3 Asynchronous
point-to-point with fire
and forget (Richards
et al., 2009)

Fig. 2.4 Asynchronous
point-to-point with
queue in queue out
(Richards et al., 2009)

However this form of messaging is static, rigid and difficult for dynamic
large-scale communications mainly due to the strict coupling requirements
between the sender and the receiver nodes. There are some other alterna-
tive messaging models which can decouple the communication between the
two nodes and operate at different abstraction levels. Decoupling can be
defined as the process of dissociating the sender and receiver nodes during
communication. It can be performed with respect to time, space and syn-
chronisation for messaging models. Time decoupling removes the necessity
for both sender and/or receiver to be online during communication. Space
decoupling means the senders and the receivers do not need to know each
other before starting communication. Synchronisation decoupling means the
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sender and receiver will not be blocked from performing other tasks during
communication. The complete decoupling of all three factors increases the
speed of the communication and decreases the complexity for large-scale
communications. Scalabilty is referred in the coming sections/chapters of
this thesis as the ability of a network to communicate more amount of data
for a given bandwidth resource. The extra amount of such data might come
either from existing nodes or from newer nodes in the network. The other ma-
jor messaging models are Remote Procedure Call (RPC), Distributed Shared
Memory (DSM) and Publish/Subscribe (Pub/Sub) (Eugster et al., 2003) and
references therein.

Remote procedure call

RPC is one of most commonly used distributed interaction and was initially
proposed in 1983 for remote invocation for procedural languages (Birrell and
Nelson, 1984; Tay and Ananda, 1990). However it has also been used for
object oriented contexts. It consists mainly of three different nodes namely
Caller, Callee and Dealer. Callees register the procedures that they provide to
the Dealer and the Caller invokes the registered remote procedures by using
the Uniform resource identifier (URI) provided by the Dealer. The Callee then
runs the requested procedure by using the supplied arguments (if any) and re-
turns the result to the Caller (if any). The Producer (mostly the invoking node)
performs a synchronous call and the consumer (mostly the replying node)
processes it asynchronously. The model is not completely asynchronous as
there is time coupling on consumer side and space coupling on the producer
side (as instance of remote object remains active). It is possible to decouple
the sender and receiver nodes in RPC to some extent as shown in figure 2.5
but it cannot be fully decoupled.

Fig. 2.5 RPC messaging model (Eugster et al., 2003)
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Distributed shared memory

The concept of DSM, also referred as shared space or tuple space, started
in the 1990s (Li and Hudak, 1989; Tam et al., 1990) and have been used to
provide platform for accessing shared data. It is managed like an ordered
queue where nodes can read, write or delete the data entries or the tuples.
The model provides decoupling over time and space as the data producer and
consumer remain anonymous to each other as shown in figure 2.6. However
the consumers remain synchronous to the system when they pull new tuples
from the space.

Fig. 2.6 DSM messaging model (Eugster et al., 2003)

Publish/Subscribe

The publish/subscribe message model is increasingly used in large scale or
dynamic distributed environments to provide loosely coupled communication.
Subscribers can register their interests in the form of an event, a pattern of
events, topic or content. The interests can be registered either directly to a
publisher or to an intermediate service manager as shown in figure 2.7. The
publishers generate the data when there is a match for the registered interest
and notify the registered subscribers via the service manager. The notification
is passed from the publisher to the subscribers in completely asynchronous
manner.

The breakdown of decoupling into time, space and synchronisation de-
coupling is shown in figure 2.8. The communicating parties do not need to
know during the communication process. Both the publishers and subscribers
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Fig. 2.7 Simple object-based publish/subscribe model (Eugster et al., 2003)

need to know only the service manager. This provides the space decoupling
to the system as publishers do not need to know about the subscribers when
sending the information and the subscribers do not need to know about the
publishers when receiving the information. The communicating parties do not
need to be active at the same time for the communication to be complete.
The publisher can send information to the service manager and then discon-
nect before any subscriber connect. Then the subscribers can connect to the
service manager to receive the information. This provides the time decou-
pling to the communication system. Finally, the synchronisation decoupling
is achieved as the publishers are not blocked while sending information and
subscribers can receive the information while performing some other activity.

The complete decoupling of the communication increases the overall scal-
ability of the system as the sending and receiving parties become indepen-
dent to each other. It makes the publish/subscribe messaging model suit-
able for distributed environments which are asynchronous by nature, such
as mobile and wireless sensor networks (Huang and Garcia-Molina, 2004).
The pub/sub messaging model and messaging protocols which implement
the model and are also suitable for wireless LLNs are discussed in more de-
tails in Chapter 3. In the next section, data compression in the context of
sensor networks is briefly discussed.
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Fig. 2.8 Space, time and synchronisation decoupling with pub/sub (Eugster
et al., 2003)

2.3 Data compression in sensor networks

Sensor networks can generate data in a range of formats such as text, image,
sound or video. Such data can represent environmental monitoring, seismic
activities, vibration waveform and acoustic signals in bridges and health-care
monitoring. The sensors regularly generate data as typical data collection
frequency is 100 MHz or higher. Thus the data is often processed locally
before communication.

The data communication can be reduced by sampling the collected data.
This approach can be used for certain data formats but may not be suitable
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if the original data is required after communication. For example, lossy com-
pression techniques have already been used to reduce data size at the ex-
pense of reduced audio and video qualities (Sinha et al., 2000). The audio
and video formats can be compressed by sacrificing some quality to reduce
size but the original data can still be retained. However such compression
techniques can not be applied to text data format and any text-based com-
pression technique used must be able to retain the original data. Similarly,
Mammeri et al. (2012) surveyed existing image compression techniques for
visual sensor networks. Authors discuss the advantages and disadvantages
of discrete cosine transform, discrete wavelet transform and non transform
based algorithms in the context of sensor networks. Aghdasi et al. (2008)
proposed video transmission architecture for wireless sensor networks to im-
prove energy efficiency while maintaining video quality. Ahmad et al. (2009)
present improvements to existing video compression techniques, PRISM and
Wyner-Ziv encoders, for sensor networks. The use of multimedia in various
wireless sensor networks is surveyed by Akyildiz et al. (2007).

In this research, the focus however will be only on text-based compres-
sion of sensor data. The advantages of compression using text-based algo-
rithm will be similar to those from image or video compression algorithms.
The data size reduction provides energy savings from the fact that network
communication is more energy expensive than device computation (Barr and
Asanovic, 2006). However the energy and time consumption of compression
algorithms must be studied carefully to determine such advantages do not
come with significant trade-off. The study of text-based compression of sen-
sor data is not new and earlier work has analysed different algorithms to study
their impact on energy consumption mainly focusing on the popular imple-
mentations of Lempel-Ziv 77 (LZ77), Burrows-Wheeler Transform (BWT) and
Lempel–Ziv–Welch (LZW) algorithms (Barr and Asanovic, 2006; Wang and
Manner, 2009; Xu et al., 2003). These algorithms mostly rely on represent-
ing repeating sensor data efficiently to reduce size. However the knowledge
of the context of sensor data can be used to reduce data size further with-
out adversely affecting compression time or energy (Kheirkhahzadeh et al.,
2013; Moore et al., 2013, 2014b). These algorithms are discussed in more
detail in Chapter 5 later to determine trade-off between savings from data size
reduction and extra resource cost of compression. In the next section, a wire-
less prototype testbed is discussed which is created using low-rate wireless
network and minimal embedded Linux OS.
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2.4 Fingerprinting seismic activity across Inter-

net of things

This prototype testbed was created, firstly to check the suitability of low-cost
hardware running minimal Linux OS to be used to collect sensor data, perform
some data processing and communicate them over low bandwidth wireless
networks. Sensor data have been previously collected from sensor nodes
which have no capabilities to perform data processing or to run messaging
software to be used for distributed communication. The testbed is also used to
identify the challenges of running messaging software on embedded systems
and of communicating large scale data over low bandwidth networks.

The aim of this prototype experiment is to use pervasive computing in
order to create alternative seismic detection and recording system. The pro-
totype is focused on using low-cost open hardware in developing countries
to provide an alternative more sustainable solution to the costly infrastructure
used in countries such as Japan. The work involves building a network of
embedded computing devices capable of forming a broadcast group across
a range of different networking technologies including emerging 802.15.4-
based networks.

The ability to record seismic events over time enables utilising the data
for future planning such as highlighting areas at risk from earthquakes. The
data can be used to assist the infrastructure planning and design to deter-
mine suitable type and location of the buildings. These systems are already
implemented in Japan and USA but rely on expensive technologies. Alter-
native systems which are cheaper are studied so that they can be imple-
mented in developing countries. Most developing countries lack basic infras-
tructures such as broadband Internet and electricity. The alternative solutions
are designed to operate over low-powered, low-bandwidth emerging network-
ing technologies with the potential of allowing communication to take place
where there is little existing infrastructure. Although the main aim is to be able
to record seismic events, the feasibility of issuing immediate alerts of seismic
events can be considered as well. Firstly, the problem of recording seismic
events is discussed along with some related projects. Then, the architecture
of such systems and the initial results are presented and the challenges of
such systems are discussed.
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2.4.1 Earthquake early warning systems

Earthquake early warning systems (EEWS) are not new and research has
been carried out since mid 19th century. In 1868, an idea was published in
the San Francisco evening bulletin to deploy sensors to detect earthquake
and transmit warnings over telegraphic cables and to ring earthquake bell to
alert citizens (Allen, 2008). Although there was no significant progress on
development of such systems for the next century, it became the basis for
new research on this area. Japan has successfully deployed EEWS across
their country (Nakamura, 2004). Few other countries such as USA, Mexico,
Taiwan and Turkey have followed on the success of Japan on deploying these
systems (Allen and Kanamori, 2003). Although California is located between
two tectonic plates and is heavily studied by seismologists, due to lack of
investment its EEWS is poor in hardware and unable to dispatch a warning
signal in reasonable times (Allen, 2008). The same applies to other nations
where earthquakes can be even more destructive due to inadequate infras-
tructure and the untrained population. These early warning systems use only
a few powerful and expensive seismological stations to detect earthquakes.
Although these systems are capable of saving lives by alerting people few
valuable seconds in advance, they come at a very high price. Thus, these
systems cannot be easily deployed in many developing and poor countries in
the world. This led researchers to alternative approach of EEWS.

2.4.2 Embedded/Mobile earthquake early warning systems

Recent researches have focused on using small size accelerometer and de-
ploying them in large quantity in the earthquake prone areas. The smaller
accelerometer sensors are capable of detecting earthquake as soon as they
occur. They are very cheap in comparison to large seismological stations
and large number of accelerometers together can provide useful information
about the seismic activity. This approach mostly relies on volunteers or com-
munity to provide the end computing technology as users can join the com-
munity to share their sensors data or act as listeners (Clayton et al., 2012;
Cochran et al., 2009; Olivieri et al., 2008). The data is then passed to a
server which analyses the data and issues warnings if necessary. The data
collected can also be used to create a shake map of the earthquake affected
area which can be very useful for rescue and relief operations on those areas.
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But the requirement of computers and Internet access for the system has re-
stricted implementation to the USA and European countries. However this
approach has been extended (Collins and Moore, 2010; Moore et al., 2010)
to mobile phones and other embedded devices with built-in accelerometers
and is the focus of this prototype project. The mobile devices do not require
the same infrastructure and skilled manpower as the computers and are also
cheaper compared to computer and specialist seismic activity recording sys-
tems. There are increasing numbers of mobile devices which have built in
accelerometer sensor and can be used to detect the seismic activity. The
sensors are not restricted to expensive smart phones but are now available
with low-cost feature phones as well. If EEWS can be created using mobile
devices, dedicated embedded devices can be built to detect and process the
seismic data. There has been very limited research on early warning sys-
tems consisting of mobile and embedded devices. It remains a challenge to
communicate the earthquake shake data to other mobile devices in the net-
work of EEWS. There is equal amount of challenge to correctly predict if any
shake movement is an earthquake or not. There are chances of false warn-
ing or chance of missing real earthquake. There is no study to date to find
the effectiveness of EEWS based on mobile devices. In the next section, the
prototype architecture of mobile based seismic activity recording system is
discussed and some initial results are presented.

2.4.3 Testbed architecture

Wireless sensor networks have been successfully deployed to create vari-
ous body area networks (Latre et al., 2011). These networks usually have
sensors attached to the body or any clothing of a person. The sensor data
is communicated to other devices or to a server via mobile devices using
wireless medium. Although the typical bandwidth available for such commu-
nication remains low the concept of these wireless networks can be utilised to
form a large distributed network for EEWS. IEEE 802.15.4 working group is
developing new standard targeted for wireless networks with low power con-
sumption requirements (IEEE, 2003). Standards such as ZigBee utilise the
IEEE 802.15.4 standard to create wireless network of embedded devices and
have been successfully implemented on home automation systems, health
care and smart energy systems. There is a new standard being developed
which is known as IPv6 over low powered wireless personal area network
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(6LoWPAN) which specifies various functions suitable for low powered em-
bedded devices such as addressing, packet formats, interoperability, mesh
topology and neighbour discovery (Mulligan and Bormann, 2005).

The target embedded system is primarily used to record seismic events
with the possibility of issuing warnings. The target hardware should ideally
have accelerometer sensors to detect seismic events. However, the software
also allows devices to receive data from other devices without requiring ac-
celerometer sensors. The software currently runs on a Linux-based PC, an
Openmoko Freerunner mobile phone and a Ben NanoNote minicomputer. Ad-
ditionally, the software can also run on home broadband routers such as the
Buffalo G300NH which has a USB port capable of attaching an accelerometer.
These different forms of hardware are connected to different groups based on
their location. The groups are then connected to other nearby groups enabling
sharing of data. There are various messaging protocols supporting broadcast
feature required for the prototype. Protocols such as ActiveMQ, RabbitMQ,
Mantaray, ZeroMQ and Spread are the most common examples. However
it’s not feasible to port all of them to embedded devices as required for the
prototype. Spread and ZeroMQ are very simple to implement and provide C
API for message broadcasting and therefore are more suitable for embedded
platforms.

