
UWL REPOSITORY

repository.uwl.ac.uk

An Implementation of Communication, Computing and Control Tasks for

Neuromorphic Robotics on Conventional Low-Power CPU Hardware

Russo, N., Madsen, Thomas ORCID: https://orcid.org/0000-0001-9354-0935 and Nikolic, Konstantin

ORCID: https://orcid.org/0000-0002-6551-2977 (2024) An Implementation of Communication, 

Computing and Control Tasks for Neuromorphic Robotics on Conventional Low-Power CPU 

Hardware. Electronics, 13 (17). p. 3448. 

http://dx.doi.org/10.3390/electronics13173448

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/12849/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Citation: Russo, N.; Madsen, T.;

Nikolic, K. An Implementation of

Communication, Computing and

Control Tasks for Neuromorphic

Robotics on Conventional Low-Power

CPU Hardware. Electronics 2024, 13,

3448. https://doi.org/10.3390/

electronics13173448

Academic Editors: Guanglei Wu,

Stephane Caro, Ming Shen and

Ricardo Soto

Received: 9 August 2024

Revised: 22 August 2024

Accepted: 23 August 2024

Published: 30 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Implementation of Communication, Computing and Control
Tasks for Neuromorphic Robotics on Conventional Low-Power
CPU Hardware
Nicola Russo 1,* , Thomas Madsen 1,* and Konstantin Nikolic 1,2,*

1 School of Computing and Engineering, University of West London, London W5 5RF, UK
2 Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, UK
* Correspondence: nicola.russo@uwl.ac.uk (N.R.); thomas.madsen@uwl.ac.uk (T.M.);

konstantin.nikolic@uwl.ac.uk (K.N.)

Abstract: Bioinspired approaches tend to mimic some biological functions for the purpose of creating
more efficient and robust systems. These can be implemented in both software and hardware designs.
A neuromorphic software part can include, for example, Spiking Neural Networks (SNNs) or event-
based representations. Regarding the hardware part, we can find different sensory systems, such as
Dynamic Vision Sensors, touch sensors, and actuators, which are linked together through specific
interface boards. To run real-time SNN models, specialised hardware such as SpiNNaker, Loihi, and
TrueNorth have been implemented. However, neuromorphic computing is still in development, and
neuromorphic platforms are still not easily accessible to researchers. In addition, for Neuromorphic
Robotics, we often need specially designed and fabricated PCBs for communication with peripheral
components and sensors. Therefore, we developed an all-in-one neuromorphic system that emulates
neuromorphic computing by running a Virtual Machine on a conventional low-power CPU. The
Virtual Machine includes Python and Brian2 simulation packages, which allow the running of SNNs,
emulating neuromorphic hardware. An additional, significant advantage of using conventional
hardware such as Raspberry Pi in comparison to purpose-built neuromorphic hardware is that
we can utilise the built-in physical input–output (GPIO) and USB ports to directly communicate
with sensors. As a proof of concept platform, a robotic goalkeeper has been implemented, using a
Raspberry Pi 5 board and SNN model in Brian2. All the sensors, namely DVS128, with an infrared
module as the touch sensor and Futaba S9257 as the actuator, were linked to a Raspberry Pi 5 board.
We show that it is possible to simulate SNNs on a conventional low-power CPU running real-time
tasks for low-latency and low-power robotic applications. Furthermore, the system excels in the
goalkeeper task, achieving an overall accuracy of 84% across various environmental conditions while
maintaining a maximum power consumption of 20 W. Additionally, it reaches 88% accuracy in the
online controlled setup and 80% in the offline setup, marking an improvement over previous results.
This work demonstrates that the combination of a conventional low-power CPU running a Virtual
Machine with only selected software is a viable competitor to neuromorphic computing hardware for
robotic applications.

Keywords: robotics; electronics; low-power systems; spiking neural networks; neuromorphic
computing; neuromorphic hardware

1. Introduction

In the last few years, Artificial Intelligence (AI) has exponentially increased in every-
day usage. However, each model typically requires a huge amount of resources, requiring
sometimes an energy consumption of thousands of MWh for the training phase and of
hundreds of MWh for the running phase [1]. Although Artificial Neural Network (ANN)
models are inspired by the brain, they are far from the operational efficiency of the human
brain. In fact, the human brain consumes no more than 20 W of power [2] to perform all

Electronics 2024, 13, 3448. https://doi.org/10.3390/electronics13173448 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13173448
https://doi.org/10.3390/electronics13173448
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6379-0287
https://orcid.org/0000-0001-9354-0935
https://orcid.org/0000-0002-6551-2977
https://doi.org/10.3390/electronics13173448
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13173448?type=check_update&version=1


Electronics 2024, 13, 3448 2 of 21

kinds of complicated tasks compared to the classic AI systems that can require megawatts
of energy. Similarly, robotic applications benefit greatly from the neuromorphic paradigm
in terms of low-power and low-latency operations [3]. This aspect has stimulated some
university labs and companies to build so-called neuromorphic hardware, which is able
to mimic biological behaviors in the operational principles of the hardware. Regarding
bioinspired robotics, there are many different realizations related to the sensing, computing,
and execution of mechanical actions, which are developed for solving tasks such as obsta-
cle avoidance [4,5], object tracking [4,6], playing games such as rock–paper–scissors [7],
mimicking biological behavior [8], and similar tasks. Regarding the computing platforms,
both conventional and neuromorphic hardware have been implemented. For example, con-
ventional platforms such as microcontrollers [9,10], FPGAs [5], LEGO [11], laptops [12] and
cloud computing have been reported. Regarding neuromorphic computing hardware [13],
devices such as SpiNNaker [14], Loihi [15], and TrueNorth [16] are available, as well as
custom-built platforms such as those that utilise memristive [17] or spintronic devices [18],
but not all of them have been used in the context of robotic applications [19]. Robotic
platforms also require sensory inputs and actuators. Some platforms utilise conventional
sensing devices such as ultrasound [4], LED photodiodes, tactile [20] sensors, etc. However,
neuromorphic sensory devices have been developed as well, such as Dynamic Vision
Sensors (DVSs or silicon retina), silicon cochlea, etc. [21]. A DVS is a camera that produces
signals based on light intensity changes and avoids unnecessary data generation [22].

Models for processing information and decision making for neuromorphic robotics
typically rely on the ANN paradigm, such as Spiking Neural Networks (SNNs) [3,23].
SNNs encode the information into asynchronously generated spikes, transmitted between
the neurons of the network through synapses, replicating the natural behaviour of the brain.
This aspect implicitly includes the time component (in the spike order), which is used for
solving various dynamic tasks evolving in time, e.g., object tracking or obstacle avoidance.

Once the robot hardware and the neural network are set up, the difficult task of
training the robot to learn the desired task or behaviour begins. Regarding learning al-
gorithms for SNNs deployed on robotic platforms, several approaches have been proposed,
such as Spike-Time-Dependent Plasticity (STDP), Reward- or Reinforcement-Based STDP
(such as R-STDP [24]), fast-weight STDP [12], Conditioning [11], and Dopamine-Modulated
STDP [4,20]. STDP, in combination with lateral inhibition, is typically used for unsupervised
learning [25,26]; however, for supervised learning, a reward signal is needed. Alternatively,
for supervised learning, a well-known backpropagation algorithm could be used, but it is
adapted for SNNs such as in SpikeProp [27]. However, traditional learning algorithms are
still a challenge when implemented for robotic applications.

