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Abstract: The strengthening of existing columns using additional reinforced concrete (RC) jackets is
one of the most popular techniques for the enhancement of a column’s stiffness, load-bearing capacity
and ductility. Important parameters affecting the effectiveness of this method are the strength of the
additional concrete, concrete shrinkage and the connection between the old and the new concrete. In
this study, the application of Ultra-High-Performance Fiber-Reinforced Concrete (UHPFRC) jackets
for the structural upgrade of RC columns has been examined. Extensive numerical studies have been
conducted to evaluate the effect of parameters such as the thickness of the jacket, concrete shrinkage
and the addition of steel bars, and comparisons have been made with conventional RC jackets. The
results of this study indicate that the use of UHPFRC can considerably improve the strength and the
stiffness of existing reinforced concrete columns. The combination of UHPFRC and steel bars in the
jacket leads to the most effective strengthening technique as a significant enhancement in the stiffness
and the ultimate load capacity has been achieved.

Keywords: reinforced concrete; columns; strengthening; jackets; UHPFRC

1. Introduction

The majority of the existing structures in earthquake prone areas need to be strength-
ened either because they have been damaged in previous earthquakes or because they
have been designed without or with old code provisions. The use of additional reinforced
concrete (RC) layers or jackets has been proved to be an effective technique and there are
various published studies in this field [1–18]. These studies highlight the effectiveness
of the use of RC elements and it has been found that two important parameters which
affect the performance of the jacket using this technique are the connection between the
old and the new concrete and the shrinkage of the new concrete of the jacket [16–18]. The
use of steel jackets has also been proved to be effective for the enhancement of the strength
and ductility of RC columns, which is attributed to the effect of the confinement [19]. In
the last few decades, there has been an enormous development in the field of novel high-
performance materials which have great potential for applications in the field of repairing
and strengthening existing structures. The use of novel cementitious materials such as the
polypara-phenylene-benzo-bisthiazole (PBO) fabric-reinforced cementitious matrix (FRCM)
has also been studied for strengthening applications [20]. Extensive research has been con-
ducted on the development and applications of Ultra-High-Performance Fiber-Reinforced
Concrete (UHPFRC). UHPFRC is characterized by a significantly enhanced compressive
strength which exceeds 150 MPa, a tensile strength normally higher than 7–8 MPa, and
superior ductility and energy absorbance which are attributed to the high-strength cemen-
titious matrix in addition to the high-volume fraction of steel fibers [21,22]. UHPFRC is
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characterized by significantly enhanced durability and low permeability, which are key
factors for the protection of existing structures, while it has also been found that UHPFRC
has excellent interlocking and bonding with existing concrete substrates when it is used
as a repair material [23,24]. Extensive research has been conducted in this field and it has
been found that the mechanical characteristics of UHPFRC are significantly affected by
the volume fraction of steel fibers in addition to the orientation and distribution of the
fibers [25–27].

There are research studies which have also focused on the use of alternative types of
non-metal fiber reinforcement such as synthetic fibers, inorganic fibers, natural fibers and
fibers from recycled glass [28–33]. The use of synthetic fibers normally leads to reduced
strength compared to the respective steel fiber UHPFRC and this is attributed to the reduced
fiber-to-cementitious matrix bond [28,31,32]. Also, in some cases, the use of ultra-high-
molecular-weight polyethylene fibers has led to enhancements in the tensile strength but
there is a reduction in the compressive strength. It has been proved that steel fibers are
more effective than the use of macro fibers from recycled glass due to the increased elastic
modulus of steel [33].

UHPFRC has great potential for the structural upgrade of existing structures; the major-
ity of the existing studies in this field are focused on the strengthening of RC beams [34–41]
and it has been proved that it can be effectively used for the structural strengthening of
existing RC beams. UHPFRC layers reinforced with steel bars can offer superior structural
performance and the connection between the old and the new interface is significantly
enhanced, while the use of dowel can further improve the structural performance of the
beams [36]. The addition of steel bars to the UHPFRC layers has been found to be able
to lead to a significant enhancement in the load-bearing capacity up to 183%. Also, it
has been found that the use of dowels at the interface leads to almost perfect connection
between the existing structure and the UHPFRC layer, which results in an increment in the
load-carrying capacity of around 12% for a 30 mm UHPFRC layer and 35% for a 70 mm
UHPFRC layer [36]. UHPFRC has also been found to be quite effective for the prevention of
bond failure in cases of deficient lap splices in beams and bridge columns. The application
of UHPFRC strips for preventing shear failure has also been studied [41]. The use of
UHPFRC has also been successfully applied for the retrofitting of a bridge [42] and for the
strengthening of slabs, enhancing the energy absorption and the post-cracking performance
of the existing elements [43].