Each device continually collects accelerometer data at a rate based on the
sampling frequency of the accelerometer used. The X-axis and Y-axis values
of the accelerometer sensor are recorded during the sampling process. The
changes in X and Y axes is calculated as a covariance which measures the
changes in two or more random variables. The covariance value can be used
to determine the level of shaking that is recorded by the accelerometer sensor.
For example, covariance between the two axes with sample size N can be
defined as equation 2.1. The covariance of every 100 samples is calculated
and then compared to a predefined threshold value. If the result is greater
than the threshold the device communicates an alert to the rest of the group
as summarised in algorithm below.

Covariance(X ,Y ) =
N

∑
i=1

(xi − x̄)(yi − ȳ)
(N)

(2.1)

Where,
Xi is the value of accelerometer X-axis
Yi is the value of accelerometer Y-axis
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X̄ and Ȳ are average of respective axis values N is the sample size of the
values

Algorithm 1 Determining accelerometer activity
loop

calculate(covariance)
if covariance ≥ threshold then

broadcast(alertMessage)⇒ group
else

donothing
end if

end loop

Fig. 2.9 Queuing model

Each device on the network continuously reads any messages broadcast
and add them to a queue as illustrated in figure 2.9. The queues are then
processed on each device every second to calculate their sizes. The queue
sizes together with the sender’s id are then used to calculate the frequency
for queue sizes in the range [1,10]. The fixed queue size range is governed by
the sampling rate of the sender’s accelerometer and forms the basis for the
fingerprints discussed in next section.
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2.4.4 Fingerprinting the network

Fig. 2.10 Ben Nanonotes and 6LoWPAN

A key part of the prototype is being able to identify significant seismic
events and the process is called fingerprinting. In order to evaluate the pro-
totype a simple message broadcast system was created using Spread mes-
saging toolkit. A Ben Nanonote minicomputer equipped with the Ben WPAN
wireless chip was used for the experiment as shown in the figure 2.10. A fake
accelerometer data generator program created by Bagale (2010) is used to
create sample data for the experiment. It is run on each device to provide data
similar to various levels of shaking as expected to be generated from seismic
activities. The data is then communicated to all other devices immediately to
establish queue size and fingerprint of the event.

Fig. 2.11 Insignificant fingerprint Fig. 2.12 Undetermined fingerprint

An example fingerprint is presented in figure 2.11. Here, the number of
messages broadcast by each device on the network within a 1 second sam-
ple period is shown. For example, in figure 2.11 10 devices broadcast 2 mes-
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sages in the sample period with little or no messages at other levels. This
graph or fingerprint shows that although there was some activity on the net-
work the amount of traffic and/or the number of devices is low, therefore, the
result can ignored as being less significant. In figure 2.12, an example is
shown where the fingerprint is scattered with some high and low samples
size messages from significant number of machines. The pattern does not in-
dicate any specific type of event and it is difficult to explain this pattern without
knowing the circumstances for its occurrence over a period of time.

Fig. 2.13 Right-skewed fingerprint Fig. 2.14 Left-skewed fingerprint

In figure 2.13, a large number of devices are creating a right-skewed fin-
gerprint which indicates an event occurred for a longer period of time. This
kind of pattern would indicate that there has been a highly significant event
based on the number of machines involved and the duration of the event.
Similarly, figure 2.14 shows a large number of devices creating a left-skewed
fingerprint which indicates an event occurred for a short time. This kind of
pattern would indicate that there has been less significant event based on the
number of machines involved and the brief duration of the event.

2.4.5 Summary of the testbed

The most important result of the testbed is to be able to use small sized low-
cost accelerometer sensors to record seismic activities and to communicate
them to other embedded devices over low bandwidth wireless network. The
graphs discussed above prove that the sensor data can also be used to ex-
tract pattern about the actual activity although there remains a lot of improve-
ments to be done in deriving knowledge from them and comparing to historical
data. The testbed consists of around 10 embedded devices but it remains a
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challenge to increase the scale of the network due to limited processing ca-
pabilities of the devices and the limited network bandwidth. The sensor data
serialisation/decode process was compared among embedded devices and
a personal computer (PC) to highlight the challenges present in embedded
devices for processing large scale data. The major hardware specifications of
those devices are listed in table 2.1.

Fig. 2.15 Sensor data decode performance across embedded devices and
PC

As shown in figure 2.15, the data serialisation process is extremely slow
on embedded devices in comparison to a PC. It can be one of the challenges
for creating a real-time large scale network as more time is required to pro-
cess the data on the device. However this limitation is expected to improve
with time as faster embedded devices (1GHz speed) are already becoming
available on the market. It enables the improvement of the data processing
performance in embedded devices.

Table 2.1 Hardware specifications for devices compared for decode perfor-
mance

Device Processor RAM Architecture OS
Ben Nanonote 336 MHz 32 MB MIPS OpenWRT
Freerunner Phone 400 MHz 128 MB ARM OpenWRT
PC 1.6 GHz 1 GB x86 Ubuntu
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In the coming chapters, light-weight messaging protocols and their data
processing performance on embedded devices are studied with an aim to re-
duce the amount of data communicated over low bandwidth networks. How-
ever this must be done without spending extra time and/or energy resources
both of which are limited in sensor networks specially when communicating
data in real-time.





Chapter 3

Messaging protocols suitable for
embedded devices

In this chapter messaging protocols that are suitable for mobile, embedded
and wireless sensor networks are evaluated. Various messaging architec-
tures/models provided by these protocols are studied to determine their suit-
ability. The messaging protocol needs to be suitable for continuously sending
large amount of highly structured data in low bandwidth mobile and sensor
networks. Although processing capabilities of the embedded devices on such
networks is increasing, it is considered as well. Various messaging architec-
tures are examined with special focus on the size of overhead per message
used by these protocols in order to create a light-weight messaging system.

3.1 Background

Wireless sensor networks collect data using sensor nodes in regular interval.
Data can include temperature, seismic, vibration waveform and acoustic sig-
nals in bridges (Kim et al., 2007), industrial automation (Krishnamurthy et al.,
2005), environmental monitoring (Werner-Allen et al., 2006) and health-care
monitoring (Chen et al., 2011). The data collected by these sensors needs to
be transferred to other nodes inside the network or to devices outside the net-
work in real-time so that it can be analysed instantly or stored for further pro-
cessing. The data-rate for these sensors are typically in the range of 100Hz
or higher and the amount of data increases further as the network size scales
up. However it remains a challenge to transport large amount of data with
constrained bandwidth and energy usage.
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Sensor nodes can filter data before sending it to the network. However
it might result in loss of data and it is still possible that all the sensors may
try to send important data at the same time. Also significant power is con-
sumed in a sensor node when the radio transceiver is idle (Ye et al., 2002).
Thus the lifetime of the network can be improved by controlling the number
of transmissions from sensors. The sensors can subscribe only to the data
which is related to selected topics/interests rather than all the available topics.
This approach is called data centric communication and it enables communi-
cation based on interest of receiver and not based on network address (Estrin
et al., 1999). Publish Subscribe messaging systems (Pub/Sub) are common
examples of such communication model. Pub/Sub model supports dynamic
topologies in sensor networks and are scalable as well (Eugster et al., 2003).
The information about topics can also be used to determine a path a message
takes in the network and thus reducing the number of transmissions required
(Rooney and Garces-Erice, 2007).

The major components of a Pub/Sub messaging system are subscribers,
publishers and a broker (Hunkeler et al., 2008). Subscribers register their in-
terest in information by subscribing to a topic. Publishers provide information
to the subscribers by publishing. Broker facilitates the information delivery
from publisher to a subscriber. The subscription in a typical Pub/Sub sys-
tem can be done based on topic, content or type (Eugster et al., 2003). Topic
based systems allow to define topics in advance which is then used to publish
and subscribe information. Type based systems allow to specify the type of
information to be used e.g. temperature data. Content based systems allow
to describe the content of the information e.g. the light in on and temperature
is below certain threshold (Hunkeler et al., 2008).

3.2 Related work

Although data recording in sensor networks is not new, traditional networks
primarily focus on managing resources efficiently (Kim et al., 2007; Singh
et al., 2009; Ye et al., 2002). Data recording on sensor networks can be
viewed from a different perspective of data compression. Compression algo-
rithms can be used along with existing messaging models to compress the
data before sending it to the network. In Chapter 2.4 above, the testbed net-
work discussed the performance of such messaging models. The testbed
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network consisted of embedded devices such as Ben Nanonote minicom-
puter and a version of 6LoWPAN wireless standard (Almesberger, 2012).
Ben Nanonote runs on OpenWRT Linux distribution. Tiny OS has also been
used on many wireless sensor networks (Hao and Foster, 2008; Kim et al.,
2007; Werner-Allen et al., 2006). However OpenWRT is used on this testbed
because Linux is increasingly used on many embedded devices and also
supports existing messaging and compression techniques. Although ZigBee
standard is used on many sensor networks including home automation it’s
use has been restricted by its proprietary licensing. Thus 6LoWPAN open
standard is considered more suitable for this research.

The messaging protocols are mainly of two major types, synchronous and
asynchronous. Synchronous messaging is carried out in traditional client
server model. Both client and server device must be available to send/receive
the message and acknowledgement message must be sent before another
message can be sent. Asynchronous messaging does not require the client
and the server to be available at all times and immediate acknowledgement
is not mandatory. It is achieved by creating a middle-ware device between
traditional client and server which is commonly known as broker. The broker
acts as buffer for temporarily storing messages and utilises store and forward
strategy. It allows the senders to send messages before receivers are active
and can disconnect once the broker receives the message as the broker can
forward the message to the subscriber later. It is suitable for sensor networks
as nodes can fail or disconnect from the network.

Most of the popular messaging systems use the Java Messaging Service
(JMS) specification from Sun Microsystems. Examples include Apache Ac-
tiveMQ, JBoss Messaging and MantaRay and require the host machine to be
able to run Java Virtual Machine (JVM). Although it is possible to run minimal
JVM in embedded devices, the limited processing power and memory may be
a potential drawback. ActiveMQ and JBoss messaging systems consist of a
broker which facilitates the communication (Snyder et al., 2010). MantaRay is
another peer to peer messaging system (Shevat, 2004). All of these systems
provide robust and powerful asynchronous messaging which is suitable for
large enterprise environments. However it is not feasible to implement such
systems to constrained devices due to limited resources and complexity of im-
plementation. Thus the focus is on the messaging libraries which are simple
to implement and suit constrained resources available in embedded devices.
Also the process of porting a messaging software to run on an embedded
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device is a challenging task and must be considered too. ActiveMQ, JBoss
and MantaRay have not been ported to embedded operating system such as
OpenWRT yet. The messaging libraries which are being discussed below are
already ported to OpenWRT. Spread Toolkit provides a unified message bus
for distributed systems (Amir et al., 2004). ZeroMQ is defined as intelligent
transport layer and it provides light weight messaging library for distributed
systems (Hintjens, 2007).

3.3 Protocols

In this section the messaging architectures provided by ZeroMQ and Spread
are discussed. The architecture which is suitable for communicating sensor
data is highlighted. The selection of ideal messaging model is determined by
the size of extra control data overhead required for communicating the normal
data.

3.3.1 Spread

Spread is a distributed messaging system and supports the group commu-
nication model which makes it easier to build a large number of distributed
applications. It provides abstraction of a group for participating nodes by fa-
cilitating message multicast between themselves. The daemons keep record
of membership of the machines and pass this information to other daemons
in the same group (Amir et al., 2004). It also provides message ordering and
reliable message delivery within a group. It also provides failure detection of
members within the group and manages group membership changes. How-
ever Spread does not provide any encryption mechanism for security.

It can be run with a daemon (server) on each local machine or with a
single daemon in the network. As shown in figure 3.1 each client is running
a daemon which handles the heavyweight memberships of the machines and
shares the lightweight memberships of the processes to other daemons. A
configuration file is used to recognise other daemons in the same network
and contains the network address details of all the daemons to be grouped
together. The individual daemons can serve one or more groups as shown in
figure 3.1. It is possible to have up to 128 different daemons in a single LAN.
However it is recommended to have less than 60 daemons in a single LAN
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Fig. 3.1 One Spread daemon for each client

to maintain performance. Also a single configuration file can include details
of up to 20 different LANs enabling the daemons to communicate with each
other (Stanton, 2002).

Similarly in figure 3.2 there is a single daemon in the network which han-
dles all the memberships and communications for all the connected clients. It
is possible to connect hundreds of clients to a single daemon. However each
new member in a group contributes 32 bytes extra towards the membership
notification message which is sent when members join or leave the groups in
that network. It causes the size of the notification message to increase and
may have impact on performance of the system.

The single daemon architecture is considered to be more suitable for a
typical sensor network. The configuration file requires network addresses of
the machines where the daemons run in advance and the dynamic nature of
sensor nodes means the changes in the configuration file can be difficult to
manage. Also it requires more resources such as processing, memory and
battery to run daemon in each sensor node. Thus it is beneficial to run a
single daemon in the network. It is possible to create a Pub/Sub messaging



42 Messaging protocols suitable for embedded devices

Fig. 3.2 One Spread daemon for all clients

model using single daemon architecture. The daemon acts as a broker which
can receive messages from different publisher clients and then forward these
messages to the subscribers based on the groups they have joined.

3.3.2 ZeroMQ

ZeroMQ is defined as the socket library which works as a concurrency frame-
work and is a light-weight, fast and scalable messaging library (Hintjens,
2007). It has been already used to create a range of real-time applications
including stock trading, network traffic monitoring and electricity monitoring
applications and it has been already ported to all major platforms and con-
sists of bindings for most programming languages. It provides messaging
services using sockets which can be connected in various patterns such as
publish-subscribe, request-reply and task distribution (Hintjens, 2011).

As shown in figure 3.3 request reply pattern provides one to one com-
munication. A client sends a request message to the server and waits for
response. The server then sends reply after receiving the request message.
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Fig. 3.3 Request reply model (Hintjens, 2011)

Fig. 3.4 Parallel task distribution model (Hintjens, 2011)
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The client must wait for the server’s reply before it can send another message.
Also the server cannot send two messages in a row to the client. It is very
simple communication model but it is not suitable for sending messages to
multiple sensor nodes. The pipeline communication pattern shown in figure
3.4 is a parallel task distribution and collection model. The ventilator is the
node which creates and pushes tasks that can be processed in parallel to the
worker nodes who complete the tasks and send it to the sink node for collec-
tion of the results. This communication model is not suitable for messaging
requirements of a sensor network but more suitable for distributing processing
tasks to multiple machines in a hierarchical design.