The possibility of physically simulating the behaviour of biological systems leads to
two main advantages: the implementation of brain-inspired low-power intelligent systems
and the investigation of the brain’s operation via simulations. With these motivations, and
with the awareness that dedicated neuromorphic hardware is not always readily available
to those who wish to experiment with it—and even when available, the connectivity to
external devices could be complicated—we investigated how to enable running real-time
robotic applications based on SNNs using conventional low-power hardware.

For this purpose, we propose a neuromorphic robotic system that uses the Brian2
simulation platform, which runs on a low-power convectional CPU, specifically Raspberry
Pi, in combination with a DVS camera, touch sensor, and a digital motor. The key novelty
is to combine and implement two readily available and easy-to-use elements in a robotic
setup: (i) Brian2 software for designing and running SNNs and (ii) a Raspberry Pi board
for executing the SNN code and communication with external devices. Crucially, Brian2
has been proven to be able to cope with real-time input [28].

There are Operating Systems (OSs) that are purpose-built for neuromorphic hardware
(such as SpiNNaker, Loihi, and TrueNorth) and that could be optimised for the partitioning
and mapping of SNNs [29]. However, another approach (used in this work) is to rely on a



Electronics 2024, 13, 3448 3 of 21

conventional OS deployed on a microprocessor and simulation programming in common
programming language (Python, C++, Java and so on) running on a PC.

As an experimental demonstrator, we implement a robot goalkeeper based on a
DVS128 camera, working as an eye sensor, a Futaba S9257 actuator, working as an arm,
and an infrared sensor, working as a touch sensor. All these devices are connected to
a Raspberry Pi 5 board [30], using USB and GPIO connections; see Figure 1. On this
low-power processor, we run an SNN model on a Virtual Machine, communicating with
the sensors to predict the final goalkeeper position. The main purpose of this work is to
demonstrate that we can use a conventional CPU in combination with a Virtual Machine
for robotics applications as a replacement for a purpose-built neuromorphic hardware.

The paper is organised as follows. In Section 2, we describe the methodology of our
work, explaining how the sensors are connected to a Raspberry Pi 5 board, both physically
and logically. In Section 3, we report our results, measuring the accuracy in predicting the
correct goalkeeper position, the power consumption of the whole system and the reaction
time for real-time evaluation. Finally, in Section 4, we compare our results with those of
previously implemented systems addressing similar tasks.

Figure 1. The block diagram of the proposed neuromorphic robotic system, consisting of neuro-
morphic hardware units (DVS), a touch sensor and digital motor, linked to a low-power Single
Board Computer (SBC). A Virtual Machine (VM) runs on the SBC and hosts a Brian2 instance. This
configuration allows for running Spiking Neural Networks (SNNs), which process the sensory inputs
and make decisions that are passed to the executive (e.g., motor) units.

2. Materials and Methods

In this section, we present our neuromorphic robotic platform and the communication
between components. We begin by explaining the physical links between the devices,
and then we describe the software side, including input preprocessing, SNN model simula-
tion and synchronisation mechanisms.

2.1. General Concept of Conventional CPU as Neuromorphic Hardware

The general idea of turning a conventional low-power CPU into neuromorphic hard-
ware resides on the need to have an affordable and easily accessible alternative to SNN
hardware, which was combined with dedicated, purpose-built interface boards (needed
to connect sensors). Our proposed system aims to abstract the neuromorphic computa-
tional hardware by using a Virtual Machine (VM) on an existing host operating system,
leveraging the physical connections of a low-power Single Board Computer (SBC). The use
of a SBC simplifies the connectivity of external hardware like vision and hearing sensors
and actuators, exploiting the onboard connections provided by the SBC. Figure 1 shows
our general concept, where the green box represents the low-power SBC that runs the VM.
The external devices are presented with the blue boxes. On the SBC, a Virtual Machine
hosts a Python and Brian2 [28] instance, which is running the SNN model and performs all
the communication tasks at a logic level. All the device drivers are also included in the VM.

Some previous examples where neuromorphic devices have been successfully em-
ulated by a combination of conventional devices and software exist. For example, there



Electronics 2024, 13, 3448 4 of 21

was the behavioural emulation of event-based vision sensor, where an inexpensive high
frame-rate USB camera was used to emulate an activity-driven vision sensor [31].

2.2. System Specification

To demonstrate the feasibility of our proposed concept, we have built a demonstrator
system, which has as its task to observe an incoming object and try to intercept it, as
illustrated in Figure 2. Our demonstrator system is based on the Raspberry Pi 5 SBC that
mounts the Broadcom BCM2712 quad-core Arm Cortex A76 processor running at 2.4 GHz
with 8 GB of RAM [30]. The DVS128 [32] camera is directly connected to the SBC through
a USB connection. The communication is managed by the native libcaer [33] driver that
allows us to decode the AER packets coming from the DVS and facilitates the configuration
of different aspects such as noise reduction and packet batch size. The advantage of using a
USB connection lies in the flexibility of swapping or adding sensors by simply selecting the
appropriate driver without changing the system structure. The DVS data is pre-processed
by the Control Unit (frequency conversion) and is then sent to the SNN model. The Infrared
sensor (IR), which acts as a touch sensor, and the Servo actuator (the motor unit) are directly
connected to the SBC’s GPIO ports. Native GPIO libraries manage the data communication
between the physical devices and the virtual components. At a higher level, the Core Unit
represents the main elaboration unit of our system, which is responsible for integrating the
sensors with the predictive SNN model.

Figure 2. The Neuromorphic Robotic Goalkeeper platform developed in this work. (Left-Bottom):
The goal, the goalkeeper and incoming balls which are representing the tasks for the robot. (Left-Top):
The DVS camera and how the camera represents the visual scene. (Right): Data flow from the DVS
input to the goalkeeper positioning. All hardware elements on the Raspberry Pi are grouped together
in the green box, and the software parts are grouped together in the blue box (Virtual Machine).
Brian2 runs the SNN simulation (yellow box) that returns the predicted position for the goalkeeper,
which sets the final goalkeeper position, driving the digital servo motor. The touch sensor signal
is received by the Virtual MCU and sent to the Control Unit, which passes it to the SNN (e.g., as a
reward signal).

Following the data flow in Figure 2, the input data from the DVS are collected by
the Control Unit (CU) using the PyAer wrapper python library, pre-processed and then
converted into frequencies. The processed data are stored in a shared memory, making it
accessible to the Decision Unit (DU) where the model is running. At this stage, the manager
units operate at a high level in a VM using different threads to optimise the process
parallelisation. For this reason, the option of using a shared memory for transmitting input
data is crucial, especially with a high frequency transmitting rate of the DVS, operating
on the order of microseconds. The DU hosts an instance of the Brian2 framework, which
facilitates the simulation of a Spiking Neural Network on a common CPU with a high
level of abstraction from the mathematical model. Since real-time prediction is essential
for robotic applications, it is necessary to synchronise real time with emulation time in
order to strike an optimal balance to achieve short simulations with minimal delay. To



Electronics 2024, 13, 3448 5 of 21

prevent data loss due to delays, the input data are converted into the frequency domain,
representing it as the spike rate for a Poisson Generator input object. The output from
the simulation is periodically monitored by combining monitors and Network Operations.
This approach allows for immediate result retrieval and compensates for execution delays,
thereby eliminating the need to wait for the simulation to complete. Finally, direct socket
communication with the Virtual Microcontroller Unit (MCU) is used to set the final position
of the arm.