The use of UHPFRC for the strengthening of existing RC columns is an area where
further research is required as there are only very limited published studies [44–46]. The
axial load-bearing capacity of jacketed columns with UHPFRC under eccentric loading
has been studied [44], showing that the stiffness, the strength and the toughness of the
strengthened columns are significantly enhanced. UHPFRC has also been used for the
confinement of circular RC columns [45]. This study aims to provide an in-depth evaluation
of the lateral performance of columns strengthened with UHPFRC. A parametric numerical
study has been conducted to evaluate and quantify the effect of key parameters such as the
thickness of the jacket, the presence of additional steel bars and the shrinkage strain of the
jackets on the structural performance of the strengthened columns. This study also aims
to critically evaluate the effectiveness of the examined strengthening technique through
comparisons with the use of conventional RC jackets, highlighting the main benefits of the
use of UHPFRC in strengthening applications.

2. Numerical Modeling of Columns Strengthened with RC Jackets

In this study, the numerical approach presented in Section 2 has been used for material
modeling. The examined specimens are reinforced concrete (RC) columns strengthened
with jackets. The geometry of the existing columns was selected to be in agreement with a
previous study [17] where the strengthening of the existing columns with conventional RC
jackets was examined.
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The initial column cross-section dimension was 250 × 250 mm and the height of the
column was equal to 1800 mm, representing half of a full-scale column with the appropriate
boundary conditions. The initial column was reinforced with four longitudinal steel bars
with a 14 mm diameter and steel with a yield stress of 313 MPa and a rupture stress of
442 MPa. The same steel type was used for the 8 mm stirrups which were also placed along
the height of the column at a spacing equal to 200 mm. A four-side RC jacket was used for
the strengthening of the existing column with a thickness of 75 mm and a height equal to
1300 mm (Figure 1). The RC jacket is reinforced with four bars, 20 mm in diameter, with a
yield stress of 487 MPa and rupture stress 657 MPa, and 10 mm diameter stirrups spaced
at 100 mm with a yield stress of 599 MPa and a rupture stress of 677 MPa. Regarding the
concrete, the initial column concrete compressive strength was found to be equal to 27 MPa,
while the respective strength of the jacket was 55.8 MPa. Concrete compressive tests were
conducted at the same time with the testing of the columns and after 28 days from the day
of casting [12,13,15,17].
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Figure 1. (a) RC-jacketed column tested in lab [14], (b,c) numerical models for concrete and for
reinforcement, and (d) cross-section of strengthened column (dimensions in mm).

For numerical modeling, ATENA version 5 Finite Element Analysis (FEA) software
was used [47]. Solid eight-node elements were used for the modeling of the concrete.
Nonlinear behavior with softening in both tension and compression was considered. For
compression, the CEB-FIP Model Code 1990 [48] model was used, while for tension, a
linear ascending model followed by an exponential softening branch based on a fracture
energy model was used [47].

The analysis was initially conducted assuming perfect connection between the old
and the new concrete (specimen: monolithic).

For the simulation of the old-to-new concrete interface, special two-dimensional
contact elements were used (specimen: RINT.). To consider the strength degradation of the
interface due to cycling loading, a reduction in the friction and cohesion characteristics
with the loading cycles was proposed, which was found to lead to equivalent results with
the use of coefficients of friction and cohesion equal to 1.0 and 0.0 MPa; therefore, these
values were used in this study [17].

To consider the effect of the jacket’s concrete shrinkage, a strain equal to 400 micros-
trains was also applied to the elements of the jacket, and in this numerical model, interface
elements between the old and the new concrete were used with friction and cohesion
coefficients equal to 1.0 and 0.0 MPa (specimen: RINT.+SHRINK.). The numerical results of
these three assumptions together with the respective experimental results are presented in
Figure 2.
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Figure 2. Experimental versus numerical results for strengthened elements with and without simula-
tion of jacket’s concrete shrinkage.

The results of Figure 2 show that the assumption of perfect bond at the interface
(specimen: monolithic) leads to a significant overestimation of the structural behavior of
the jacketed columns. In the case of specimen RINT, where the old–new concrete interface
is simulated without the presence of the jacket’s concrete shrinkage, the load capacity is
reduced but there is still an overestimation of the structural performance. The numerical
simulations of the strengthened columns with the interface with reduced friction and
cohesion (to take into consideration the strength degradation) and with the simulation
of the jacket’s concrete shrinkage (Specimen: RINT.+SHRINK.) can accurately predict the
response of the strengthened columns with RC jackets. The same assumptions have been
used for the numerical simulations of the RC columns strengthened with UHPFRC jackets
and the results are presented in Section 3.