Fig. 3.5 Publish subscribe model (Hintjens, 2011)

As shown in figure 3.5 Pub/Sub model provides one to many communica-
tion. The publishers are the source of data which are sent to all the connected
subscribers. The subscribers register their interest of receiving topic based
data from the publisher in advance. The publisher can then continuously
send messages even if there is no subscriber present. The communication is
strictly one way from publisher to subscriber as the publisher cannot receive
any message from subscribers. If the subscriber and the publisher have dual
role for sending and receiving messages, the simple Pub/Sub model may not
be suitable. However it is possible to create complex many-to-many commu-
nication model using a simpler Pub/Sub model. Each node can be assigned
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to be a publisher and each node also subscribing to receive from all other
publishers but it is still challenging to manage multiple many to many connec-
tions. However ZeroMQ allows creation of intermediate broker device which
can act as both publisher and subscriber. It can receive message as sub-
scriber from multiple publishers, store the message temporarily in a queue
and forward it to the connected subscribers (Hintjens, 2011). Thus it is possi-
ble to create multiple publisher multiple subscriber communication using the
simple Pub/Sub model.

In the next section, the single daemon architecture in Spread and multiple-
publisher-multiple-subscriber architecture in ZeroMQ are compared by look-
ing at message structure with special focus on the actual data to control data
overhead.

3.4 Results and analysis

In the single daemon message architecture for Spread as discussed above
the daemon maintains a message queue to temporarily store the messages
received from various clients. The message queue ensures ordered deliv-
ery of the messages to all the subscriber clients who receive messages in
exactly the same order as it was sent. This feature is very useful for data
recording sensor networks as it ensures consistency in recorded data. A sin-
gle Spread daemon can relay messages to subscribed clients from multiple
groups. A client can choose to receive messages for groups A and B from
the daemon while another client connected to the same daemon can choose
to receive messages for groups A, B and C as shown in the figure above 3.2.
Clients maintain a single connection to receive messages from all the groups
they have subscribed with the daemon. The daemon must tag all the data
with sending user’s identity and the group information. The same connection
is also used to receive membership notification messages from the daemon
which can cause delay to the actual data transmission. And the notification
messages affect the latency as it increases linearly with the number of mem-
bers in a group increases.

Similarly a simple Pub/Sub messaging model can be expanded to cre-
ate a multiple-publisher-multiple-subscriber model to fulfil the requirements of
sensor networks. The intermediate broker can simplify many to many commu-
nication connections between multiple sensor nodes and allow each node to
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Fig. 3.6 Broker based publish subscribe model

broadcast messages to each other. As shown in figure 3.6 a broker receives
messages from different groups/topics as if it is subscribed to all 3 topics A,
B and C. The broker then sends those messages selectively to the different
subscribers based on the interests they showed. Both publishers and sub-
scribers contact the broker before starting communication making it easier for
creating complex many-to-many communication model in a simple manner.
The broker does not permanently store any message while forwarding it from
publishers to subscribers and it does not pass membership notifications like
Spread daemon.

The size of message sent across the network by Spread and ZeroMQ
is measured using the tcpdump network packet analyser (Jacobson et al.,
1989). The main aim of this test was to find the size of the control data added
to the original message by Spread and ZeroMQ before sending it across the
network. Both tests were carried out with same application program imple-
mented in Spread and ZeroMQ messaging. An application acting as a pub-
lisher sends single byte of message to the Spread daemon and the ZeroMQ
broker respectively. Another application acting as a subscriber receives the
message from the daemon and the broker respectively. The Spread message
consists of the group and the user id information along with the actual data.
ZeroMQ does not consist of the group and the user id information by default
but could be added as part of the actual data. The group and user id data can
be useful to indicate sender of data and the related group or topic. The group
and user id information can be considered to be common in both ZeroMQ and
Spread and hence ignored while comparing overhead data.

As shown in figure 3.7 Spread adds 64 Bytes of control message when
the data is sent from a publisher to the daemon. It also adds 28 Bytes of
control message when it forwards the message to the subscribers. The figure
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Fig. 3.7 Spread message structure

3.8 shows that ZeroMQ on the other hand adds only 2 extra Bytes of control
message when the same data is sent from a publisher to the broker and
another 2 bytes when data is forwarded from the broker to the subscribers.
Thus Spread uses 92 Bytes and ZeroMQ uses 4 bytes on the overall for the
control data overhead even when a publisher sends just a single byte of data
to the subscriber.

The Spread messaging system communicates larger control data over-
head and also sends extra membership notification messages along with the
actual user data. ZeroMQ provides simple and light-weight Pub/Sub messag-
ing model despite ignoring the group and user id data sent with the actual
message. ZeroMQ also allows publishers to drop messages when there are
not any active subscriber present preventing the data to enter the network un-
necessarily. It can make significant difference on sensor networks consisting
of constrained network bandwidth. Thus, ZeroMQ is considered to be more
suitable messaging protocol for creating a light-weight messaging system on
the embedded and sensor networks.
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Fig. 3.8 ZeroMQ message structure

3.5 Summary

In this chapter messaging architectures provided by various messaging proto-
cols were discussed. The comparison of these messaging protocols was per-
formed with focus in the context of a low bandwidth sensor network. Sensor
networks typically have limited processing power and bandwidth. However the
sensors can generate large amount of data which needs to be communicated
instantly across the network. The messaging requirement is that the devices
in the group must be able to send and receive messages from each other for
further data analysis, processing or storage. Messaging models provided by
Spread and ZeroMQ are discussed and analysed. Spread’s single daemon
messaging architecture and ZeroMQ’s multiple-publisher-multiple-subscriber
messaging are deemed suitable for data sharing on sensor networks. Al-
though Spread also provides group membership function, it sends more con-
trol data along with the actual data. ZeroMQ provides a simple Pub/Sub
based messaging system which fulfils the messaging requirements discussed
above and can also be implemented easily on embedded devices.



Chapter 4

Real-time data sharing system for
mobile and embedded devices

Mobile devices are increasingly used for information sharing. The sensors
embedded inside these devices are generating a range of information about
their location, surrounding environment and user activities. This information
can be shared with others in real-time so that it can be used or analysed
instantaneously. The popularity of participatory sensing involving humans
and mobile devices (phones, PDAs, tablets etc) has also fuelled the growth
of large scale data management. Although the typical network bandwidth
available in mobile devices has been improving it remains limited with the rise
in communication activity. Therefore, data could be optimised on the device
to make it more suitable for the available network bandwidth. A scalable real-
time data sharing system can be built by using existing message formats,
messaging architectures and compression techniques.

Bandwidth limitation, scalability issue and the impact of message com-
pression in such networks is discussed. Compression can reduce the size of
the data to be communicated by using processing power of the device. How-
ever the compression process should not take significant amount of time to
be considered useful by users. In order to justify the benefits, the overall time
for compressing and communicating such data must be smaller than the time
for communicating the uncompressed data.
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4.1 Background

Mobile devices are becoming popular for data computation along with their
traditional use of voice communication. The decline in price of hardware and
advances in sensor technologies such as GPS, accelerometers, gyroscopes
and compasses means location-based and other data computation services
have risen significantly. Thus the amount of data generated in real-time has
also increased. The local storage capacity of these devices has been in-
creasing and can be used to store the information generated by the sensors
along with other user data. However it is challenging to communicate real-
time data among these devices regularly as scalability becomes an issue.
Various applications such as mobile TV, video conferencing, online games
and other location based services already consume a significant share of the
available bandwidth. Thus there is competition among applications to use lim-
ited bandwidth. On the other hand the processing power of these devices has
increased drastically in comparisons to the bandwidth which can be used to
optimise the data to improve the overall performance of the network.

The aim is to utilise processing and storage capabilities of the devices to
create a scalable data sharing system for collecting, storing and communi-
cating sensor data along with user data. It is on a light-weight networking in-
frastructure that can be run efficiently on these devices with their constrained
resources and allows devices to continually search other devices for data.
Each device maintains a local database in highly structured format which is
accessible to others in the same group (Swaroop and Shanker, 2010). The
devices are grouped together based on their interest, topic or some feature
instead of their network address. A predefined meta-data (schema) is used as
a network protocol for the communication and also to optimise the data before
being sent over the network. The compression is performed up to bit level by
using knowledge about the data and thus helps to reduce the network band-
width usage and improve the overall performance and scalability. The system
aims to run continuously in the background without interfering much with the
device’s normal network operations.
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4.2 Related work

Most mobile distributed sharing applications focus on indexing data (Linde-
mann and Waldhorst, 2002; Mischke and Stiller, 2004) or algorithms to im-
prove search time (Ley et al., 2007; Shen et al., 2012). However, most stud-
ies have not focused on optimising data to suit the limited bandwidth and to
enhance system scalability. But the objective of this system is different to the
existing distributed search systems as it focuses on combining the strengths
of structured data, publish subscribe messaging and structured data com-
pression in order to improve the scalability.

4.2.1 Structured data

Structured data has been widely used in web, data storage and data commu-
nication (Halevy, 2010). It is easily identifiable by computers and also read-
able to humans because the information is organised in hierarchy in compar-
ison with plain data. Large amounts of data can be optimised efficiently for
storage or communication. A distributed storage system for managing struc-
tured data has been used by Google for large scale products like Google An-
alytics and Google Earth and scales to thousands of machines and petabytes
of data (Chang et al., 2008). Sensors often produce information which are
repetitive in nature thus it is efficient to represent them in a highly structured
manner rather than in a plain text (Swaroop and Shanker, 2010).

XML

The Extensible Markup Language (XML) is a simple and flexible data format
and it is derived from the Standard Generalised Markup Language (SGML)
(ISO8879:1986, 1986). It is widely used as data exchange and storage for-
mat on web and on sensor networks and is the accepted industry standard
(W3C, 1996). A simple XML example has been presented at code listing 4.1
which consists of temperature sensor data. It has tags such as <sensorData>,
<sensorId> and <unit> which are defined by the user as per requirement of
the data being represented and is readable to both human and computers. It
has also been used to communicate data from Internet of Things (IOT) to the
web along with other data formats (Orestis et al., 2012). It has been used to
share various data in a real-time decision support system for pandemic re-
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sponse (Kelley et al., 2011). The Sensor Model Language (SensorML) which
is widely used to describe process of measurement by sensors is also based
on XML (OGC, 2007).

Listing 4.1 XML representation of sensor data

<?xml version ="1.0" encoding ="UTF -8"?>

<sensorData >

<sensorID >phidgetspatial003 </sensorID >

<time>2012 -09 -12 04:38:36+00:00 </time>

<temperature >

<unit>Celcius </unit>

<value>25.4</value>

</temperature >

</sensorData >

Listing 4.2 JSON representation of sensor data

{ "sensor_data" : { "sensor_id" : "phidgetspatial003",

"time" : "2012 -09 -12 04:38:36+00:00",

"temperature" :

{ "unit" : "Celcius",

"value" : "25.4" }}}

Listing 4.3 Hexdump for compressed binary of XML data

047868d3933e5e9cf861e9a70ec60c19ca0a0239803c3cbb31e9ebcc0425a4

However XML is very verbose due to the repetitive usage of tags to rep-
resent elements and attributes in a precise tree structure as shown in code
listing 4.1. Formats like JSON and YAML are increasingly becoming popular
mainly because they represent data more concisely by using less repetitive
tags. Code listing 4.2 shows the JSON equivalent representation of the sen-
sor XML data above which is slightly concise than the XML counterpart.

Knowledge about the data types retrieved from the meta data or the schema
allows efficient compression of XML (Moore et al., 2013). The compres-
sion makes XML competitive in terms of size to JSON and YAML. The XML
schema is a very important aspect of this system as it can be used as a net-
work and application protocol and also used for data validation and compres-
sion. A simple schema for the sensor XML data above is presented at code
listing 4.4. It defines data types for the sensor XML such as string, decimal
and unix-time. Further restrictions can be defined in the schema such as to
limit the maximum number of characters in a string or to control the range of
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Fig. 4.1 Data size comparison

integers. The data type definitions and extra restrictions can be used to vali-
date data defined in the XML and to efficiently optimise it. In order to compare
different data representation sizes, the sensor XML data is compressed with
the help of the schema using the Packedobjects library which is discussed in
more detail in the next section. As shown in figure 4.1, the XML represen-
tation is bigger than the JSON one but the compressed XML is considerably
smaller than the JSON representation. It means the verbose XML does not
need to be sent over the network. The data can be decompressed later using
the schema to retrieve the original data. The hex-dump for the compressed
binary XML data is shown in code listing 4.3.

Listing 4.4 XML Schema for sensor XML data

<?xml version ="1.0" encoding ="UTF -8"?>

<xs:schema xmlns:xs="http ://www.w3.org /2001/ XMLSchema">

<xs:include schemaLocation="packedobjectsDataTypes.xsd"/>

<xs:element name="sensorData">

<xs:complexType >

<xs:sequence >

<xs:element name="sensorID" type="string"/>

<xs:element name="time" type="unix -time"/>

<xs:element name="temperature">

<xs:complexType >

<xs:sequence >

<xs:element name="unit" type="string"/>

<xs:element name="value" type="decimal"/>

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:schema >
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Veillard (1999) have developed a robust, highly portable XML library namely
libxml2 which provides an efficient XML parser for processing and searching
data. There is huge advantage of using the parser as there is no need to con-
vert data to another format in order to make it search-able. The data can be
stored on local devices in XML format which removes the necessity to convert
XML and maintain a relational database. Data format conversion can take a
significant amount of time in real-time applications (Kulkarni et al., 2012).

4.2.2 Packedobjects

Packedobjects (PO) is an XML compression library which utilises XML Schema
for both validation and compression (Moore, 2010). It performs efficient and
fast encoding/decoding by utilising the knowledge derived from the schema.
It uses a set of built-in data types to efficiently compress XML data by apply-
ing encoding rules which originated from ASN.1. Data validation is achieved
along with compression by adhering to strict encoding which enables loss-
less decoding and a better compression ratio. It can operate in constrained
hardware and limited network resources too (Moore et al., 2013).