The events from the touch sensor are intended for reinforcement learning in the SNN
model; although not utilized in this work, they will be incorporated in a future SNN
model that includes a reward signal for learning. More detailed time sequence diagrams,
illustrating the interactions between the hardware and software components, along with
further explanations, can be found in Appendix A.

2.3. Control Unit

The Control Unit is the central logic component responsible for managing all incoming
and outgoing signals between the physical devices (see Figure 2). Input data from the
DVS camera are interpreted by the PyAer [34] library, which leverages the libcaer driver
installed on the host OS. This driver decodes the Address Event Representation (AER)
packets generated by the DVS camera. These packets are produced when a pixel detects a
change in light intensity, capturing only the relevant information. This approach contrasts
with traditional cameras that capture entire images at specific time intervals, including
redundant background details. The event data are transmitted in batches of packets, each
including a time stamp as well as the (x, y)-coordinates of the spiking pixel, the type of
event (on/off), and the noise flag. During the pre-processing phase, the data are cleaned
of noise and converted into frequencies, which are then sent to the SNN. Converting
the data into the frequency domain reduces the number of spikes sent to the network
while preserving critical changes in information. As already mentioned, each unit runs
on a separate thread to enhance speed and avoid blocking operations. There are two
communication techniques used to interface with other units. For the Decision Unit, which
runs the SNN model, two shared memories are used for input (ISM) and output (OSM)
communication. The Control Unit writes new available data into the ISM, while the
Decision Unit has read-only privileges. Simultaneously, the results from the Decision Unit
are written into the OSM, which the Controller Unit reads, enabling real-time bidirectional
communication. The communication with the MCU Unit is handled via a client/server
connection. The touch Controller reads the IR state, from the MCU Unit, and writes it into
the ISM. Similarly, the Motor Controller reads data from the OSM and sends a request to
the MCU Unit to set the final arm position.

2.4. Virtual MCU

The Virtual MCU is responsible for receiving feedback from the IR sensor and setting
the servo motor position. The communication with physical devices is performed through
the gpiozero [35] library and the Raspberry Pi GPIO23 and PWM0 GPIO18 ports, which are
used for IR and Servo, respectively (Table 1, see also Appendix B, Figure A3). As mentioned
earlier, this unit operates independently and hosts a local web server, using the Python
Flask [36] framework to set and receive data. This design choice helps prevent blocking
operations caused by delays in setting and positioning the servo motor. To avoid servo
jittering, due to there being a continuous PWM setting, the servo communication is paused
after the angle information is sent. This operation is not executed immediately after setting
the angle but requires some delay time to wait for the complete PWM transmission. This
delay has been set to 100 ms, which is also the maximum time required for the servo motor
to mechanically reach its final position.



Electronics 2024, 13, 3448 6 of 21

Table 1. Raspberry Pi 5 SBC link with others components. Hardware scheme is shown in Figure A3.

Raspberry Pi 5 SBC

Pins N Pins Type Voltage

Servo 12 (data), 4 Vin, 6 Gnd (power) 3 PWM 5 V

Touch Sensor 16 (data), 2 Vin, 14 Gnd (power) 3 Digital 5 V

DVS USB n/a Serial 5 V

Power (power bank) USB-C n/a DC 5 V

2.5. Decision Unit

In the Decision Unit, a Brian2 framework instance hosts the SNN model which receives
pre-processed input data and predicts the final goalkeeper position. The use of Brian in real
time has been demonstrated previously, in [28], where C++ code was directly included in
the model to communicate with hardware in a compiled version. However, in our approach,
we employ a slightly different method that focuses on running units independently and
parallelising processes while maintaining high-level programming approach. A typical
data flow for DVS input and positioning is shown in Figure 3.

The crucial aspect of executing an SNN for real-time application is the need to align
the simulation time with the actual time, as shown in Figure 3. This is made possible
by setting specific parameters configurations to keep a good simulation detail but still
running in a real or sub-real time (simulation time is faster than real time). To control the
time alignment, executions are performed in steps of 50 ms, checking the time delta at
each execution. The computed delta time difference is then used as waiting time before
running the next simulation step. Since the input events from the DVS are recorded and
converted into frequencies, this delta time is compensated and used in the next simulation
step without losing a significant amount of information. It is necessary to take into account
that for real-time applications, it is not acceptable to wait for 50 ms before injecting new
data into the model and reading resulting data, even in the frequency domain. To overcome
this lack of information, Brian2 network operations are used to inject input data and read
output spikes during the simulation with a period of 1 ms. This technique reduces the
data delay to 1 ms for both input and output communication. Network operations serve
as the entry and exit points for the model; at each step, the Shared Memory Input (SMI)
is accessed to read new frequencies, which are then set in the first layer of the SNN. A
Brian monitor object is used to capture the resulting spikes in the output layer, which are
subsequently written as frequencies in the Shared Memory Output (SMO). This approach
ensures that the system operates with minimal latency, preserving the integrity of real-time
processing.

Figure 3. Synchronisation timeline. The timeline shows the model synchronisation for real-time
application. The RT line represents the real time in batches of 50 ms. The DVS data are continuously
read by the Control Unit each 500 µs, forwarding it to the SNN model every 1 ms. The SNN model
simulation runs in a time window of 50 ms, allowing to synchronise the next run using a computed
delay. The output is read every 1 ms and used to set the goalkeeper position, which requires a
mechanical positioning time of up to 100 ms.



Electronics 2024, 13, 3448 7 of 21

SNN Models

For the purpose of running a real-time SNN simulation on low-power CPU, we
propose two SNN models that include input neurons, synapses and output neurons.
These networks are shown in Appendix C. The first model (Figure A4a) is a simple model
consisting of an input layer with eight neurons linked in a 1-to-1 way to eight output
neurons. Each of these eight input neurons has a spike frequency which represents the
spike count from a block of 16 (along x-axis) × 128 (along y-axis) pixels. The second model
(Figure A4b) consists of 128 input neurons connected to eight output neurons. In this case,
the input neurons are not grouped in blocks of 16; instead, each block is 1 × 128 pixels.
The purpose of the second model is to test the hardware performance on a larger network.
In both models, the input layer is a Poisson Generator group that receives the spiking rate
from the Control Unit. The output layer has the same characteristics in both models and
is composed of eight conductance-based (COBA) Leaky Integrate-and-Fire (LIF) neurons,
which represent the final arm positions. The following system of differential equations
describes the output neurons membrane voltage (v) behavior in time:

dv
dt

=
Erest − v

τm
+

ge × (Eexc − v)
τm

dge

dt
= − ge

τe
,

where Erest is the membrane resting potential, Eexc is the reversal potential, ge is the
synaptic conductance, and τm is the membrane time constant. The synaptic conductance is
also decaying by the τe rate. When the membrane potential reaches the threshold value
(vthreshold), a spike is generated by the neuron, and the membrane potential is reset to the
reset value (vreset), where it stays for a refractory period (tre f reactory). There is no learning
rule in these models; so the only information transmitted to the output layer is an event
changing the conductance of the post-synaptic neuron when a pre-synaptic neuron spikes.
We use an on_pre event to model this in Brian. The model parameters are shown in Table 2.