3. Numerical Modeling of Columns Strengthened with UHPFRC Jackets

The characteristics of the initial RC columns are the same as the ones presented in
Section 2. For the strengthening of the columns, UHPFRC jackets have been used with and
without the presence of additional steel bars. The numerical assumptions for the modeling
of UHPFRC are presented in Section 3.1.

3.1. Experimental Evaluation of UHPFRC Properties and Numerical Modeling

For the numerical simulation of UHPFRC, the compressive and direct tensile test
results have been used. A typical UHPFRC mix design has been used in this study
(Table 1 [35]). Regarding the mixing process, the dry materials were mixed first for 3 min
followed by the addition of water and superplasticizer, while the steel fibers were added at
the end of the process. The specimens were heat-cured at 90 ◦C for 3 days, and then, they
were stored in ambient temperature and humidity conditions for 14 days until the time
of testing.

Table 1. Mix design for UHPFRC [35].

Material Mix Proportions (kg/m3)

Cement (52.5 N) 657
GGBS 418

Silica fume 119
Silica sand 1051

Superplasticizer 59
Water 185

3% Steel fibers (13 mm in length and 0.16 mm in diameter) 236
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An illustration of the fibers used in the UHPFRC and typical bridge cracking of the
fibers in the UHPFRC elements are presented in Figure 3a,b.
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Figure 3. (a) Steel fibers used, and (b) typical fiber bridging in flexural testing of UHPFRC.

For the evaluation of the compressive strength, standard 100 mm side cubes were
tested according to the BS EN 12390-3 [49], while for the tensile stress–strain characteristics,
dog-bone-shaped specimens were tested according to previous research in this field [35].
The compressive strength of UHPFRC was found to be equal to 164 MPa [35]. Six dog-bone-
shaped specimens were also tested (Figure 4) to evaluate UHPFRC tensile stress–strain
characteristics. UHPFRC is characterized by a significantly enhanced post-cracking tensile
stress and superior energy performance, which can be accurately captured with direct
tensile tests.
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These tests have been performed under displacement control with a loading rate equal
to 0.007 mm/s, and for the strain measurements, a Linear Variable Differential Transformer
(LVDT) was used for the measurement of the extension over a length of 105 mm.

The stress–strain results for all of the examined specimens together with the averages
are illustrated in Figure 4. ATENA version 5 FEA software [47] has been used for numerical
simulations. The characteristics of the UHPFRC were determined from the compressive
and tensile test results. The modulus of elasticity was taken as equal to 57.5 GPa and a
compressive strength value of 164 MPa was used. The constitutive model for tension has
been derived from the direct tensile test results and it consists of a linear part up to the
tensile strength, which was calculated to be equal to 11.5 MPa, followed by a tri-linear part,
as described in Figure 4. The fracturing strain values have been calculated considering the
characteristic element size equal to 2 mm [35].

This modeling approach has been thoroughly examined in a previous research study
where a systematic study on the calibration and validation of the numerical model for the
simulation of UHPFRC elements using experimental data was presented [35].

The characteristics of the material model used to simulate UHPFRC under compression
and tension are illustrated in Figure 5a,b, respectively.
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numerical analyses of this study.

The results of the numerical investigation of RC columns strengthened with UHPFRC
jackets are presented in Section 3.2.

3.2. RC Column Prior to and after Strengthening with UHPFRC Jackets

The initial pre-strengthened RC columns have the same characteristics as the ones
described in Section 2, and the same modeling assumptions were used.

The numerical model geometry and mesh characteristics and the cross-section of the
initial column are presented in Figure 6.
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Regarding the modeling of the strengthened RC columns with UHPFRC jackets, the
numerical assumptions of Section 2 were used. The old-to-new concrete interface was
simulated with the same approach presented in Section 2 (contact elements with coefficients
of friction and cohesion equal to 1.0 and 0.0 MPa, respectively).

An extensive parametric study was conducted to evaluate the effect of the jacket’s
thickness and the effect of the shrinkage of the jacket on the performance of the strengthened
columns; the results are presented in the following sections.

3.2.1. Effect of UHPFRC Jacket Thickness

Three different thickness values were examined: 25 mm, 50 mm and 75 mm
(Figure 7) [46]. For the shrinkage of the jacket, a value equal to 400 microstrains was
applied, which represents an 800-microstrain free shrinkage value reduced to half to con-
sider concrete creep [16].
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The results of the parametric study for the different values of the thickness of the
UHPFRC jacket are illustrated in Figure 8 [46].