Although the concept of XML compression is not new, it can be improved
by applying semantic knowledge of the data types with in the current context.
Traditional text compression methods do not consider semantic knowledge
and XML compression tools such as EXI use schema but do not consider the
current context of the data. An IPv4 address such as the loopback device
address "127.0.0.1" is described in dot-decimal notation and is considered a
string of 9 characters by a text compressor (Moore et al., 2014b). However
context knowledge can be used to imply that all IPv4 addresses are 32 bits or
4 bytes in length. Thus the extra semantic knowledge can be used to improve
the XML compression. Similarly UNIX timestamp data such as "2014-07-
15 20:28:27Z" can be encoded to 4 bytes instead of a string of 19 bytes by
representing them as the time since an epoch.

PO achieves efficient compression by packing the data at bit level instead
of byte level. Bit level compression may not be suitable for systems which
require very high speed performance due to the extra processing required to
achieve bit stuffing. However PO still performs better or similar with compare
to the most commonly used XML compression tools such as EXI and XMILL
and text compression tool such as zlib (Kheirkhahzadeh et al., 2013; Moore
et al., 2014b). For example data representing option or choice can be effi-
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ciently encoded using context information with the help of schema. The infor-
mation about the type of sensor such as accelerometer, gyroscope, compass
or GPS can be stored a string of characters. The type of sensors available
for use is limited and thus can be represented as enumeration. A list of 4 dif-
ferent types of sensors can be represented with only 2 bits as shown below.
Similarly a list of 128 options can be represented with just 7 bits by defining
the enumeration in the schema in advance.

1. Accelerometer as 00

2. Gyroscope as 01

3. Compass as 10

4. GPS as 11

4.2.3 Publish/Subscribe messaging

Structured data representation makes it possible to communicate selected
data based on its features rather than the network address of a sensor node
and this approach is commonly known as data centric communication (Estrin
et al., 1999). Publish/Subscribe (Pub/Sub) messaging systems are common
examples of such communication and have been widely used to provide topic
based communication. However mobile networks have different challenges
compared with traditional networks. To solve these new challenges, Pub/Sub
messaging systems are emerging which provide greater scalability to the net-
work by decoupling the data senders and receivers from each other. They are
considered more suitable for the networks with dynamic topologies such as
sensor and mobile networks (Eugster et al., 2003). The data can be filtered
at the time of the publication based on the interests of the active subscribers.
Pub/Sub systems offer efficient continuous processing and filtering of data in
distributed and heterogeneous environments and have been used to create
energy efficient mobile crowd-sensing platform (Podnar Zarko et al., 2013).

A simple Pub/Sub system as shown in figure 4.2 consists of a single pub-
lisher to broadcast data and multiple subscribers to receive them (Eugster
et al., 2003). The communication is normally one way which means sub-
scribers do not acknowledge to publishers which makes it simpler to imple-
ment and faster for large scale networks. However these systems are only
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Fig. 4.2 Simple Pub/Sub system

Fig. 4.3 Broker based Pub/Sub system

suitable if the publisher has a permanent network address as it becomes dif-
ficult for subscribers to follow publishers without a permanent address. It
becomes even more difficult for subscribers to manage multiple connections
if they receive data from many publishers at the same time. However an in-
termediate device called as broker can be introduced to solve these issues
where subscribers communicate to the publishers via them (Hunkeler et al.,
2008). The broker acts as a publisher to a subscriber and as a subscriber to
a publisher and hence facilitate the end to end information delivery shown in
figure 4.3. The publishers and subscribers require only the network address
of a single broker instead of multiple publishers or subscribers which makes
it simpler to manage connections.

It is simpler to implement and manage broker based Pub/Sub systems.
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Equation 4.1 shows the total number of connections required for simple Pub-
/Sub model. And equation 4.2 shows the total number of connections for a
broker based model. For example, broker-less Pub/Sub model requires 9 con-
nections to connect 3 publishers to 3 subscribers. On the other hand only 6
connections can serve the same purpose after using an intermediate broker.
Similarly 60 connections can connect 30 publishers to 30 subscribers with
broker in the middle where as 900 connections are required to do the same
otherwise. The number of connections required for the simple model grows
rapidly faster with the increase in the number of publishers and subscribers
as shown in figure 4.4 and hence becomes difficult to manage quickly.

(Pubm ∗Subn) (4.1)

(Pubm +Subn) (4.2)

Where Pubm is the number of publishers and Subn is the number of sub-
scribers.

Fig. 4.4 Total connections comparison
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The broker does not store any data permanently as it only forwards data
from publishers to the connected subscribers. The data is mainly stored at
the publisher side where it is generated. The subscribers can retrieve it using
the Pub/Sub messaging model via the broker. The aim is to enable real-time
access to the data at its origin in a simple/scalable way and thus avoiding the
necessity to transfer the data to a central server before being available to the
subscribers.

Fig. 4.5 PoD authentication server

The broker however could suffer from the risk of single point of failure. In
order to avoid this failure, an extra authentication server is added to the PoD
system as shown in figure 4.5. The system thus maintains an authentication
server to initialise the publishers and subscribers where it provides the broker
details to them. The nodes initialise to the server by using the XML schema
for the data they wish to communicate. The server then starts the respective
broker if it’s not already running so that the nodes can start communication
via them. The nodes can also contact the authentication server in case of
a broker failure which can restart the concerned broker immediately. The
authentication server can also monitor the brokers continuously in order to
reduce the downtime further.
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ZeroMQ

Various messaging protocols/libraries implement a Pub/Sub messaging pat-
tern to provide asynchronous communication (Amir et al., 2004; Hintjens,
2007; Hunkeler et al., 2008; RabbitMQ, 2011; Shevat, 2004; Snyder et al.,
2010). ActiveMQ, MantaRay and RabbitMQ messaging systems provide ro-
bust and powerful Pub/Sub messaging but are more suited to large enterprise
environments. Those systems are less suitable for mobile devices running
on constrained resources and bandwidth. Bagale et al. (2012) have studied
ZeroMQ and Spread messaging systems focusing on their suitability for con-
strained devices as discussed in previous chapter. ZeroMQ was found to use
less control overhead per message and was simpler to implement. The mes-
saging framework used in the system is built using the ZeroMQ library which
is defined as the socket library which works as a concurrency framework (Hin-
tjens, 2007). It is a light-weight, fast and scalable messaging library which has
been already used to create a range of real-time applications including stock
trading, network traffic monitoring and electricity monitoring applications (Hin-
tjens, 2010). It has been already ported to all major platforms and consists
of bindings for most programming languages. Dworak et al. (2011) found Ze-
roMQ to be the best middleware messaging system during a study of different
middleware platforms for use in the Large Hadron Collider project. ZeroMQ
has also been notably used by NASA, Spotify, Microsoft and Zynga for their
messaging requirements (Hintjens, 2012).

ZeroMQ provides some extra features for Pub/Sub systems to improve the
overall performance. Most Pub/Sub systems send messages for all the topics
to a subscriber which then filters them on its side based on its own interest.
Thus messages are sent over the network even when it’s not necessary. It
may not be an issue for systems with unlimited bandwidth but it can affect
the performance of systems with limited bandwidth. However ZeroMQ per-
forms topic filtering at the publisher side instead of the subscriber side. Thus
a subscriber only receives the messages with the topics it has subscribed.
The ZeroMQ broker also forwards subscription messages to publishers allow-
ing them to drop messages when there are no connected subscribers. Thus
publishers can broadcast messages for topics which have active subscribers.
Message queue size can be defined in advance on both publisher and sub-
scriber side to isolate a slow subscriber problem and stop it from affecting the
whole system.
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4.3 PackedobjectsD architecture

The core architecture of the data sharing system consists of an existing mes-
sage format, messaging architecture and compression technique. It com-
bines an XML data format, XML schema, Pub/Sub messaging model imple-
mented with ZeroMQ library and the PO XML compression library in order
to provide a light-weight scalable data sharing system as shown in figure
4.6. The overall architecture is called PackedobjectsD (POD) inspired by the
Packedobjects compression library and D stands for distributed. Applications
need to obtain the XML schema before participating in the communication
and it has to be done outside the POD framework. It can be compared with
the exchange of a secret key before communicating using symmetric encryp-
tion. The schema is used to compress and decompress the XML data during
the communication process.

Fig. 4.6 Architecture

Applications process the data in XML format which is validated and com-
pressed using an XML schema. The actual compression of XML data is per-
formed by the PO library using knowledge derived from the schema. Once
the data is validated and compressed, it is passed on to the ZeroMQ mes-
saging framework which broadcasts the data to all connected applications
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which have subscribed to receive that information. The messaging framework
broadcasts the data via an intermediate broker as discussed above. The Ze-
roMQ messaging framework on the receiving application passes the received
compressed data to the PO library which decompresses and validates it us-
ing the schema it has obtained before the communication. The XML data is
then be passed to the application for further consumption and/or storage. The
schema is an integral part of the data sharing system as it is used for various
purposes besides being used for XML compression.

4.3.1 XML Schema

The schema is used for four different purposes.

1. Network Protocol

2. Group identity

3. Data compression

4. Data validation

It is used as a network protocol for the system as it defines what kind of
data is being communicated. The applications can agree on what to commu-
nicate by using a common schema. It is also used as the broker’s identity
to group application nodes of similar interests together. The nodes who com-
municate using the same schema belong to the same group and can share
data to each other.

It is also used to validate data before and after communication. The
schema can define restrictions on data e.g. range of integers, length of strings
or choice of values which can be used for data validation. Validation is an inte-
gral part of any data sharing system and thus combining it with the compres-
sion process is beneficial for saving time. And it is mainly used to efficiently
compress the data. Although the concept of XML compression is not new,
it has mostly been performed without the schema as text compression. Even
the schema aware compression techniques do not consider the semantics
or the context of the information while compressing. As explained above in
section 4.2.2, schema aware XML compression combined with context aware
data types for information can be used to efficiently compress the XML data
and performs similar or better than commonly used tools such as EXI, XMILL
or zlib (Kheirkhahzadeh et al., 2013; Moore et al., 2013, 2014b).
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4.3.2 Mobile based product search system

A mobile product search system has been built using the POD architecture
in order to evaluate its performance. The data is communicated in both com-
pressed and uncompressed format to find out possible benefits and trade-offs
of compression on data sharing systems. The aim is to find out if the time
required for achieving the data size reduction from compression is not con-
siderably longer for it to be useful. There is no advantage of performing the
compression if it takes more than the actual data communication.

The system comprises of various searching and responding nodes which
are grouped together based on a predefined XML schema. The responder
nodes maintain records about various products such as laptops, tablets or
any other everyday item along with their location information. The records
are stored in XML format and conform to data restrictions as defined in the
schema. The node initialises with a schema, node type (searcher or respon-
der) and other basic information to the POD system which then sends back
the details about the broker. A searcher node then broadcasts the search
queries to the responders nodes via the broker within the POD system as
shown in figure 4.7. Responders process the search query and look up on
their database for matches and reply back with matching results if any as
shown in figure 4.8. The searchers are able to search data on its origin in
real-time. For example, a responder may be moving from one location to
another and the searcher can search for products located in a certain area
instantly. It is not necessary for a central server to update its index with lat-
est location information about the contents of the nodes in order to provide
correct result in real-time.

The nodes act as both publisher and subscriber in order to complete data
sharing. A searcher node publishes search queries to the subscribed respon-
ders and waits to receive the response back from them. Then the responder
nodes publish the search results back to the searcher based on the matches
on its record. However, the actual implementation is simple as the complexity
of network connections is hidden from the nodes by the POD architecture and
the nodes can simply join the group as a searcher or a responder and start
communicating with the group. In addition, the broker within the architecture
facilitates communication for both scenarios so that nodes can forget about
the complexity of other connected nodes. The POD architecture provides sim-
ple interface to them by hiding the broker implementation and other network
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Fig. 4.7 Searcher nodes

Fig. 4.8 Responder nodes

infrastructure details from the nodes. The broker is currently running on a
server but it does not have any specific requirement for that and can be run
on any mobile device without affecting the system. The device however must
have a permanent network address and must be able to run continuously.



64 Real-time data sharing system for mobile and embedded devices

4.4 Experimental setup

The experiment was conducted using a mobile application implemented on
Blackberry Z10 mobile phones which run UNIX based Blackberry 10 OS. The
application is based on buying/selling everyday items. The main aim of the
experiment was to evaluate the difference between communicating plain and
compressed XML data. The XML compression time and network transfer time
for compressed data is measured along with the time for communicating the
uncompressed XML data. However the plain XML data must be serialised or
converted to some string format before it can be passed on to network. The
compression is done using PO library and plain XML serialisation is done us-
ing Libxml2 library. The data compression and decompression time for both
approaches is measured using the clock() defined in GNU C library (GNU,
1999). It measures the CPU tick counts while the compression/decompres-
sion process is running to provide the elapsed time. The compression was
repeated 3000 times and the average value is obtained in order to remove
one time and system level effects. The experiment is also repeated multiple
times (17 times) with different input data to remove similar effects. The X-
axis labels 1-17 in figures 4.9 to 4.15 represent different input data sets. The
main concern about the PO compression is to find out if it takes considerably
longer than the plain XML serialisation process in order to justify the benefits
it provides on data size.

4.5 Results

Figure 4.9 shows the size of original XML data and size after PO compres-
sion. The XML data has been compressed on average from 145.5 bytes to
11.5 bytes which is merely 8% of the original size. Although the actual com-
pression ratio may vary slightly, it is better than most text compression tools
Moore et al. (2014b). Figures 4.10 and 4.11 show the CPU time elapsed while
compressing and serialising the XML data respectively. The PO compression
process encodes the XML data to binary data which is also serialised for net-
work communication and also performs data validation checks. Hence the
actual CPU time elapsed includes data validation, compression and serialisa-
tion. The XML serialisation process however does not perform data valida-
tion and compression as it only serialises XML data for network communica-



4.5 Results 65

tion. The XML serialisation is thus obviously faster than the PO compression
process as it performs fewer tasks. The average PO compression time is
128 microseconds while average XML serialisation is only 15 microseconds.
However the time difference for those two approaches is negligible and does
not affect the overall communication time. Also data validation needs to be
performed separately when XML is serialised using Libxml2 library requiring
extra time.

time(s) = datasize(bits)/networkspeed(bit/s) (4.3)

Although it takes less time to serialise plain XML, extra amount of data
needs to be communicated when it is not compressed. As shown in figure
4.9 134 extra bytes are sent over the network per 145.5 bytes. The net-
work packet overhead is higher when communicating plain XML data with
compare to PO compressed data. Transmission latency and re-transmissions
from packet losses increases the overall network communication time further.
The overhead, latency and packet loss can be expected to affect PO com-
pressed data much less as only 8% of the original data is being sent over the
network.