Table 2. Default SNN parameters for the simulation.

Parameter Value Unit

Erest 0 mV
Eexc −60 mV
τm 40 ms
τe 20 ms

vthreshold −50 mV
vreset −60 mV

tre f ractory 10 ms
dt 0.5 ms

net operation event 1 ms
sim interval 50 ms

on_pre ge+ = 0.5 -
gmax 10.0 -

2.6. Software Stack

The software stack developed for our neuromorphic computing and robotic appli-
cations is presented in Figure 4. It consists of four abstraction levels, L1 to L4 from the
bottom to the top layer, respectively. The L1 layer represents the Hardware layer, which
includes the Raspberry Pi 5 SBC along with the sensors (DVS128 and IR) and servo motor.
At level L2, the Operating System hosts all the necessary services and libraries to enable
the communication with the L1 level. The middle layer (L3) is composed of the drivers that
allow the top layers to send and receive data. Just below the top layer (L4), the Python VM
is responsible for running all the virtual units that rely on four frameworks (PyAer, Brian2,
Flask, Gpiozero).



Electronics 2024, 13, 3448 8 of 21

Figure 4. System stack representing the different abstraction levels. From the bottom, level 1 is the
hardware level, composed by the SBC, DVS, sensors and actuator. At level 2, the Operating System
(Linux) runs on the hardware and hosts all services and virtual units. At level 3, we find the two main
drivers, libcaer and gpio, enabling the communication with the hardware level. At the high level,
L4, the Virtual Machine contains and runs all the three units, which are supported by the PyAer and
Brian2 frameworks for the prediction and by the gpiozero and Flask frameworks for the positioning.

3. Results

The proposed system, described above, has been designed to replicate the goalkeeper
task on low-power SBC, allowing it to be powered by a small battery pack for mobility pur-
poses. To evaluate the system performance’s different metrics, latency, accuracy, resources
consumption and power consumption have been measured. In this section, we report the
results of our tests for the real-time application of our system.

3.1. Latency

The prediction task latency in our system consists of the cumulative time required to
receive the input signal, pre-process it, transfer it to the SNN, calculate the prediction of
the goalkeeper position, communicate that information to the servo motor, and use the
motor to move the arm to its final position. As mentioned in [32], the DVS camera produces
events each microsecond and needs an extra 1µs to communicate it via the serial port.
Since we run the model in time steps of 1 ms, we set the transmission rate from the DVS
to 500µs like in our previous realisations of the system [6,10], leaving enough time for
the pre-processing step. As a consequence, we cannot consider latency time for receiving
data from the DVS and elaborate it in the Control Unit for longer than 1 ms. The system
then immediately forwards the input to the SNN model, which runs the simulations in
50 ms batches. At this point, the Network Operation object injects the received input
at 1 ms time steps, with the response delay depending on the volume of incoming data.
Additionally, while input is being injected, the output monitor continuously looks for
output spikes, which are immediately forwarded. When the input is sufficient to trigger a
spike in the output neurons, the minimum delay for the model answer is 1 ms for input
and 1 ms for output. Considering negligible time for memory access and code execution,
the computation latency time is about 3 ms. The remaining delay is attributed to the arm
positioning (75 ms for 60° positioning + 1 ms for receiving instructions with the HTTP
protocol), resulting in a maximum delay of 154 ms (optimised to 100 ms with position
reset).

3.2. Resources Consumption

To measure the system performance, we ran the system on a 5 V battery pack (ca-
pacity 12,500 mAh) and executed an independent script to record the CPU power usage,
consumption and temperature, memory consumption, and battery power consumption.
The recording was conducted over 70 min, leaving the system idle for the first 5 min,



Electronics 2024, 13, 3448 9 of 21

followed by 1 h of model execution, and then 5 min of cooling down; see Figure 5. The CPU
drew a current of 4–7 A (average about 6 A) during the execution (CPU voltage of 1.2 V)—
see panel (a). The CPU usage percentage immediately jumped to the maximum level
and remained above 80% for the entire execution time—panel (b). The CPU temperature
stabilised between 60 and 65 °C—panel (c). However, looking at the steps before and
after the execution (idle and cooling down), the CPU ran at 2.2 A on average, meaning
that the model consumes 3.8 A on average (i.e., 4.56 W at 1.2 V). For a complete system
consumption, we measured the battery level change in percentage (panel (b)—red line).
As we can see, the battery level linearly decreased to about 2/3 of its capacity after 1 h
running, corresponding to an overall consumption rate of about 20 W (4 A at 5 V). The main
memory (RAM) usage when all units were running ranged from 750 to 800 MB during the 1
h execution. However, during the idle phases (the first and last 5 min), the system memory
usage was around 520 MB before the execution and 550 MB afterward. This indicates that
the model initially consumed approximately 200 MB of memory, which increased by only
50 MB after 1 h of operation.

Figure 5. Consumption of the resources during one hour of simulation, using batteries as the power
source. (a) CPU power consumption (expressed as current drawn from the battery). (b) CPU usage
during the simulation (the red line represents the battery level, for a battery of 12,500 mAh). (c) CPU
temperature. (d) Memory utilisation of the model.

3.3. Accuracy

The accuracy of our system is the ability to predict the correct ball trajectory and stop
the ball. In the online scenario, the DVS camera is placed 30 cm above the goal, with a 20
degree negative tilt, aimed at the space in front of the goal; see Figure 6. The accuracy was
measured counting the number of the blocked balls over 100 launches from 1 m distance
with random speed and direction. To improve accuracy, when the decision is made, the
system resets an inactivity timer that is used to replace the goalkeeper to the middle
position. This simulates the goalkeeper behaviour of optimising the future intervention



Electronics 2024, 13, 3448 10 of 21

for intercepting the ball, reducing the arm positioning time to 75 ms. In case a new ball is
coming before the timer expires, the predicted position is directly used to set the arm.

Apart from demonstrating the overall functionality of the system in real time, we
also tested the system on a controlled simulated environment. In this (offline) scenario,
the input consists of a ball image moving on a screen (instead of a real ball on the table)
allowing us to accurately control the ball speed, directions, colour and the background.
The rest of the system remains unchanged. The DVS camera is positioned in front of the
screen and centered to the simulated Field of View (FOV) to capture the onscreen ball. For
the reward signal (touch sensor), the Virtual MCU was replaced with an additional web
service that communicates with the balls’ generator software, providing us with accurate
information about the ball’s endpoint. This setup allows us to automatically calculate
accuracy by validating predictions made before each ball reaches the end of the FOV with
an additional maximum delay of 100 ms for arm positioning.

For this offline scenario, we tested the system under different background/target
colors and two types of trajectories: (i) in lane, i.e., when the ball direction is precisely
within the width of the goalkeeper’s pre-defined position (there are eight of theses positions
in our experiment, each covers about 10o) and (ii) random straight trajectories. The results
are shown in Appendix D, and there is a summary in Table 3. In the online scenario
(i.e., with the real ball), we reached an overall accuracy of 80% of correctly predicted
goalkeeper’s positions (SNN128)—a similar accuracy as with the ball moving on a screen
from a random position. A confusion matrix result is shown in Figure A5 of Appendix D.