The crack propagation and the strain distribution along the height of the column for
the 75 mm UHPFRC jacket with 5 mm, 20 mm and 60 mm horizontal displacement at the top
of the column are illustrated in Figure 9. These results show significant strain increments
and subsequent crack development for 20 mm and 60 mm displacement, as expected.
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Figure 9. Strain and crack distribution for specimen with (a) 5 mm, (b) 20 mm and (c) 60 mm
horizontal displacement.

The results of Figure 8 show that the thickness of UHPFRC significantly affects the
results, and as the thickness is increased, the stiffness and the ultimate load capacity are
increased, as expected. The increment in the strength with the thickness of the UHPFRC
jacket has been quantified using the Fu,S ratio, which represents the ratio of the ultimate
load of the strengthened columns over the respective results of the initial specimen (i.e.,
Fu,S =

Fu,Strengthened
Fu,Initial

). The results of Fu,S for different values of thickness of the UHPFRC
jacket are presented in Figure 10 [46].
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The results of Figure 10 indicate that there is a significant effect of the thickness of the
UHPFRC jacket on strength enhancement. An increment in the range of 2.6–3.8 times was
observed for UHPFRC thicknesses of 25–75 mm.

3.2.2. Effect of Addition of Steel-Reinforcing Bars in UHPFRC Jackets

An additional investigation has been conducted for the 75 mm thick UHPFRC jacket,
where steel bars have also been used in addition to fiber reinforcement. Longitudinal
bars and shear links have been used with the same characteristics as the ones used in the
conventional RC jacket (Section 2, Figure 1c).

The results of the strengthened column with the 75 mm UHPFRC jacket with and
without additional steel bars are presented in Figure 11.
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Figure 11. Load deflection results for initial and strengthened columns with 75 mm UHPFRC jacket
with and without steel bars.

The results of Figure 11 show that the addition of steel bar reinforcement leads to a
significantly higher load capacity. More specifically, the ultimate load of the strengthened
column with the 75 mm UHPFRC jacket is 131 kN, while with the addition of steel bars,
this load is further increased by 68% and the ultimate load is equal to 220 kN.

3.2.3. Effect of UHPFRC Jacket Shrinkage

The effect of the UHPFRC jacket’s shrinkage is presented in this section. A paramet-
ric study has been conducted for the 75 mm thick UHPFC jacket with different values
of concrete shrinkage. More specifically, shrinkage strain values of 200, 400, 600 and
800 microstrains were applied to the UHPFRC jacket and the numerical analysis results are
presented in Figure 12 [46].

A parametric study to assess the variation in the UHPFRC shrinkage strain values has
also been conducted for the case of the 75 mm UHPFRC thick jacket with additional steel
bars and the results are presented in Figure 13.

The results of Figures 12 and 13 show that there is a significant detrimental effect of
the UHPFRC shrinkage strain on the ultimate load capacity of the strengthened columns.
It can be observed that as the shrinkage strain values of the jacket are increased, there is
a significant reduction in the maximum load capacity which is attributed to the induced
tensile stresses due to the restrained concrete shrinkage of the jacket. This leads to a biaxial
stress state which results in a reduction in the strength of the jacket and a subsequent
reduction in the ultimate load capacity of the examined elements [17].
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stress state which results in a reduction in the strength of the jacket and a subsequent 
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Figure 13. Load deflection results for 75 mm thick UHPFRC jacket with steel bars using different
UHPFRC shrinkage strain values.

The reduction in the ultimate load capacity has been quantified and the ratios of
the ultimate load with and without shrinkage (Fu,Shrinkage/Fu,Without shrinkage) have been
calculated for both cases of jacket columns with the 75 mm thick UHPFRC thick jacket with
and without the additional steel bars; the results are presented in Figure 14.