Fig. 4.9 Encode data size comparison

In order to estimate the overall communication time involving compressed
and plain data, the theoretical data transfer time for both types of data is calcu-
lated using equation 4.3. It is assumed that data transfer time for 3G networks
is 1Mbps for calculating the approximate data transfer time. So that the overall
time for communicating compressed data including compression time can be
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Fig. 4.10 PO encode CPU time

Fig. 4.11 Libxml2 encode CPU time

compared against the time for communicating plain data including serialisa-
tion time. The data transfer time for other network bandwidth speeds is shown
in figure 4.16 later. Figure 4.12 shows the combined time for PO compression
and data transfer and the average is 140 microseconds. Similarly figure 4.13
shows the combined time for XML to string serialisation and data transfer time
and the average is 164 microseconds. The extra time spent while validating
and compressing the data is compensated during data transfer. It takes less
time to serialise uncompressed XML but more time to communicate it. It takes
less time on the overall to communicate the PO compressed data.

Similarly the decompression/deserialisation time for both approaches is
also measured using the same XML data. A responder was receiving the
search query explained above and figures 4.14 and 4.15 show the CPU time
for respective processes. The PO decompression process includes the data
de-serialise, decode and validation while XML de-serialisation process only
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Fig. 4.12 PO encode and data transfer time

Fig. 4.13 Libxml2 encode and data transfer time

performs data de-serialising. The average CPU time for PO process is 257
microseconds whereas the CPU time for XML process is 399 microseconds.
The PO decompression process is faster with compare to the XML one.

4.6 Discussions

In order to evaluate the overall impact of PO compression on the networks
of different bandwidth speed, the theoretical data transfer time for the aver-
age PO compressed data and uncompressed XML data is calculated using
equation 4.3. The CPU time for the compression and serialisation has been
ignored during this calculation as it remains constant on the device regardless
of the difference in bandwidth. The theoretical data transfer time is calculated



68 Real-time data sharing system for mobile and embedded devices

Fig. 4.14 PO Decode CPU time

Fig. 4.15 Libxml2 Decode CPU time

for various network bandwidth speeds ranging from 150Kbps to 4Mbps cover-
ing low bandwidth sensor networks and mobile networks such as GPRS, 2G
and 3G. As shown in figure 4.16 the transfer time difference is less for faster
networks and it increases rapidly for slower networks. Thus PO compres-
sion is less beneficial for networks with high bandwidth but it is significantly
efficient for low bandwidth networks.

The amount of data communicated within a group can become unman-
ageable quickly for the mobile network with the increase in number of nodes.
For example, if a node is receiving 1000 bytes of data per second from 1000
nodes, it receives around 0.95MB of data every second. The data size may
not be significant for traditional networks but most mobile networks have typ-
ical bandwidth in the range of 1-2 Mbps. But there are various bandwidth
hungry applications such as online games, location based services and video



4.6 Discussions 69

Fig. 4.16 Transfer time comparison for various network bandwidths

streaming which consume a lot of available bandwidth. It is not ideal for a
single application to consume such a high ratio of available bandwidth and
scalability can become issue very quickly. However the data can be reduced
up to 0.08MB in size by using PO XML compression as discussed above. Also
it is very important for an application which runs continuously in background,
to consume as little bandwidth as possible to be considered useful by users.

However there is a possibility of the broker being the bottleneck of the
overall network as the data always passes through it. The worst case sce-
nario is when all the nodes in a network send data to all the remaining nodes
at the same time. The ZeroMQ broker implementation encapsulates multiple
network connections inside a single subscriber socket. For example if 1000
nodes as explained above are subscribed to receive data from all other re-
maining 999 nodes via the broker, there is only a single socket connection
between the broker and any subscriber instead of 999 separate connections.
The data is then fair-queued on the socket by the broker for the subscribers
to receive. Thus, the broker only receive maximum of 1000 bytes each from
1000 publisher nodes in one second and it does not need to receive the same
data more than once from a publisher despite 999 subscribers receiving it. It
is an important feature of the broker and helps to reduce bottleneck by avoid-
ing duplicate transmissions from the publisher. On the other hand the broker
remains under more pressure to forward those messages to the subscriber
nodes. For the above explained scenario, each subscriber is now expected
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to receive 0.95MB of data and the broker must be able to forward these mes-
sages fast enough to avoid network bottleneck. This is a possible problem
with the broker based architecture for the data sharing system.

So let’s look at an alternative broker-less architecture to see if it can im-
prove the overall network congestion. It is possible to connect all 1000 nodes
to each other by having direct connections between them by ignoring the com-
plexity. However each publisher must send its copy of 1000 bytes of data ev-
ery second separately to each of the 999 subscribers. Thus all the 1000 pub-
lishers are sending 0.95MB of data per second causing the overall network
to carry exactly same amount of data as the broker based approach. The
problem of single point bottleneck is solved however the network congestion
still remains the same. Thus broker-less approach is also not a good solution
considering the complexity of huge number of connections and the dynamic
discovery problem. The broker however could be running on a faster network
with compare to the rest of the nodes allowing it to forward the messages
faster to avoid network bottleneck.

The system uses XML data format for storage as well as communication.
XML data is directly searchable so there is no need for converting it to any
other data format such as SQL. The time required for data type conversion is
considered to be significant if a query is being made over a network (Kulkarni
et al., 2012) and helps to improve the overall speed of the communication by
avoiding frequent data conversion.

4.7 Summary

In this chapter, a scalable real-time data sharing system suitable for mobile
devices is discussed for collecting, storing and communicating sensor and
user data. The messaging infrastructure is light-weight considering the con-
strained resources available in mobile devices. The Pub/Sub message model
implemented using an intermediate broker enhances scalability as nodes are
able join/leave easily without worrying about the dynamic discovery problem
of other nodes. The number of end to end connections required is signifi-
cantly small especially when the network is big. The sensor and user data
is processed in XML and its schema is used for utilising the strengths of the
structured format. The schema is used for various purposes such as data
optimisation and validation, group identity and as network protocol. Schema
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allows compressing data more efficiently than well known text compression
tools such as gzip which helps to create a scalable and light-weight real-time
data sharing system. The PO compression and decompression process takes
less time with compare to plain XML serialisation and de-serialisation process
while providing extra data validation and efficient compression. The compres-
sion significantly improves overall performance of low bandwidth networks but
can still be used for high bandwidth mobile networks such as 3G to improve
the performance.





Chapter 5

Energy consumption trade-offs for
schema-aware XML compression

The development of sensor and embedded hardware technologies coupled
with the reduction in their price means embedded devices are able to provide
a range of versatile services. Wireless data transmission over sensor net-
works is known to consume a significant share of energy compared to data
computation on the device itself. Thus data compression techniques have
been used to reduce the amount of data to be communicated over a network
at the cost of extra processing time on the device. This chapter investigates
the energy consumption trade-off of XML compression and data communica-
tion on embedded devices. Various experiments are conducted to analyse
schema-aware XML compression that can significantly reduce overall energy
consumption with a focus on energy consumption of network communication
of compressed and uncompressed data.

5.1 Background

The evolution of sensor technologies has allowed embedded devices to col-
lect a range of information about a user’s location, activity or their environment
which is then be communicated over the network. It is fundamental for data
sharing systems to consider the impact on battery consumption. Data com-
pression can be used to reduce the number of bits communicated over net-
work and to minimise overall energy consumption. The aim is to investigate
this further by analysing the impact of schema-aware compression on energy
consumption and compare it with other compression techniques. The Exten-
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sible Markup Language (XML) is a simple and flexible data format derived
from the Standard Generalised Markup Language (SGML). It is widely used
as a data exchange and storage format on the web and sensor networks and
is the accepted industry standard (ISO8879:1986, 1986; W3C, 1996). How-
ever it is very verbose because of the repetitive usage of tags which represent
the data structure. As a result of this, alternative formats such as JavaScript
Object Notation (JSON) are considered for their conciseness. However knowl-
edge about data types can be used to efficiently compress XML data to make
it competitive in terms of size (Moore et al., 2014b). Although the schema-
aware compression is very efficient and the compression ratio for typical XML
data is more than 80%, the gain must also be justified by the energy cost of
the compression process. If it requires more energy to compress the data
then to communicate the uncompressed data, the compression process can-
not be considered beneficial in terms of energy.

5.2 Related Work

Embedded devices often have limited resources such that energy consump-
tion can affect the life of the device on the sensor network. Thus it is important
to establish strategies to reduce energy consumption. Lossy compression
techniques have been used to save energy consumption at the expense of
reduced audio and video qualities (Sinha et al., 2000). However this thesis
focuses only on reducing energy consumption without sacrificing the quality
of data to be transmitted. The energy cost of wireless communication is con-
sidered to be significantly higher than on device computation. It requires over
1000 times more energy to transmit a single bit of data than a single 32-bit
computation (Barr and Asanovic, 2006). Thus, it may be efficient in terms
of energy to perform 1000 computations in order to compress the data by
1 bit. Earlier work has analysed different compression algorithms to study
their impact on energy consumption mainly focusing on the popular imple-
mentations of Lempel-Ziv 77 (LZ77), Burrows-Wheeler Transform (BWT) and
Lempel–Ziv–Welch (LZW) algorithms (Barr and Asanovic, 2006; Wang and
Manner, 2009; Xu et al., 2003).

In (Xu et al., 2003), gzip compression software (based on LZ77) was found
to be superior to bzip2 (based on BWT) and compress (based on LZW) in
terms of energy saving in a hand-held device using a variety of file types. The
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analysis was made while data, compressed in advance using these three al-
gorithms, was downloaded from a server and decompressed on the hand-held
device. The energy savings from the download time and decompression pro-
cess was used to find the most energy efficient algorithm. Thus the algorithm
with the best compression ratio was not necessarily the most efficient in terms
of energy savings despite having smaller a download time (and less energy
spent during download) due to the increased energy cost in decompression.
Although the results are beneficial for applications which primarily download
information, it cannot be applied to scenarios which may upload compressed
information. In (Barr and Asanovic, 2006), energy consumption of algorithms
bzip2, compress, ppmd (based on Prediction with Partial Match), lzo and zlib
(both based on LZ77) are evaluated on a hand-held device and the algorithms
focused on compression ratio and execution speed. Uncompressed data was
also copied to and from the network to measure energy consumption with-
out compression. The experiments were done with 1MB of compressible web
and text data and were repeated with slightly different optimisation parame-
ters for most of the algorithms and separate measurements were made for
energy consumption by CPU, memory, network and peripherals. Most com-
pressors perform well and save energy compared to when uncompressed
data is communicated. Compressors lzo, compress and zlib (with effort level
1) save almost 50% energy overall which includes compressing & sending
and receiving & decompressing the data compared to uncompressed data
communication. The bad performance of some compressors is mostly related
to the extra time spent on CPU and memory for compression. Additionally, the
decompression process was found to cost less energy than compression.

Similarly Wang and Manner (2009) present the results of experiments in-
volving mobile devices while communicating various types of web content.
The results are similar to previous experiments as gzip and lzo compressors
are concluded to be the most efficient energy savers. In (Gil and Trezentos,
2011), XML is compared with JSON and protocol buffers for compression en-
ergy efficiency in smart phones. However only text-based compression with
gzip is performed and XML schema is not considered at all. The energy
consumption of all three data formats was almost similar for both small and
large volumes of data. It is beneficial to perform compression on text for-
mats in order to save energy consumption overall, however, binary formats
do not provide energy savings when compressed due to longer time spent
during compression. Although Protocol Buffers provides efficient data repre-
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sentation in terms of size, the advantage disappears when XML and JSON
are compressed. Also it cannot be used in dynamic environments as it re-
quires recompilation of its schema and the application whenever the schema
changes which makes it unsuitable for embedded devices where redeploy-
ment can be difficult. Also the energy measurements were made using soft-
ware running on the mobile device and thus the accuracy may not be same as
that of a hardware measurement. Similarly authors in (Szalapski et al., 2012)
compared various XML compression techniques including gzip, XMILL and
PAQ to Tinypack. The experiments found that the total time for sending com-
pressed data is always lower than sending uncompressed data. PAQ reduces
the data size most but it uses huge amount of memory and spends more time
to process than to send uncompressed data

Earlier results imply that if it requires too much time or too much mem-
ory to compress data, it may not be beneficial overall in terms of energy de-
spite significantly reducing the data. Thus compression must be performed
to balance the trade-off between compression ratio, compression speed and
CPU and memory consumption in order to provide overall energy consump-
tion savings. Earlier work has considered schema-aware XML compression
to achieve compression ratio better than text-based XML compression using
simple and efficient compression techniques (Kheirkhahzadeh et al., 2013;
Moore et al., 2013, 2014b). In this chapter, it is investigated further and the en-
ergy consumption of schema-aware compression techniques is evaluated to
justify its advantages over text-based compression techniques or when there
is no compression at all.

5.3 Experimental setup

In this section, the devices used during the experiments are discussed. The
features of the device used to measure energy consumption of the compres-
sion process is also presented. The XML dataset used for compression and
communication is explained focusing on the types of data in each dataset.
The compression techniques used for compression are also briefly discussed.
The formula to calculate the theoretical network transfer time for compressed
and uncompressed data is also shown.
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5.3.1 Device and Tools

The embedded device used for the experiment is a Raspberry Pi single board
computer (SBC) which is running Raspbian OS and has 700MHz ARM pro-
cessor and 512MB RAM (Pi, 2012). Energy consumption was measured us-
ing an ODROID smart power device which has output of 3-5.25V DC and
can measure current or watts consumed by the connected device (Odroid,
2014). The energy consumed in Joules can be calculated using equation 5.1.
The typical tolerance rate is 2% with a sampling rate of 10Hz. In order to
measure energy consumption, the device is connected to the power supply of
the smart power device as shown in figure 5.1 which measures the electrical
current drawn.