Figure 6. System configuration: Raspberry Pi 5 SBC (green box) powered by a USB-c power bank
with 12,500 mAh capacity (red box), the servo motor with the IR module (orange box), the goalkeeper
touch sensor terminal (purple box) and the iniVation DVS128 camera (blue box).

We note here that we have used a very simple SNN algorithm, since the aim of this
initial work was to develop a proof-of-principle platform for our robotic system, and various
optimisation and performance enhancement steps can be implemented later.



Electronics 2024, 13, 3448 11 of 21

Table 3. Mean accuracy for different trajectories types and overall accuracy.

Trajectory Type

Device Model Straight in Lane Straight Random Overall Accuracy

RaspiSNN
SNN 8 0.98 0.80 0.89

SNN 128 0.96 0.78 0.87

Laptop a
SNN 8 0.98 0.80 0.89

SNN 128 0.98 0.81 0.90
a Apple Silicon M1 Max chip with 10 cores and 32 GB primary memory.

4. Discussion

In this work, we focused on the implementation of a neuromorphic robotic platform
on a Single Board Computer running an SNN simulation. We configured a Raspberry Pi 5
board with 8 GB of RAM, running a Linux Ubuntu 23 OS. The main advantage of using
the Raspberry Pi 5 SBC lies in the possibility of linking all the external components (DVS,
servo and IR) to the provided USB and GPIO connection ports, resulting in a simple and
compact system. This contrasts with previous projects like [10], where multiple boards and
devices were connected using a custom-built PCB. Furthermore, the integration of a USB-C
port for powering the board allows the use of compact powerbanks running at the exact
voltage without the necessity for level shifters and power regulator chips.

In Table 4, we compare our system with several robotic platforms. First, we compare
it with a neuromorphic robotic platform, which utilises a SpiNNaker board for running an
SNN as well as a custom-built PCB with needed electronic components, which were de-
signed for a similar task [10] (named here spiNNaLink). Analysing the power consumption,
our system consumes about 20 W in an unoptimised state. Unoptimised state means here
with full installation of the system, WiFi on, no power safe mode, system services on. That
is about three times more that the spiNNaLink system. The positioning time is practically
the same as that of spiNNaLink and in line with the other projects. The achieved accuracy
depends on the model running on the board, but it is comparable to previous results. For
the SNN, we chose to implement a more selective model with a COBA equation to filter the
incoming signal and to have a more accurate prediction. With a simple model that ignores
capacitance, all the signals would be forwarded to the output, leaving the decision to a
simple counting of the output neurons spikes.

Table 4. Comparisonof our SBC SNN system with neuromorphic robotic platforms.

Name Description Vision Sen-
sor

Power
Consump-
tion

Positioning
Time

Accuracy

RaspiSNN (this
work)

Single Board Computer Platform
which runs MCU and SNN sim-
ulations, performing all tasks on
the OS. DVS camera connected
to USB host, and a touch sensor
and a servo motor to GPIO ports.

iniVation Dy-
namic Vision
Sensor 128

∼20 W
(Whole
system
max, unop-
timised)

max 0.154 s
(with reset
max 0.100 s)
/1 m field

80%

spiNNaLink [10] Interface Board Platform to link
an MCU with a SpiNNaker
board and a DVS camera.

iniVation Dy-
namic Vision
Sensor 128

∼7 W
(Whole
system
max)

0.150 s
/1 m field

75%

Quadrupedal
Robotic
Goalkeeper [37]

The Intel camera is used to track
the target ball and send the
prediction to the Mini Cheetah.
A GPU is used to train the model
using the YOLO algorithm.

Intel Re-
alSense D435i

120 W
(Mini
Cheetah
max) [38]

0.5 s/4 m
field

(sidestep)
∼65%
(full)
∼85%



Electronics 2024, 13, 3448 12 of 21

Table 4. Cont.

Name Description Vision Sensor Power Con-
sumption

Positioning
Time

Accuracy

iCub v1.0/v2.0
(Intel ATOM
D525) [19]

Humanoid robot with an embedded
PC. It is composed by different actu-
ators to simulate human motions.

PointGrey
Dragonfly 2
(640 × 480) at
30 fps

288 W
(960 W
peak)

n/a n/a

Fetch (and
Freight) (Intel i5,
Haswell) [39]

Fetch robot is a mobile manipulator
to catch and move objects (until 6 kg)

Primesense
Carmine 1.09

20 W (36 W
peak)

n/a n/a

4.1. Advantages

The proposed system is a combination of neuromorphic hardware, sensors, actuators
and a Spiking Neural Network simulator, running on a low-power Single Board Computer
(SBC). The choice of using an SBC to link all the external devices and to run the SNN
model leads to several advantages. On the hardware side, the possibility of exploiting
the native SBC connections increases the compatibility of external devices, avoiding the
implementation of custom solutions and protocols. In fact, neuromorphic hardware like
DVS cameras often rely on USB connections using their own driver, which are optimised
to guarantee the maximum speed and robustness. In addition, the possibility to link
sensors and actuators directly to the GPIO pins of the board avoids the implementation
of custom interface boards, significantly reducing the transmission latency (no custom
protocols are needed). Moreover, no level shifters or power regulators are necessary for the
communications of external devices working with different voltages, resulting in a more
compact and portable solution.

On the software side, our solution is based on the synchronisation of internal mi-
croservices that are driven by the predictive model in real time. Classical ANN and CNN
models have been used before to solve similar, or more complicated, tasks utilising a more
powerful and energy-demanding hardware like GPUs. In our system, we leverage the
Brian2 framework for the simulation of an SNN model that is able to work in real time.
Brian2 provides full control and customisation of the neural network model and avoids
data loss due to dropping spikes, which are usually present in dedicated neuromorphic
hardware. An SNN model, compared to CNN, is better adapted to cope with elaborate
event-based inputs. It avoids loss of data that can be present in CNN models (due to a
frame-based approach implicit in the model), also resulting in a slower prediction, which is
otherwise crucial in real-time applications.

Our approach has a strong scalability. On the hardware side, it only depends on the
number of available communication ports on the board. Diverse types of sensors can be
added to the system, giving the opportunity to explore sensory fusion. On the software side,
the scalability of the SNN, in terms of the number of neurons and synapses, is highly flexible
because all simulations are conducted in software. In our case, there are no hardware
constraints on the SNN (apart from the speed of execution) in contrast to neuromorphic
computing, where the scalability of the network often depends on the scalability of the
hardware as the network needs to be mapped directly to the available hardware. Finally,
RaspiSNN works as a modular edge computer, allowing the development of a cluster of
SBCs to improve the computational power and connectivity if needed.

4.2. Limitations

Despite the results described above, several limitations should be highlighted. Firstly,
the real time performance of the model is affected by the SNN’s model complexity and
structure. A smaller time-step increases the computation detail over time, affecting the
delay inner simulations steps that can lead to overtime of the simulation against the real
time. In this work, the minimum time-step that guarantees real-time synchronisation is
dt = 0.5 ms. Additionally, the number of neurons and synapses, and their differential
equation model, impacts the complexity and the computation time.