The results of Figure 14 show that in case of the 75 mm thick UHPFRC jacket without
steel bars, a reduction in the ultimate load of almost 15% was observed for shrinkage
strain, equal to 800 microstrains. The detrimental effect of concrete shrinkage is limited
by the presence of the steel bars of the jackets, as in the case of the jacketed column
with the 75 mm thick UHPFRC jacket with additional steel bars, higher values of the
ratio Fu,Shrinkage/Fu,Without shrinkage were derived compared to the respective values of the
jacketed column with the 75 mm UHPFRC jacket without steel bars.
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4. An Evaluation of the Effectiveness of the Use of UHPFRC Jackets and Comparisons
with the Use of Conventional RC Jackets

In this section, a critical evaluation of the results of the jacketed columns with con-
ventional RC jackets, UHPFRC jackets and UHPFRC jackets with additional steel bars is
presented. In all of the examined cases, a 75 mm thick jacket was used and a shrinkage
strain equal to 400 microstrains was applied to the elements of the jacket. The load deflec-
tion results for all of these cases together with the results of the initial column are presented
in Figure 15.
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The results of Figure 15 show that with all of the strengthening techniques, the stiff-
ness and strength are significantly increased compared to the respective results of the in-
itial column. The addition of a UHPFRC jacket leads to greater stiffness enhancement com-
pared to the respective results of the column strengthened with an RC jacket. The greatest 
stiffness and strength enhancement is achieved by the addition of a UHPFRC jacket with 
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niques, as the ultimate load was found to be 6.4 times higher than the load of the initial 
column. The respective values for the RC jacket and for the UHPFRC jacket (without ad-
ditional steel bars) were found to be equal to 4.8 and 3.8, respectively. These results high-
light the significant contribution of the steel bars to the structural performance of the jack-
eted column, which, in combination with the UHPFRC, leads to the most effective 
strengthening method. 
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The ratio of the ultimate load capacity of the strengthened columns to the respec-
tive results of the initial column (Fu,Strengthened/Fu,Initial) for all of the different examined
techniques is presented in Figure 16.
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The results of Figure 15 show that with all of the strengthening techniques, the stiff-
ness and strength are significantly increased compared to the respective results of the
initial column. The addition of a UHPFRC jacket leads to greater stiffness enhancement
compared to the respective results of the column strengthened with an RC jacket. The
greatest stiffness and strength enhancement is achieved by the addition of a UHPFRC jacket
with additional steel bars. From the comparisons of the ultimate load increment ratios
(Fu,Strengthened/Fu,Initial) (Figure 16), it is evident that the increment in the ultimate load
in the case of the UHPFRC jacket with steel bars is significantly higher than in all of the
other techniques, as the ultimate load was found to be 6.4 times higher than the load of the
initial column. The respective values for the RC jacket and for the UHPFRC jacket (without
additional steel bars) were found to be equal to 4.8 and 3.8, respectively. These results
highlight the significant contribution of the steel bars to the structural performance of the
jacketed column, which, in combination with the UHPFRC, leads to the most effective
strengthening method.

5. Conclusions

This study is focused on the effectiveness of the use of UHPFRC jackets for the
structural strengthening of existing RC columns. It is the first time that the effect of key
parameters such as the thickness of the jackets, the presence of steel reinforcing bars and the
shrinkage of the UHPFRC jackets has been examined. The enhancement of the structural
performance has been quantified for all of the examined cases, offering valuable information
which could be used for design purposes and for the selection of the required characteristics
of UHPFRC jackets. A critical comparison of this technique with the use of conventional
RC jackets has also been conducted and the following conclusions were drawn.

■ The thickness of the UHPFRC jacket significantly affects the stiffness and the ultimate
load capacity, which increase as the jacket’s thickness is increased. The ultimate load
capacity is increased by 2.6–3.8 times for UHPFRC thicknesses of 25 mm–75 mm
compared to the respective load of the initial (prior to strengthening) RC column.

■ The addition of steel bar reinforcement to the UHPFRC jackets leads to a significantly
greater load capacity enhancement. In the case of the RC column strengthened with
the 75 mm thick UHPFRC jacket, an ultimate load capacity of 131 kN was achieved
and this value was further increased to 220 kN (68% increment) by the addition of
steel bars to the UHPFRC jacket.
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■ UHPFRC jacket shrinkage leads to a reduction in the ultimate load capacity of the
strengthened columns due to the development of tensile stresses in a direction nor-
mal to the loading condition and a subsequent biaxial stress state. A reduction in
the ultimate load of almost 15% was observed for an imposed shrinkage strain of
800 microstrains. The detrimental effect of the concrete shrinkage is limited by the
presence of steel-reinforcing bars in the UHPFRC jackets.

■ The comparison of UHPFRC jackets with traditional RC jackets shows that the use of
UHPFRC leads to greater stiffness enhancement compared to the respective results
of the column strengthened with the RC jacket. The highest load enhancement was
achieved for columns strengthened with the UHPFRC jacket with steel bars, where
the ultimate load was found to be 6.4 times higher than the load of the initial column.
In the case of the RC jacket and the UHPFRC jacket (without additional steel bars),
the ultimate load increments were found to be equal to 4.8 and 3.8, respectively.
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