Energy(Joules) = Power(Watts) ∗Time(seconds) (5.1)

Fig. 5.1 Odroid smart power measurement tool

5.3.2 Methodology

In these experiments, XML compression techniques Packedobjects (PO), EXI,
ZLIB and Libxml2 are compared. Tinypack was considered for comparison as
well but its implementation and the test XML data-sets weren’t publicly avail-
able at the time of this research. EXIProcessor is used as the EXI implemen-
tation in the experiments (Garrett, 2012) and is referred to as EXI for simplicity
in the coming sections. Similarly, ZLIB’s example implementation created by
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Table 5.1 Test XML files, data types and compression ratio

its original authors is used during the experiments (Gailly and Adler, 1995).
PO and EXI perform schema-aware XML compression where as ZLIB per-
forms text-based XML compression. Libxml2 is used to serialise XML without
compression to make it suitable for network transfer. The XML corpus used
in the experiments varies from small to medium sized data and can be ac-
cessed from online repository (Moore et al., 2014a). It consists of a variety
of data types including string, integer, decimal, numeric-string, IPv4 address,
UNIX timestamp and enumeration as shown in table 5.1. The file size ranges
from 72 bytes to 5142 bytes. Larger files were not considered as embedded
devices on sensor networks do not normally communicate those sizes.

In order to measure energy consumption of data compression, data from
two different sources are combined: first the time expended is measured us-
ing the GNU/Linux command line tool time (GNU, 1999) and second the av-
erage energy consumed is measured by using the ODROID smart power de-
vice. In order to get reliable and accurate readings, the compression process
is repeated 100 times which amortises timing errors across single iterations
and also removes one time effects and system level effects. The loop ex-
cludes the application initialisation, memory allocation and schema parsing
stage in order to accurately calculate only the actual compression time and
energy consumption as shown in the algorithm 2 below .

time(s) = datasize(bits)/networkspeed(bit/s) (5.2)
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In order to measure energy consumption of network transfer, it is assumed
to be 1.915 Watts per second including the idle consumption which represents
energy consumption of typical low-power wireless modules such as 6LoW-
PAN currently on the market (e.g., Crossbow TelosB) Ayadi et al. (2011a).
The data transfer time for communicating the compressed and uncompressed
XML files is then calculated using a theoretical network speed using the equa-
tion 5.2. Thus it is the fastest/smallest possible time necessary to transfer the
given amount of data on the network as factors such as latency, packet loss
and fragmentation have not been considered during the calculation. This al-
lows us to obtain accurate energy consumption figures for smaller data sizes.
The energy consumption measured for both compression and network trans-
fer activity includes the energy consumed by respective devices when idle.

Algorithm 2 Schema-aware XML compression using (PO, EXI)
allocate memory
parse(XMLSchema)
loop

load(XML)
Schema−aware compression

end loop

Algorithm 3 Text-based XML compression using ZLIB
allocate memory
loop

load(XML)
Text −based compression

end loop

5.4 Results

In this section, the experimental results are analysed to determine which data
compression technique compresses the most and can reduce the total energy
consumption after data compression and network transfer. It is assumed that
all the files that are compressed on the embedded devices are uncompressed
on a server later so the focus is only on the compression and network transfer
of the data. The packet size and data rate are assumed to be fixed and thus
energy cost of data transfer over network transfer is expected to be linearly
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proportional to the size of the data. Thus the energy savings in the data
transfer from reduced data sizes must be greater than the extra energy spent
on data compression on the device. Hence the compression technique which
compresses the most may not always save the most energy (Xu et al., 2003).

Fig. 5.2 Compression ratio comparison for different compression levels in
ZLIB

5.4.1 Compression levels and compression ratio

ZLIB provides 9 different compression levels ranging from 1 (which provides
the best speed) to 9 (which provides the best compression ratio). Compres-
sion is performed on files discussed above in table 5.1 with 3 levels (1,6 &9)
of ZLIB compression. As shown in figure 5.2, the compression ratio for level 9
is only slightly better than level 1 but the compression speed which is shown
in figure 5.4 is almost identical for all 3 levels. Hence, the average ZLIB com-
pression level 6 is used during these experiments. Similarly, EXI also provides
various options to control the compression ratio, namely default compression,
compact compression and schema-aware compression. As shown in figure
5.3, default and compact compression methods consist of similar compres-
sion ratios and schema-aware compression has superior compression ratios
than the other two techniques. As shown in figure 5.5 schema-aware method
spends slightly more time to achieve the extra compression but the vastly su-
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Fig. 5.3 Compression ratio comparison for different compression options in
EXI

Fig. 5.4 Compression speed comparison for different compression levels in
ZLIB

perior compression ratio also justifies its selection. Thus, schema-aware EXI
compression is used during the experiments later. PO does not provide dif-
ferent compression levels but data and schema validation can be disabled.
However the extra validation requires minimal time compared to the overall
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Fig. 5.5 Compression speed comparison for different compression options in
EXI

compression process and thus it is enabled during the experiments.

Fig. 5.6 Compression ratio comparison for various compression techniques

In table 5.1 above, the compression ratio for PO, EXI and ZLIB for differ-
ent XML files are listed in ascending order of size in bytes. It can also be
viewed in figure 5.6 where compression ratio is presented as the ratio of un-
compressed data size to compressed size and thus higher ratio means better
compression and vice versa. PO has the best compression ratio for most
of the files and it performs significantly better for files with enumerated and
unix-time data types as discussed in Chapter 4.2.2 above. EXI has a com-
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pression ratio similar to PO for smaller sized files and slightly better than PO
for larger files. ZLIB has the worst compression ratio of the three techniques
but it compresses string data types better than non-string types as it uses
performs dictionary based compression repetitive strings. The compression
ratio does not increase linearly with data size but depends more on the type
of the data for PO and EXI. ZLIB’s compression ratio does not vary much and
is slightly better for larger files due to the occurrence of repeating XML tags.

Fig. 5.7 Data encode and network transfer time for PO

5.4.2 Compression speed and data transfer

The data transfer speed used in the experiment is 250kbps to reflect the band-
width of low-rate IEEE 802.15.4 standard such as 6LoWPAN used by embed-
ded and sensor networks. The transfer time is calculated theoretically as
discussed above in methodology section 5.3.2 above. Figures 5.7, 5.8, 5.9 &
5.10 show the compression time for all the files on a Raspberry Pi and trans-
ferring the data over a 250kbps network for the three compression techniques
along with the uncompressed data transfer. Similarly figure 5.11 shows the
combined compression and network trasnfer time for all the four techniques.

The uncompressed data serialisation process requires very small amount
of time with compare to network transfer time as shown in figure 5.8 because
the serialisation only includes XML to string conversion for network transmis-
sion. The network transfer time for the uncompressed data is the biggest
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Fig. 5.8 Data encode and network transfer time for LIBXML2

Fig. 5.9 Data encode and network transfer time for ZLIB

compared to the transfer time for any of the three compressed formats. How-
ever ZLIB and EXI still take more time on the overall because of the extra time
required for compressing the data. Although ZLIB compresses considerably
faster than EXI, it still cannot save time overall compared to uncompressed
data due to its poor compression ratio. The implementation of EXI used is very
ineffective when used on embedded devices despite having an excellent com-
pression ratio due as a result of its extremely slow compression speed. PO
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Fig. 5.10 Data encode and network transfer time for EXI

however has the best compression ratio and compresses significantly faster
as well. Thus, PO is the best technique which provides time savings overall
in terms of compression time and data transfer. The only exception however
where PO compression can not provide time savings is for the smallest file
which is 72 bytes. This is because of the start up time of PO being bigger
than the actual data transfer time of an uncompressed file. Although the time
savings for smaller XML files is not huge, it is significant for larger files.

Fig. 5.11 Overall compression and network transfer for all techniques
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Fig. 5.12 Memory consumption during compression for all techniques

5.4.3 Memory consumption during compression

The memory consumption of the compression techniques is presented in fig-
ure 5.12 to determine any impact on compression time and energy consump-
tion. EXI is the most memory hungry tool with consumption around 30000
KB. ZLIB consumes almost constant memory regardless of file size and the
consumption stands at 1272 KB. Libxml2 consumes slightly more memory
for larger files and its usage ranges from 1392 KB to around 3000 KB. Simi-
larly PO’s memory consumption ranges from 1592 KB to 1704 KB and it only
varies slightly with file size. The memory consumption depends mostly upon
the technique itself rather than the file size used. EXI uses extremely high
memory which can be related to its slow compression time too.

5.4.4 Energy cost of compression and data transfer

The average energy consumption per second by the compression techniques
in Raspberry Pi is shown in table 5.2. The average energy consumption for
network transfer is calculated using typical values for low-power wireless mod-
ules. These measurements are used in the calculations as the actual 6LoW-
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PAN network has not been implemented yet for use with Raspberry Pi. Both
EXI and ZLIB spend more time on the overall than when uncompressed data
is communicated over network and energy consumption increases linearly
with time. Thus the overall energy consumption of only PO compression and
Libxml2 for uncompressed data is shown in figure 5.13 and is calculated using
equation 5.1.

Table 5.2 Average energy consumption for 1 second during compression in
Joules

Idle Libxml2 EXI ZLIB PO
1.75 1.86 1.96 2.04 2.06

Fig. 5.13 Overall energy comparison for compressed and uncompressed data

PO consumes more energy during compression and less during the data
transfer. Libxml2 consumes less energy during data serialisation and more
energy during data transfer. However PO consumes less energy on the over-
all with compare to uncompressed data serialisation and network transfer with
the exception of the smallest XML file. The energy savings increases grad-
ually with the increase of file size and the saving is significantly more in the
case of the largest file used. PO is saving energy because it consists of the
best compression ratio and also the fastest compression speed. EXI and ZLIB
fail to save energy because of their slow compression speed.
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5.5 Summary

In this chapter the impact of data compression on embedded devices that
communicate on a low bandwidth network has been explored and existing
schema-aware and text-based data compression for the same domain have
been evaluated. Existing research suggested that data compression can only
be useful in terms of energy consumption if the energy savings in the data
transfer from the reduced data size is greater than the extra energy spent on
data compression process. Thus it depends on the available network band-
width as it can affect the energy cost of data transfer. EXI and ZLIB are not
suitable for data compression on embedded devices because they spend too
much energy on the compression process which negates the energy savings
from the data size reduction in terms of network transfer. PO provides over-
all energy savings compared to uncompressed data transfer over a 250Kbps
network on an embedded device. The energy savings are minimal for files
smaller than 800 bytes and significantly bigger for larger files. Thus data
compression can save energy when the available network bandwidth is small
and it can be useful for large data when the network bandwidth is big. Also
data compression techniques which consume too much time for compression
such as EXI, and when the compression ratio is not very high such as ZLIB,
are not likely to provide energy savings overall.



Chapter 6

Estimating TCP throughput for
6LoWPAN network using a
mathematical model

6.1 Background

Embedded devices are becoming more ubiquitous and they are currently
used in environment monitoring, asset/logistic tracking and health monitor-
ing (Ahmed et al., 2010; Jafari et al., 2005). The introduction of IPv6 to these
tiny devices has enabled them to communicate directly to any other device on
the Internet without using any intermediate network/transport layer gateway
as a bridge. However, the IEEE 802.15.4 networks physical layer packet size
is only 127 bytes and very small payload is available for application data as
headers consume significant share of that (IEEE, 2003). As shown in figure
below medium access and link layer security use up to 25 and 21 bytes re-
spectively for header leaving only 81 bytes for upper layer. The use of IPv6
at network layer which requires 40 bytes for header leaves only 41 bytes for
transport layer. TCP uses minimum of 20 bytes in the header when no TCP
options are included leaving only 21 bytes for the application data.

6.2 6LoWPAN and IPV6

Header compression techniques have been already implemented or proposed
in order to reduce the header overhead ratio. LOWPAN_IPHC (IPHC) has
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Fig. 6.1 6LoWPAN frame format

been proposed as a new version of the LOWPAN_HC1 IPv6 header compres-
sion mechanism which can reduce the IPv6 header to about 3-5 bytes (Hui
and Thubert, 2011; Kushalnagar et al., 2007; Montenegro et al., 2007). How-
ever such compression can only be achieved when both sender and receiver
devices are in the same 6LoWPAN network. IPv6 header can be compressed
to about 20 bytes if the sender/receiver is outside the 6LoWPAN network and
the external prefix is not known and to about 12 bytes if the external prefix is
known (Olsson, 2014). Thus, the IPv6 header can be compressed up to 50%
even on the worst case scenario. Similarly UDP (Postel, 1980) header can be
compressed from 8 bytes to 4 bytes by omitting fields which can be derived
from lower layers (Hui and Thubert, 2011). TCP header compression has not
been fully implemented yet but an Internet draft version is being developed by
IETF (Ayadi et al., 2010). Ayadi et al. (2011b) discuss the TCP header com-
pression mechanism with more detail which can be used along with LOW-
PAN_IPHC and can reduce the TCP header size up to 6 bytes which helps to
increase the size of application data payload.
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Table 6.1 6LoWPAN frame headers without header compression (in bytes)

Total Mac Layer
Header

Link Layer
Security

LOWPAN
Header

IPv6
Header

TCP
Header

Data
Payload

127 25 0 (Null) 1 40 20 41
127 25 9 (AES 32bit) 1 40 20 32
127 25 13 (AES 64bit) 1 40 20 28
127 25 21 (AES 128bit) 1 40 20 20

Table 6.2 6LoWPAN frame headers with header compression (in bytes)

Total Mac Layer
Header

Link Layer
Security

LOWPAN
Header

IPv6
Header

TCP
Header

Data
Payload

127 25 0 (Null) 1 20 6 75
127 25 9 (AES 32bit) 1 20 6 66
127 25 13 (AES 64bit) 1 20 6 62
127 25 21 (AES 128bit) 1 20 6 54

6.3 6LoWPAN header compression

As shown in table 6.1, if AES 128 bit encryption is used for the link-layer then
the application data payload can be as little as 20 bytes with a staggering
84% header overhead. The application data payload is only 41 bytes big even
without any link-layer security and the resulting header overhead is still 67%
of the 127 bytes frame. Similarly, table 6.2 shows the total header sizes when
both IPv6 and TCP header compression can be applied and for different link-
layer security options. Now the worst case application data payload increases
from 20 bytes to 54 bytes and the best case payload increases up to 76 bytes.
The header overhead is only 57% and 40% for the 128 bit and no encryption
at link layer respectively. Thus, the application payload data size can range
from 20 bytes to 75 bytes depending upon various link-layer security options
and header compression techniques.