Electronics 2024, 13, 3448 13 of 21

Second, the DVS input is susceptible to environmental conditions. Although the
DVS is generally a robust vision system, factors such as artificial lighting, shadows, table
background, and ball color can introduce noise, which may affect accuracy. One way to
address this would be by integrating filters in the SNN model, to automatically adjust the
neurons threshold based on noise, although this will influence the real-time execution.

5. Conclusions

The aim of this work was to develop a neuromorphic robotic system using conven-
tional low-power CPU capable of running an SNN. The Raspberry Pi 5 Single Board
Computer was used as the low-power platform to host a hardware connection and high-
level logic. Three virtual components, namely the Control Unit (CU), Decision Unit (DU)
and Virtual MCU (vMCU) operate concurrently, which are hosted by the Ubuntu OS. The
CU manages input data from the external sensors (DVS and IR sensors) and relays decision
instructions from the DU to the vMCU. The DU is responsible for predicting the arm
position with a Brian2 instance running to simulate the SNN model in real time using
external inputs. The results show that the system successfully runs an SNN model in real
time with synchronization mechanisms, maintaining power consumption around 20W,
which is consistent with similar neuromorphic robotic platforms (Table 4). Additionally,
the system’s overall accuracy outperforms our previous work (spiNNaLink), achieving
80% accuracy in offline scenarios and 88% in online scenarios.

To enhance the system’s capabilities, future work will involve testing more complex
SNN models with additional layers and learning rules. A self-learning SNN model that
includes feedback signals from the infrared sensor is currently under investigation. To
address latency issues, the current bottleneck is the servo speed, which could be improved
by using a faster motor. Lastly, optimisation of the system to further reduce power and
resource consumption will be considered.

Author Contributions: Conceptualisation, N.R. and K.N.; methodology, N.R. and K.N.; software,
N.R.; validation, N.R., T.M. and K.N.; writing—original draft preparation, N.R. and K.N.; writing—
review and editing, N.R., T.M. and K.N.; visualisation, N.R.; supervision, T.M. and K.N. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Vice-Chancellor’s Scholarship from the University of West
London (N.R.).

Data Availability Statement: Additional resources and instructions are publicly accessible on a
Github repository: https://github.com/russonicola/RaspiSNN (accessed on 8 August 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AER Address Event Representation
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
COBA Conductance-Based (model)
CPU Central Processing Unit
CU Control Unit
DC Direct Current
DU Decision Unit
DVS Dynamic Vision Sensor
GHz Gigahertz
GPIO General Purpose Input/Output
IR Infrared

https://github.com/russonicola/RaspiSNN


Electronics 2024, 13, 3448 14 of 21

ISM Input Shared Memory
LIF Leaky Integrate-and-Fire (model)
MCU Microcontroller Unit
MW Megawatt
OS Operating System
OSM Output Shared Memory
PCB Printed Circuit Board
PWM Pulse-Width Modulation
RAM Random Access Memory
SBC Single Board Computer
SNN Spiking Neural Network
STDP Spike-Timing-Dependent Plasticity
USB Universal Serial Bus
VM Virtual Machine
W Watt

Appendix A

Here, we describe the two main algorithms responsible for the Input/Output signal
control (Control Unit Algorithm) and for the Spiking Neural Network simulation (Decision
Unit Algorithm). In addition, a comparison between the two units’ flow is shown in a block
diagram and in a sequence diagram.

Appendix A.1. Control Unit Algorithm

In the proposed system, the Control Unit (Algorithm A1) is responsible for the commu-
nication between the hardware components (DVS, actuator, sensors) and the Decision Unit.
The main role of this unit is to read the DVS input (line 7) and forward it to the Decision
Unit (line 17). The input is retrieved each 500 µs, and it is converted into frequencies.
Simultaneously, the Control Unit reads the output shared by the Decision Unit (line 18),
which is used to set the servo position (line 20).

Algorithm A1 Control Unit algorithm

1: input_sm← LinkReadSM()
2: output_sm← LinkWriteSM()

3: max_packet_interval← 500µs
4: dvs← InitDVS(max_packet_interval)

5: while true do ▷ DVS reading loop

6: freq_array← [0, ... , × input neurons] ▷ freq_array length = input neurons

7: for event in dvs.get_events() do
8: if event.is_noise then
9: continue ▷ ignore noisy event

10: end if
11: if event.polarisation = off then
12: continue ▷ ignore negative event
13: end if

14: x_coordinate← event.x ▷ read x coordinate
15: freq_array[x_coord]← freq_array[x_coord] + 1 ▷ count occurrences

16: end for

17: output_sm.write(freq_array) ▷ write input layer frequencies

18: resulting_spikes← input_sm.read() ▷ read SNN output
19: position← argmax(resulting_spikes) ▷ get the most frequent output neuron
20: SetServo(position)

21: end while



Electronics 2024, 13, 3448 15 of 21

Appendix A.2. Decision Unit Algorithm

This unit that is responsible for running the Spiking Neural Network model is the
Decision Unit (Algorithm A2). Like in the Control Unit, data are shared via two channels’
shared memory, line 14 for the input coming from the CU, and line 16 for the output
decision. Each simulation step is executed inside the loop (block 9–19) that includes
internally the Network Operation function (block 12–17). The purpose of the Network
Operation function is to periodically check for available input/output data to share with
the Control Unit.

Algorithm A2 Decision Unit Algorithm

1: input_sm← LinkReadSM()
2: output_sm← LinkWriteSM()
3: params← ReadParams()

4: sim_steps← sim_time/timestep ▷ number of steps for the single simulation

5: model← Initialise_Model(params) ▷ instantiate SNN model

6: start_time← TimeNow() ▷ record initial timestamp

7: while true do

8: op_time← 0 second

9: for j in 1 : sim_steps do

10: model.compute_next_step() ▷ execute simulation step

11: op_time← op_time + op_timestep

12: if op_time = op_timestep then

13: op_time← 0 second
14: model.input_rates← input_sm.read() ▷ DVS rates from shared memory

15: if model.new_output_available() then
16: output_sm.write(model.get_output())
17: end if
18: end if
19: end for

20: end while

Appendix A.3

To better understand how the Control Unit (CU) and the Decision Unit (DU) interact,
we present a block diagram with input, output and operations (Figure A1). In the diagram,
it is possible to see how the shared input memory is written by the CU and read by the DU,
and, in the same way, the shared output memory is written by the DU and read by the CU
(yellow parallelogram blocks linked with dashed arrows).



Electronics 2024, 13, 3448 16 of 21

Figure A1. Block diagram showing the Control Unit and Decision Unit algorithms’ flow and their
interaction. The yellow parallelograms represent the in and out shared memory areas where the
two units transmit data. The Control Unit has write privileges for the Input memory, where the
DVS events are written, and a read-only access to the Output memory, where it reads the predicted
position. The Decision Unit can access the Input memory to read the input from the DVS, while it can
write the results in the Output memory.