The actual throughput of the 6LoWPAN network is affected by the appli-
cation payload size and the packet loss. Although different 6LoWPAN imple-
mentations such as Contiki are available, only some of them provide header
compression and/or TCP support. It is not yet available on minimal Linux-
based OS where data compression can be applied. It is not yet possible to
implement compression along with OS which fully supports 6LoWPAN net-
work. Maathis formula as shown in equation 6.1 is most commonly used for
TCP throughput estimation but it has some limitations which makes it unsuit-
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able for wireless networks. The formula cannot be applied for networks with
variable round trip time (RTT) (Mathis et al., 1997) and wireless networks
are more likely to have that as a result of high packet loss and dynamic na-
ture of the nodes. Also the formula considers that the packet loss is mainly
caused by the TCP congestion avoidance algorithm but typical low bandwidth
networks are more likely to implement single TCP window due to their con-
strained resources. Thus the formula cannot be used to correctly estimate
the TCP throughput. So a mathematical model, based on work of Ayadi et al.
(2011a), is used to estimate the TCP throughput of a 6LoWPAN network by
calculating the expected number of bits to be communicated for a given data
frame as a result of packet loss and hop re-transmissions.

T hroughput =
(C ∗MSS)

(RT T ∗
√

Ploss)
(6.1)

Where:
C is a constant factor to adjust TCP slow start mechanism
MSS is the maximum segment size
RTT is the round trip time
Ploss is the packet loss probability

6.4 TCP throughput estimation on 6LoWPAN net-

works

Existing researches have studied the TCP performance in multi-hop wireless
networks (Ayadi et al., 2011a) and references therein. For example, Galluccio
et al. (2003) looked at TCP throughput with an aim to improve such perfor-
mance measure. Fairhurst and Wood (2002) analysed the impact of the MAC
layer protocol on the TCP throughput over wireless multi-hop networks and
found that throughput does not increase with window size. Some others have
studied various congestion control algorithms over wireless networks (Al Han-
bali et al., 2005; Seddik-Ghaleb et al., 2006; Sivakumar and Akyildiz, 2008).
Ayadi et al. (2011a) have presented an analytical model to calculate energy
consumption during TCP flow in wireless network which consider link-layer
and transport-layer acknowledgements and the impact of lower-layer frag-
mentation, error correction and per-link error rates on the energy-efficiency.
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Table 6.3 List of parameters assumed for simplifying of calculation of number
of bits sent per TCP segment

Variable Definition
h Number of hops between source and destination
r Maximum number of link-layer transmission attempts
m Number of fragments corresponding to a single TCP

segment (due to link layer fragmentation)
α FEC redundancy ratio
B Bit error rate
Fi Probability that a destination node does not receive a

link layer data frame after r attempts (ith hop)
Qs Probability of an end-to-end packet transmission success
D Link-layer data frame size
A Link-layer acknowledgement frame size
If The expected total number of bits sent for the m frag-

ments to reach the destination, knowing that they (i.e.,
at least one) finally fail.

Hf Expected number of bits sent after r attempts knowing
that the (one-hop) transmission has failed

Hs Expected number of bits sent within r attempts know-
ing that the (one-hop) transmission has succeeded

Ef Expected number of bits sent for an end-to-end packet
transmission knowing that it has failed

Es Expected number of bits sent for a successful end-
to-end packet transmission knowing that it has suc-
ceeded

S Average number of bits sent for successfully transmit-
ting a TCP segment

The model assumes that the energy consumption depends directly on the
number of bits sent by all the nodes in the network. Table 6.3 lists most of the
variables used during the calculations (Ayadi et al., 2011a). The equations
6.2 to 6.8 used below are referenced from Ayadi et al. (2011a)’s work.

Some parameters have been assumed for simplifying the calculations and
table 6.4 shows the list of such values. The italics variable names in the ta-
ble correspond to probabilities and the bold variable names correspond to the
expected number of bits. The number of hops (h) in the network is considered
to be in the range of 1 to 8 to cover the most commonly used scenarios. The
CSMA-CA technique is assumed to be used along with Automatic repeat Re-
quest (ARQ) and Forward Error Correction (FEC). The FEC redundancy ratio
(α) is assumed to be 0.1 as that is the optimal value for energy consumption
and values above result in the increase of the energy consumption due to the
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Table 6.4 Default parameters used during the analytical calculations

Parameter Value
h 1 to 8
r 1
α 10−1
B 3.10−4

A 40 bits
IP Header 160 bits
TCP Header 48 bits
D 600 bits

redundancy overhead. The IP header is considered to be of 20 bytes instead
of 40 bytes as a result of the header compression (Kushalnagar et al., 2007).
Similarly TCP header is considered to be of 6 bytes instead of 20 bytes as a
result of the header compression (Ayadi et al., 2011b, 2010).

TCP MSS selection is not a straight forward process. A smaller TCP MSS
leads to a larger header to data ratio and can create multiple smaller TCP
segments but most TCP segments fit in to a single IP datagram. On the
other hand, a large TCP MSS leads to segmentation and can increase the
number of end to end re-transmissions but the header to data ratio becomes
smaller. Ayadi et al. (2011a) found that short TCP MSS is more suitable for
networks with higher packet loss probability and when the maximum number
of re-transmission attempt at link-layer (r) is small. Normally long TCP MSS
can save more energy when the packet loss probability is small and the link-
layer attempt r is high. However the packet loss of a typical 6LoWPAN network
is at least 5% or greater (Srinivasan et al., 2006) which gives bit error rate of
around 3.75.10−4. Thus a small TCP MSS value of 75 bytes is set so that there
is no need for fragmentation at lower layers and the best-case 6LoWPAN MTU
is 75 bytes as shown in the table 6.2 above. Also, r is assumed to be 1 to
provide efficient result along with the selected TCP MSS.

The number of bits sent in a single hop mode in the case of link-layer
transmission failure is H f := r ∗D. The expected number of bits in the case of
successful transmission within the r attempts can be calculated as below:

Hs =
1

1−F
(

r

∑
i=1

Pi
partialP

r−i
f ail(rD+ iA)+

r

∑
k=1

Psucc

k−1

∑
i=0

Pi
partialP

k−1−i
f ail (kD+(i+1)A))

(6.2)
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where,

Pf ail = 1−
c

∑
i=0

Bi(1−B)D−i

Ppartial = (1−Pf ail)(1− (1−B)A)

Psucc = (1−Pf ail)(1−B)A

The number of bits sent over a multi-hop network for a successful trans-
mission can be calculated with equation 6.3 below by assuming that the trans-
mission on each hop is independent. However if the transmission fails at one
of the h hops, the expected number of bits depends on the hop where the
failure occurred and can be calculated using equation 6.4 below.

Es := 1−
h

∑
i=1

Hsi (6.3)

E f :=
∑

h
k=1(∑

k−1
i=1 Hsi +H fk)∏

k=1
j=1(1−Fj)Fk

1−∏
h
i=1(1−Fi)

(6.4)

Now the expected number of bits sent for a TCP data fragment can be
calculated using the equations 6.5 and 6.6. For simplicity, each TCP data
segment is assumed to be of same size and the TCP re-transmissions is as-
sumed to be unlimited. In order to receive a TCP segment successfully, all the
m fragments must reach the destination and the TCP acknowledgement must
be received. Thus, the expected total number of bits sent by all the nodes is
equal to:

Ss := Es ∗m+Es,ack (6.5)

However the expected number of bits sent by all the nodes in the case of
failure is:

S f :=
1

1−Qm
s ∗Qs,ack

[I f (1−Qm
s )+(Es ∗m+E f ,ack)Qm

s (1−Qs,ack)] (6.6)

where,



96
Estimating TCP throughput for 6LoWPAN network using a mathematical

model

Qs =
h

∏
i=1

(1−Fi)

I f = m(1−Qs)E f +mEsQs(1−Qm
s )

6.5 Calculations and results

The TCP window is assumed to be a single TCP segment and it is a rea-
sonable choice for networks with a moderate number of hops (Fairhurst and
Wood, 2002). Also, most common TCP implementation on low bandwidth
wireless network(e.g. Contiki OS) use a small window and is suitable for the
limited processing and memory capabilities of embedded devices (Dunkels
et al., 2004). Now, the expected total number of bits sent by all nodes for a
successful transmission of a TCP segment and the corresponding acknowl-
edgement can be calculated with equation 6.7.

S := S f (1/Ps −1)+Ss (6.7)

Table 6.5 Expected number of bits sent for a single TCP segment

Number of
hops

Expected number of
bits sent for
MSS of 600 bits

Expected number of
bits sent for
MSS of 4096 bits

1 1118.12 9660.30
2 2243.52 26460.52
3 4184.08 82930.74
4 7138.24 319766.91
5 11372.89 1351665.62
6 17283.46 5806389.95
7 25355.27 24623046.32
8 36187.31 102423598.85

The total number of bits sent for MSS 75 Bytes (600 bits) and MSS 512
Bytes (4096 bits) is shown in table 6.5. The expected total number of bits
to be sent for a user data of given size M is the number of TCP segments
[M/MSS], multiplied by expected number of bits sent for a successful TCP
segment transmission. The results are similar to the original study by Ayadi
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et al. (2011a) and short MSSs send smaller amount of data (as a ratio of
original data) per TCP segment with compare to long MSSs. The savings
from TCP header overhead provided by using long MSSs are exceeded by
the cost of end-to-end re-transmissions caused by the higher packet loss.

The effective throughput of the network can now be calculated using the
amount of data in a single TCP segment, the amount of bits sent for transmis-
sion of a single TCP segment and the theoretical maximum throughput of the
network. The estimated effective throughput can be calculated as:

T hroughpute f f ective :=
TCPMSS

S
∗T hroughputmaximum (6.8)

Where, T hroughputmaximum is the maximum 6LoWPAN (250 Kbps),
TCP MSS is the size of single TCP segment in bits and
S is the total bits sent for transmission of single TCP segment and calculated
using equation 6.7

Fig. 6.2 Effective throughput in Kbps as a function of number of hops (BER=3
x10−4,α = 10−1)

Figure 6.2 shows the effective throughput for two different MSSs as a func-
tion of number of hops for a given BER and FEC calculated using equation
6.8 and values from table 6.5. The throughput decreases with the increase
in the number of hops and is significantly small for larger number of hops.
Short MSSs provide better throughput for a given BER (moderately high) and
FEC (small). The advantage is mainly because of the large number of end-
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to-end re-transmissions required for large MSSs due to the higher BER which
negates the savings provided by a smaller overhead ratio. It must also be
noted that the difference between the throughput for short and long MSSs
increases with the number of hops. It should not be confused with the actual
throughput decreasing in the same scenario. As shown in figure 6.3 short
MSS throughput for single hop network is only 1.26 times more than when
long MSS is used but it is about 50 times more when there are 6 hops in the
network and 400 times for 8 hops network.

Fig. 6.3 The ratio of throughput for 75B MSS to 512 B MSS (BER=3 x10−4,α =
10−1)

The estimated throughput for 512 Byte MSS is less than 1Kbps when the
number of hops is more than 4. The throughput becomes extremely limited
for even small amount of data and thus it is meaningless to create a network
with more than 4 hops. However the throughput for 75 Byte MSS with 8 hops
is still 4 Kbps and is more than the throughput provided by 512 Byte MSS with
just 4 hops.

In order to analyse the impact of the reduced throughput on the overall
time spent by various compression techniques discussed in Chapter 5, the
average of the XML file sizes and compression time for various techniques is
calculated. The average is used so that the throughput estimation for different
number of hops can be used in a simplified manner. As shown in figure 6.5,
the bandwidth reduction because of the number of hops is significantly af-
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Fig. 6.4 Time taken to transfer 100 bits data with 75B and 512B MSS (BER=3
x10−4,α = 10−1)

Fig. 6.5 Overall time comparison for compression and network transfer for
average XML files

fecting the compression techniques with poor compression ratio and uncom-
pressed data transfer. The compression time remains constant regardless
of the actual bandwidth so the overall time taken depends heavily up on the
actual network transfer time. Thus the overall time taken increases with the
number of hops for Libxml2 and ZLIB. On the other hand the overall time taken
remains almost same for PO and EXI. The actual data size which is commu-
nicated over the network is very small in the case of these two techniques
due to their superior compression ratio and thus the decrease in throughput
is not affecting the overall time like for Libxml2 and ZLIB. EXI spends the most
time on the overall except when there are 7 or more hops and it’s due to the
compression time being bigger than the actual network transfer time of the
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uncompressed data. PO consists of the smallest overall time except when
the network contains just a single hop. Otherwise it is always beneficial to
compress data and the time savings increase with the increase in the number
of hops or with the reduction in throughput.

Finally, the overall energy consumption from data compression and net-
work transfer for average XML data set is shown in figure 6.6. The values
used for the calculations are presented in table 6.6. The overall energy con-
sumption of uncompressed data is slightly smaller than the compressed data
in case of a single hop network. The energy consumption of uncompressed
data increases significantly with the increase in the number of hops while the
energy consumption of compressed data increases very slowly. As a result
the energy savings from compression increases with the number of hops and
thus it can be concluded that compression is beneficial for networks with more
than 1 hop and becomes more useful for larger networks.

Table 6.6 Average energy consumption for 1 second during compression and
network transfer in Joules

Idle Libxml2 PO Network
1.75 1.86 2.04 1.915

Fig. 6.6 Overall energy consumption comparison between PO and Libxml2
for various number of hops
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6.6 Summary

In this chapter a mathematical model is used to estimate the TCP throughput
of a 6LoWPAN network by considering the MAC layer MTU, TCP MSS, bit
error rate, FEC redundancy ratio and re-transmissions and number of hops
in the network. The estimation was performed by calculating the possible
number of bits which is sent over the network to successfully transmit a TCP
segment. The calculation was carried out for TCP MSS of 75 Bytes which
can be fit into a single 6LoWPAN MTU without segmentation and TCP MSS
of 512 Bytes in order to highlight the suitability of smaller MSS. The effective
TCP throughput is calculated by using the total number of bits transmitted
for a single TCP segment, the TCP segment size and the maximum TCP
throughput of the network. A smaller TCP MSS is found to be more suitable
for 6LoWPAN network especially as the network size grows with more hops.

The estimated TCP throughput is used to improve the results discussed
in Chapter 5. The overall time taken to communicate data compressed with
different compression techniques and uncompressed data is recalculated by
using the newly estimated throughput. It is found that the overall time for com-
pressed data is not affected much by the increase in the size of the network
but the time for uncompressed data increases significantly. Similarly the en-
ergy consumption analysis showed that it is not beneficial to use compression
on a single hop network and it is increasingly important to compress data as
the network size grows.