Appendix A.4

A typical flow sequence of data flowing from the DVS to the final position to set is
shown in the sequence diagram in Figure A2. The green and blue boxes represent the
hardware and software components, respectively. Input from the DVS is buffered for 500 µs
and sent in blocks to the Control Unit, which pre-processes and writes it in the Input shared
memory. The Decision Unit reads periodically with the Network Operation function the
data from the Input memory and forwards it to the SNN, setting the neurons’ rates. When
the output from the SNN is available, the Decision Unit writes it in the Output shared



Electronics 2024, 13, 3448 17 of 21

memory. At this point, the Control Unit reads the available output from the Output shared
memory and uses it to call the set_servo function in the Virtual MCU, which then sets the
final arm position.

Figure A2. Sequence diagram for the signal and data flow presented in Figure A1.

Appendix B

Here, we show the hardware wiring schematic of the proposed system (Figure A3).
The Futaba S9257 pulse data pin is wired to the GPIO12 of the Raspberry Pi board. The
Infrared module data are wired to the GPIO16. Both the servo and IR module are powered
with a 5 V DC current. The DVS camera is connected to a USB port. The whole system is
powered with a 5 V power bank linked to the Raspberry Pi USB-C port.

Figure A3. Schematic of the implemented system.



Electronics 2024, 13, 3448 18 of 21

Appendix C

For the purpose of demonstrating the robotic system that we have developed in this
paper, we use two simple SNNs, which are both shown in Figure A4. We note here that
they only serve a proof-of-concept purpose, and more elaborate, reinforcement learning
networks will be developed in future work.

(a) (b)

Figure A4. SNN architecture for the two presented models. On the left (a), a simple (proof-of-concept)
model consisting of 8 input neurons and 8 output neurons, linked with 1-to-1 synapses. On the
right (b), a more complex model that takes as input all the 128× column pixels of the DVS, which
is composed of 128 input neurons and 8 output neurons. The input layer is linked to each of the 8
output neurons in groups of 16 input neurons.

Appendix D

In this section, detailed experimental results are reported.

Table A1. Mean accuracy for the robotic system controlled by two SNN models (SNN128 and SNN8)
run on a laptop and Raspberry pi for different environment conditions (i.e., the background and ball
colour) and ball speeds (which were set to four values: 0.5, 1, 2 and 4 m/s).

Model Background Ball Speed (m/s) Accuracy Accuracy
Laptop RaspiSNN

SNN128 black white 0.5 0.775 0.775
SNN128 black white 1.0 0.85 0.775
SNN128 black white 2.0 0.8125 0.7625
SNN128 black white 4.0 0.875 0.8
SNN128 white black 0.5 0.8 0.7625
SNN128 white black 1.0 0.875 0.8
SNN128 white black 2.0 0.8625 0.825
SNN128 white black 4.0 0.7625 0.7

SNN8 black white 0.5 0.775 0.85
SNN8 black white 1.0 0.7875 0.7375
SNN8 black white 2.0 0.825 0.8125
SNN8 black white 4.0 0.85 0.7625
SNN8 white black 0.5 0.75 0.775
SNN8 white black 1.0 0.875 0.8875
SNN8 white black 2.0 0.7625 0.825
SNN8 white black 4.0 0.725 0.75



Electronics 2024, 13, 3448 19 of 21

(a)

(b)

Figure A5. Confusion matrix for predicted goalkeeper’s position vs. actual ball position for (a) SNN8
and (b) SNN128. There is an additional column which shows rare events when the network did not
respond to the visual input, and the goalkeeper was not moved.

References
1. Patterson, D.; Gonzalez, J.; Hölzle, U.; Le, Q.; Liang, C.; Munguia, L.-M.; Rothchild, D.; So, D.; Texier, M.; Dean, J. The Carbon

Footprint of Machine Learning Training Will Plateau, Then Shrink. Computer 2022, 55, 18–28. [CrossRef]
2. Balasubramanian, V. Brain Power. Proc. Natl. Acad. Sci. USA 2021, 118, e2107022118. [CrossRef] [PubMed]
3. Bing, Z.; Meschede, C.; Röhrbein, F.; Huang, K.; Knoll, A.C. A Survey of Robotics Control Based on Learning-Inspired Spiking

Neural Networks. Front. Neurorobot. 2018, 12, 35. [CrossRef]
4. Liu, J.; Lu, H.; Luo, Y.; Yang, S. Spiking neural network-based multi-task autonomous learning for mobile robots. Eng. Appl. Artif.

Intell. 2021, 104, 104362. [CrossRef]

http://doi.org/10.1109/MC.2022.3148714
http://dx.doi.org/10.1073/pnas.2107022118
http://www.ncbi.nlm.nih.gov/pubmed/34341108
http://dx.doi.org/10.3389/fnbot.2018.00035
http://dx.doi.org/10.1016/j.engappai.2021.104362


Electronics 2024, 13, 3448 20 of 21

5. Liu, J.; Hua, Y.; Yang, R.; Luo, Y.; Lu, H.; Wang, Y.; Yang, S.; Ding, X. Bio-Inspired Autonomous Learning Algorithm with
Application to Mobile Robot Obstacle Avoidance. Front. Neurosci. 2022, 16, 905596. [CrossRef]

6. Russo, N.; Huang, H.; Nikolic, K. Live Demonstration: Neuromorphic Robot Goalie Controlled by Spiking Neural Network. In
Proceedings of the 2022 IEEE Biomedical Circuits and Systems Conference (BioCAS), Taipei, Taiwan, 13–15 October 2022; p. 249.

7. Deng, X.; Weirich, S.; Katzschmann, R.; Delbruck, T. A Rapid and Robust Tendon-Driven Robotic Hand for Human-Robot
Interactions Playing Rock-Paper-Scissors. In Proceedings of the IEEE RO-MAN 2024, Pasadena, CA, USA, 26–30 August 2024

8. Clawson, T.S.; Ferrari, S.; Fuller, S.B.; Wood, R.J. Spiking Neural Network (SNN) Control of a Flapping Insect-Scale Robot. In
Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016;
pp. 3381–3388.

9. Cheng, R.; Mirza, K.B.; Nikolic, K. Neuromorphic robotic platform with visual input, processor and actuator, based on spiking
neural networks. Appl. Syst. Innov. 2020, 3, 28. [CrossRef]

10. Russo, N.; Huang, H.; Donati, E.; Madsen, T.; Nikolic, K. An Interface Platform for Robotic Neuromorphic Systems. Chips 2023, 2,
20–30. [CrossRef]

11. Lobov, S.A.; Mikhaylov, A.N.; Shamshin, M.; Makarov, V.A.; Kazantsev, V.B. Spatial Properties of STDP in a Self-Learning Spiking
Neural Network Enable Controlling a Mobile Robot. Front. Neurosci. 2020, 14, 88. [CrossRef] [PubMed]

12. O’Connor, P.; Neil, D.; Liu, S.-C.; Delbruck, T.; Pfeiffer, M. Real-Time Classification and Sensor Fusion with a Spiking Deep Belief
Network. Front. Neurosci. 2013, 7, 178. [CrossRef]

13. Ivanov, D.; Chezhegov, A.; Kiselev, M.; Grunin, A.; Larionov, D. Neuromorphic artificial intelligence systems. Front. Neurosci.
2022, 16, 959626. [CrossRef]

14. Furber, S.B.; Galluppi, F.; Temple, S.; Plana, L.A. The SpiNNaker Project. Proc. IEEE 2014, 102, 652–665. [CrossRef]
15. Davies, M.; Srinivasa, N.; Lin, T.-H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A

Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
16. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.-J.; et al.

TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

17. Linares-Barranco, B.; Serrano-Gotarredona, T.; Camuñas-Mesa, L.A.; Perez-Carrasco, J.A.; Zamarreño-Ramos, C.; Masquelier, T.
On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex. Front. Neurosci. 2011, 5,
26. [CrossRef]

18. Basu, A.; Acharya, J.; Karnik, T.; Liu, H.; Li, H.; Seo, J.-S.; Son, C. Low-Power, Adaptive Neuromorphic Systems: Recent Progress
and Future Directions. IEEE J. Emerg. Sel. Top. Circuits Syst. 2018, 8, 6. [CrossRef]

19. Natale, L.; Bartolozzi, C.; Nori, F.; Sandini, G.; Metta, G. iCub. arXiv 2021, arXiv:2105.02313.
20. Chou, T.-S.; Bucci, L.D.; Krichmar, J.L. Learning touch preferences with a tactile robot using dopamine modulated stdp in a model

of insular cortex. Front. Neurorobot. 2015, 9, 6. [CrossRef]
21. Liu, S.-C.; Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 2010, 20, 1–8. [CrossRef]
22. Baby, S.A.; Vinod, B.; Chinni, C.; Mitra, K. Dynamic Vision Sensors for Human Activity Recognition. In Proceedings of the 2017

4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017. [CrossRef]
23. Maass, W. Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
24. Juarez-Lora, A.; Ponce-Ponce, V.H.; Sossa, H.; Rubio-Espino, E. R-STDP Spiking Neural Network Architecture for Motion Control

on a Changing Friction Joint Robotic Arm. Front. Neurorobot. 2022, 16, 904017. [CrossRef]
25. Diehl, P.; Cook, M. Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity. Front. Comput.

Neurosci. 2015, 9, 99. [CrossRef] [PubMed]
26. Russo, N.; Yuzhong, W.; Madsen, T.; Nikolic, K. Pattern Recognition Spiking Neural Network for Classification of Chinese

Characters. In Proceedings of the ESANN 2023 Proceedings, European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 4–6 October 2023. [CrossRef]

27. Bohté, S.M.; Kok, J.N.; Poutré, H.L. SpikeProp: Backpropagation for Networks of Spiking Neurons. In Proceedings of the ESANN
2000 Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Bruges, Belgium, 26–28 April 2000; Volume 48, pp. 419–424.

28. Stimberg, M.; Brette, R.; Goodman, D.F. Brian 2, an Intuitive and Efficient Neural Simulator. eLife 2019, 8, e47314. [CrossRef]
[PubMed]

29. Xue, J.; Xie, L.; Chen, F.; Wu, L.; Tian, Q.; Zhou, Y.; Ying, R.; Liu, P. EdgeMap: An Optimized Mapping Toolchain for Spiking
Neural Network in Edge Computing. Sensors 2023, 23, 6548. [CrossRef] [PubMed]

30. Raspberry Pi 5 Single Board Computer. Available online: https://www.raspberrypi.com/5 (accessed on 3 February 2024).
31. Katz, M.L.; Nikolic, K.; Delbruck, T. Live Demonstration: Behavioural Emulation of Event-Based Vision Sensors. In Proceedings

of the 2012 IEEE International Symposium on Circuits and Systems, Seoul, Republic of Korea, 20–23 May 2012; pp. 736–740.
32. Lichtsteiner, P.; Posch, C.; Delbruck, T. A 128 × 128 120 dB 15 Latency Asynchronous Temporal Contrast Vision Sensor. IEEE J.

Solid-State Circuits 2008, 43, 566–576. [CrossRef]
33. iniVation AG. Libcaer Documentation. Available online: https://libcaer.inivation.com (accessed on 5 February 2024).
34. Yue, D. PyAer Documentation. GitHub. Available online: https://github.com/duguyue100/pyaer (accessed on 14 March 2024).

http://dx.doi.org/10.3389/fnins.2022.905596
http://dx.doi.org/10.3390/asi3020028
http://dx.doi.org/10.3390/chips2010002
http://dx.doi.org/10.3389/fnins.2020.00088
http://www.ncbi.nlm.nih.gov/pubmed/32174804
http://dx.doi.org/10.3389/fnins.2013.00178
http://dx.doi.org/10.3389/fnins.2022.959626
http://dx.doi.org/10.1109/JPROC.2014.2304638
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.3389/fnins.2011.00026
http://dx.doi.org/10.1109/JETCAS.2018.2816339
http://dx.doi.org/10.3389/fnbot.2015.00006
http://dx.doi.org/10.1016/j.conb.2010.03.007
http://dx.doi.org/10.1109/ACPR.2017.136
http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.3389/fnbot.2022.904017
http://dx.doi.org/10.3389/fncom.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/26941637
http://dx.doi.org/10.14428/esann/2023.ES2023-174
http://dx.doi.org/10.7554/eLife.47314
http://www.ncbi.nlm.nih.gov/pubmed/31429824
http://dx.doi.org/10.3390/s23146548
http://www.ncbi.nlm.nih.gov/pubmed/37514842
https://www.raspberrypi.com/5
http://dx.doi.org/10.1109/JSSC.2007.914337
https://libcaer.inivation.com
https://github.com/duguyue100/pyaer


Electronics 2024, 13, 3448 21 of 21

35. Raspberry Pi Foundation. GPIO Zero Documentation. Available online: https://gpiozero.readthedocs.io (accessed on 19 March
2024).

36. Grinberg, M. Flask Web Development: Developing Web Applications with Python; O’Reilly Media: Sebastopol, CA, USA, 2018.
37. Huang, X.; Li, Z.; Xiang, Y.; Ni, Y.; Chi, Y.; Li, Y.; Yang, L.; Peng, X.B.; Sreenath, K. Creating a Dynamic Quadrupedal Robotic

Goalkeeper with Reinforcement Learning. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Detroit, MI, USA, 1–5 October 2023. [CrossRef]

38. Katz, B.; Carlo, J.D.; Kim, S. Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control. In Proceedings of
the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6295–6301.

39. Wise, M.; Ferguson, M.; King, D.; Diehr, E.; Dymesich, D. Fetch and Freight: Standard Platforms for Service Robot Applications.
In Proceedings of the Workshop on Autonomous Mobile Service Robots, New York, NY, USA, 9–15 July 2016. Available online:
https://docs.fetchrobotics.com/FetchAndFreight2016.pdf (accessed on 21 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://gpiozero.readthedocs.io
http://dx.doi.org/10.1109/IROS55552.2023.10341936
https://docs.fetchrobotics.com/FetchAndFreight2016.pdf

	Introduction
	Materials and Methods
	General Concept of Conventional CPU as Neuromorphic Hardware
	System Specification
	Control Unit
	Virtual MCU
	Decision Unit
	Software Stack

	Results
	Latency
	Resources Consumption
	Accuracy

	Discussion
	Advantages
	Limitations

	Conclusions
	Appendix A
	Control Unit Algorithm
	Decision Unit Algorithm
	Appendix A
	Appendix A

	Appendix B
	Appendix C
	Appendix D
	References