Chapter 7

Conclusions

This research investigated the impact of data compression on the overall per-
formance of low-rate low-power wireless mesh networks. The potential of
such networks to regularly communicate data in real-time and the associ-
ated challenges were highlighted. The research focused on XML to be used
as highly structured data format mainly because of its popularity in terms
of existing usage, portability to embedded hardware and robust libraries for
processing and meta-data representation. However this research can be ex-
tended to any other highly structured data format suitable for embedded de-
vices. Similarly ZeroMQ is used as the messaging protocol to provide simple
publish/subscribe messaging model mainly because of the portability of soft-
ware and light-weight architecture. The messaging protocol can be easily re-
placed with alternatives that can improve the current results. Schema-aware
and text-based compression techniques are evaluated in this research and
light-weight techniques, which can provide efficient compression ratio without
spending too much time, have been considered the best.

7.1 Summary of the Thesis

In this thesis the potentials and the challenges of using wireless mesh net-
works to create a real-time yet scalable data sharing system are explored.
The research is motivated by the increasing popularity of wireless sensor net-
works to connect the physical world directly to the Internet. The sensors are
becoming smarter and are capable of sensing, processing and communicat-
ing intelligent information which can be used to assist humans in a variety
of scenarios. A collection of smaller sensor nodes can be used to improve
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or replace existing large standalone sensor systems which are often expen-
sive. A prototype wireless testbed was successful in collecting, processing
and communicating accelerometer sensor data (to detect seismic activities)
but the limited network bandwidth and frequent data communication severely
affected the scalability of the prototype. Hence the research focused on im-
proving the network performance by reducing the data sent over the network
and evaluated existing techniques which are suitable for such networks.

Firstly, light-weight, portable and scalable message communication mod-
els and messaging protocols are studied. The ideal protocol should be capa-
ble of running on embedded hardware with constrained resources and also
provide messaging without adding extra control overhead. ZeroMQ is found
to be the most suitable protocol and is used along with Pub/Sub model. Then
a data sharing system is created by combining highly structured data format,
messaging protocol and data compression technique. XML is used to repre-
sent the sensor data as they are structured and predictable by nature. XML
schema is used to define the data structure and restrictions of data type,
range and choices. The use of schema is important aspect of the data for-
mat as it is used to efficiently compress the data. Existing text-based and
schema-based data compression techniques are evaluated to determine the
most efficient way of compressing the data on an embedded device. Data
compression has been found to be beneficial as it reduces data sent over net-
work. However the compression process must not consume other resources,
mainly time and energy, in order to save bandwidth usage.

The trade-off between data compression speed, data size reduction and
energy consumption is a complex affair as it depends on the embedded hard-
ware’s resources, the compression technique’s efficiency and the available
network bandwidth of the wireless network. The study found that it is bene-
ficial to compress data if the compression ratio is efficient and compression
speed is fast as well. The compression ratio alone should not be used to judge
a compression technique as the compression speed can make it slower on the
overall than uncompressed data. The EXI implementation provided efficient
data compression ratio however the compression speed was slow making it
unsuitable for these kind of devices. ZLIB, which is one of the best text-based
compression techniques, boosts a fast compression speed but fails to provide
the compression ratio efficiency like schema-aware techniques and thus fails
to be useful. PO provides efficient compression with reasonably fast speed
and saves time with compared to communicating uncompressed data. Simi-
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larly the energy consumption of PO compression is compared against the en-
ergy consumption of uncompressed data transfer and compression is found
to be beneficial except for a small-sized data. The overall energy consumption
is studied in the case of wireless networks of different size (number of hops).
The TCP throughput of such networks is estimated by calculating the total bits
of data sent while transmitting a single TCP segment. The results found that
the PO compression is beneficial to save the overall energy in wireless net-
works consisting of more than single hop. The savings increase significantly
as the number of hops increases as the actual network bandwidth decreases.

7.2 Technical contributions

The main technical contributions of this thesis are presented below.

Messaging models

This research studied different messaging protocols to determine a suitable
messaging model to communicate sensor data over wireless network. Sensor
network consist of dynamic nodes and thus the messaging model should sup-
port the nodes joining/leaving regularly. Request/Reply, Remote procedure
call and Publish/Subscribe messaging models were studied in the context of
sensor networks. Publish/Subscribe model can be extended to become fully
independent of sender/receiver’s existence by adding intermediate broker. A
sensor node can send data to the broker before any receiver node is con-
nected. The receiver node can get the data from broker even after the sender
is disconnected. The network congestion for broker-based and broker-less
models were analysed. Broker-based model solves the dynamic discovery
issue of sensor nodes and is simpler to manage than broker-less model. It
can be reused to create sensor data networks in a scalable way.

Efficient sensor data compression

Sensor data can be represented in a range of formats such as text, image,
sound or video. Data compression in sensor networks is not new but text
based data can be represented in highly structured format in order to com-
press it efficiently. This type of compression is relatively new in sensor net-
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works and can be used to reduce bandwidth usage without spending con-
strained resources. This research studied different XML compression tech-
niques to determine the best way of reducing data size. The compression
techniques were selected mainly based on their ability to run on embed-
ded devices with limited resources. This included the study of Packedobjects
and EXI as XML schema-aware compression techniques. ZLIB was included
as the most efficient text-based compression technique. And Libxml2 was
used as technique to pass uncompressed data to the network. The compres-
sion speed (time) and compression ratio (original size/compressed size) were
used as benchmark to compare them.

The best compression technique is generally expected to be the one which
compresses the data most. However the compression speed is equally impor-
tant as the compressed data also needs to be communicated over a network.
Thus the overall compression and network transfer time of compressed data
must be smaller than the network transfer time of uncompressed data. The
network bandwidth is also important aspect of the evaluation as it determines
the actual data transfer time. Thus, technique with the best compression ratio
may not be the most suitable one for embedded devices. The results pro-
vide the analysis of efficiency of different XML compression techniques in the
context of embedded devices and wireless networks. The results allowed to
understand the situations where compression can be successfully applied in
order to save bandwidth usage and the total data transfer time when com-
municating sensor data. The findings of this contribution can be used as a
reference for other researchers and developers working in the area of sensor
data sharing.

Energy consumption trade-off for XML compression

This research studied the energy cost of XML compression techniques to il-
lustrate any trade-offs for the benefits of network bandwidth savings. The
energy consumption of compression process is measured using a physical
hardware. The energy consumption of data transfer is calculated from the
transfer time and typical energy cost of the wireless standard. The results
demonstrate that the data compression on embedded devices is not always
energy efficient. Compression speed is one of the main factors which can
determine if the energy cost overtakes that of uncompressed data transfer.
Compression ratio is also equally important as it affects the transfer time of
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the compressed data. In terms of compression techniques, the compression
speed of techniques targeted for embedded devices is better than general
purpose technique. The results can be used to determine benefits of struc-
tured data compression on sensor networks.

7.3 Limitations

This research focused on impact of data compression on the overall perfor-
mance of wireless mesh network by looking at the network bandwidth usage,
data transfer time, compression time and respective energy consumption.
Schema-aware XML compression was considered but it can be thoroughly
analysed to study the possibility to adjust the compression time to improve
performance especially in the case of files smaller than 100 bytes. This al-
lows the reduction of data compression time in case of such files.

This research performed energy consumption measurement for compres-
sion techniques using external power consumption monitoring device. The
measurement is mainly analysed in relation to the time elapsed however fur-
ther analysis could be done to study impact of memory and CPU usage. The
energy consumption of data transfer over network is calculated theoretically
due to the lack of low bandwidth network implementation on the selected de-
vice/operating system. The accuracy could be improved by performing the
measurement with real network device. Similarly the bandwidth estimation
of 6LoWPAN network can also be improved by using actual implementation
on the selected device as it is not currently implemented on general purpose
operating systems such as embedded Linux.

7.4 Future Work

Future work will focus on implementing the data sharing system to create
wireless sensor networks for specific use cases. The implementation can be
used to analyse the improvements of the overall performance of such net-
works when using schema-aware data compression. It will also provide plat-
form to compare the results of the mathematical model in terms of the actual
network bandwidth achieved. Further work can be done to improve various
components of the data sharing system. Newer message middle-ware can
be studied to analyse if they can provide efficient networking than the current
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implementation, ZeroMQ. For example, MQTT has been increasingly used in
the context of wireless sensor networks and can be considered. Similarly,
message formats such as JSON can be studied along with their schema to
evaluate the possibility to adding them to supported data formats or to even
replace XML if the overall performance can be improved significantly.
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Appendix A

Messaging Protocols

Fig. A.1 Graphical representation of control data overhead as a function of
number of messages
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Fig. A.2 Request reply model with broker (Hintjens, 2011)
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PackedobjectsD

B.1 XML and Schema for product search system

Listing B.1 XML Schema for product search system

<?xml version ="1.0" encoding ="UTF -8"?>

<xs:schema xmlns:xs="http ://www.w3.org /2001/ XMLSchema">

<xs:include schemaLocation="packedobjectsDataTypes.xsd" />

<!-- User defined types -->

<xs:simpleType name="categoryType">

<xs:restriction base="enumerated">

<xs:enumeration value="Motors"/>

<xs:enumeration value="Fashion"/>

<xs:enumeration value="Electronics"/>

<xs:enumeration value="Home and Garden"/>

<xs:enumeration value="Sporting Goods"/>

<xs:enumeration value="Toys and Hobbies"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="conditionType">

<xs:restriction base="enumerated">

<xs:enumeration value="new"/>

<xs:enumeration value="used"/>

<xs:enumeration value="any"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="databaseType">

<xs:sequence >

<xs:element name="product" maxOccurs="unbounded">

<xs:complexType >

<xs:sequence >
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<xs:element name="title">

<xs:simpleType >

<xs:restriction base="string">

<xs:maxLength value="100"/>

</xs:restriction >

</xs:simpleType >

</xs:element >

<xs:element name="category" type="categoryType"/>

<xs:element name="condition" type="conditionType"/>

<xs:element name="description">

<xs:simpleType >

<xs:restriction base="string">

<xs:maxLength value="100" />

</xs:restriction >

</xs:simpleType >

</xs:element >

<xs:element name="price" type="decimal"/>

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

</xs:complexType >

<xs:complexType name="searchType">

<xs:sequence >

<xs:element name="product -title" type="string"/>

<xs:element name="max -price" type="decimal"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="responseType">

<xs:sequence >

<xs:element name="responder -id" type="string"/>

<xs:element name="product -title" type="string"/>

<xs:element name="price" type="decimal"/>

<xs:element name="category" type="categoryType"/>

<xs:element name="condition" type="conditionType"/>

<xs:element name="description" type="string"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="messageType">

<xs:choice >

<xs:element name="database" type="databaseType"/>

<xs:element name="response" type="responseType"/>

<xs:element name="search" type="searchType"/>

</xs:choice >

</xs:complexType >
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<xs:element name="products">

<xs:complexType >

<xs:sequence >

<xs:element name="message" type="messageType"/>

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:schema >

Listing B.2 XML database for product search system

<products >

<message >

<database >

<product >

<title>ipad</title>

<category >Electronics </category >

<condition >new</condition >

<description >new iPad 2 16GB Wi-Fi Black</description >

<price>219.99 </price>

</product >

<product >

<title>iphone </title>

<category >Electronics </category >

<condition >used</condition >

<description >new iPhone 5 8GB White</description >

<price>324.99 </price>

</product >

<product >

<title>galaxy s3</title>

<category >Electronics </category >

<condition >used</condition >

<description >use samsung galaxy with usb</description >

<price>124</price>

</product >

<product >

<title>sony tv</title>

<category >Electronics </category >

<condition >used</condition >

<description >50 inches 3d with 4 glasses </description >

<price>567</price>

</product >

<product >

<title>radio</title>

<category >Electronics </category >

<condition >used</condition >

<description >dab digital </description >

<price>78</price>
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</product >

<product >

<title>bose</title>

<category >Electronics </category >

<condition >used</condition >

<description >3d cinematic with 5 speakers </description >

<price>200</price>

</product >

<product >

<title>apple tv</title>

<category >Electronics </category >

<condition >used</condition >

<description >with packaged box</description >

<price>50</price>

</product >

<product >

<title>blackberry </title>

<category >Electronics </category >

<condition >used</condition >

<description >black blackberry bold</description >

<price>130</price>

</product >

<product >

<title>macbook </title>

<category >Electronics </category >

<condition >used</condition >

<description >13 inches macbook air</description >

<price>700</price>

</product >

<product >

<title>heater </title>

<category >Electronics </category >

<condition >used</condition >

<description >skirting heater </description >

<price>24.99</price>

</product >

<product >

<title>cable</title>

<category >Electronics </category >

<condition >used</condition >

<description >2 feet hdmi cable</description >

<price>5</price>

</product >

<product >

<title>charger </title>

<category >Electronics </category >

<condition >used</condition >

<description >iPhone 5 charger </description >
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<price>5</price>

</product >

<product >

<title>tennis racket </title>

<category >Sporting Goods</category >

<condition >new</condition >

<description >still in package </description >

<price>56</price>

</product >

<product >

<title>tennis ball</title>

<category >Sporting Goods</category >

<condition >new</condition >

<description >12 balls in the pack</description >

<price>10</price>

</product >

</database >

</message >

</products >

Listing B.3 Query XML for product search system

<?xml version ="1.0" encoding ="UTF -8"?>

<products >

<message >

<search >

<product -title>ipad</product -title>

<max -price>417.83 </max -price>

</search >

</message >

</products >

Listing B.4 Response XML for product search system

<?xml version ="1.0" encoding ="UTF -8"?>

<products >

<message >

<response >

<responder -id>417737407 </responder -id>

<product -title>ipad</product -title>

<price>219.99 </price>

<category >Electronics </category >

<condition >new</condition >

<description >new iPad 2 16GB Wi-Fi Black</description >

</response >

</message >

</products >
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B.2 Encode and Decode data

Fig. B.1 Responder Encode data size comparison

Fig. B.2 Responder Encode CPU time comparison
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Fig. B.3 Searcher Decode data size comparison

Fig. B.4 Searcher Decode CPU time comparison
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