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ABSTRACT 

In the following paper, we analyse and compare the performance of Mel-Frequency Cepstral 
Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) in recognising the pathological 
patterns related to laryngeal disorders in electroglottographic signals. Furthermore, we investigate 
and compare the performance of two data types in laryngeal pathology detection; the bio-impedance 
measurements of sustained phonation and bio-impedance signals obtained during continuous 
speech. The ability of GTCC and MFCC to recognise pathological patterns in both types of bio-
impedance signals is assessed using the designed CNN classifier. For both data types, the obtained 
results demonstrated that the GTCCs are superior in recognising pathological patterns in bio-
impedance signals than MFCCs. Moreover, the speech data outperforms sustained phonation in 
detection of laryngeal pathologies. The achieved accuracy of the proposed CNN system with the 
application of the MFCCs derived from sustained phonation delivered 88.69% ±3.14 accuracy. In 
contrast, the proposed system fed GTCCs derived from speech delivered 95.95% ±1.25 accuracy.   

 

1 INTRODUCTION  

In recent years, the diagnostics of vocal tract disorders attracted significant attention from scientific 
research with major focus on computational methods for the detection of pathologies [1-8]. Numerous 
studies have attempted to detect the presence of vocal tract pathologies based on varying patters 
extracted from audio recordings [1-5], as well as other data modalities, such as laryngeal bio-
impedance signals [5-12]. Bio-impedance measurements collected via electroglottography (EGG) 
present a compelling alternative to audio recordings for the discrimination between pathological and 
healthy signals, offering a more direct insight into vocal tract tissue variations as the vocal folds 
interact during speech [4, 5, 13, 14, 15]. 
 
Most laryngeal pathology classification systems involve the step of feature extraction – a 
computational process in which raw data is transformed into a set of relevant and informative features 
that capture essential patterns inherent in the data, enabling efficient their representation and 
analysis. Among the representations commonly employed in laryngeal pathology research, the Mel 
spectrum has gathered considerable attention [3, 4, 7, 8, 9].  
 
Mel-Frequency spectrum is a perceptual scale that models how humans perceive different sound 
frequencies [16]. It offers advantages in capturing perceptual characteristics of sound, particularly in 
the context of machine learning and statistical analysis. It enables the derivation of Mel-Frequency 
Cepstral Coefficients (MFCCs), that serve as powerful features for representing vocal signals and 
have been extensively utilized in pathology classification tasks. 
 
However, Mel spectrum is based on subjective judgement of perceived frequencies rather than on 
physiological processes occurring in a human ear, which could limit its capabilities of conveying 
pathological patterns. The alternative to Mel spectrum that considers the anatomy of a human ear is 
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the Equivalent Rectangular Bandwidth (ERB) spectrum. The ERB models the bandwidths of auditory 
filters in the human cochlea, providing a better match to how the human auditory system perceives 
sounds [17]. To represent the ERB spectrum, a Gammatone filter bank is commonly employed. The 
Gammatone filter bank is designed to simulate the frequency analysis performed by the human 
cochlea, aligning its filters with the ERB scale. Additionally, it can be used to derive the Gammatone 
Cepstral Coefficients (GTCCs), which can be seen as an equivalent counterpart in the ERB spectrum 
to MFCCs in the Mel spectrum, providing a perceptually relevant representation of the frequency 
content.  
 
Given the direct relevance of ERB and GTCCs to the auditory system, particularly the human cochlea, 
these feature extraction methods emerge as compelling options for glottal bio-impedance signal 
processing. Thus, there have been indications that GTCCs may offer superior feature extraction for 
bio-impedance signals [7].  
 
In addition to spectral representations and feature extraction methodology, the choice of data type 
can have a significant impact on the accuracy of a laryngeal pathology classifier. Most research 
investigated the data collected from participants during sustained vowel phonation [7, 8, 9, 12], due 
to the positioning of epiglottis, steadily sustained fundamental frequency, and the lack of articulatory 
compounds [6, 12] – those have been noted as most prevalent reasoning for the use of sustained 
vowel recordings in laryngeal pathology detection, especially within the research pursued on 
electroglottographic signals. Nevertheless, the rapid changes in the positioning of the glottis occurring 
during speech could provide a further insight into the pathological patterns derived from the bio-
impedance signals. 
 
In this paper, we present a comparative analysis of the methods used for the binary classification 
(detection) of laryngeal pathologies based on bio-impedance signals. Our investigation is aimed at 
addressing two primary objectives; firstly, we seek to compare the effectiveness of MFCCs derived 
and GTCCs in laryngeal pathology classification. Secondly, we analyse the impact of vocal task 
variation, specifically sustained vowel phonation versus speech, on the classification accuracy of 
pathological patterns within vocal signals.  
 
To comprehensively fulfil the objective of this research, we use the designed binary classification 
system to classify the pathological and control bio-impedance signals. The proposed classifier relies 
on one-dimensional Convolutional Neural Networks (CNN). The comparative analysis is completed 
by using the designed CNN model to classify the derived sets of coefficients for all four classification 
instances:  
1. MFCCs derived from sustained vowel phonation,  
2. GTCCs derived from sustained vowel phonation, 
3. MFCCs derived from speech signals, 
4. GTCCs derived from speech signals.  
 
To ensure the generalizability of the results, we apply 5-fold cross-validation for all four proposed 
methods – the process of training and validation of the model was repeated five times, each time on 
different subset of the data. The performance of the methods in the pathological pattern recognition 
is measured with the validation accuracy, as well as precision, sensitivity, and F1 scores. 
 

2 RELATED WORK  

Table 1 depicts a summary of most recent studies within the field of laryngeal pathology detection 
(binary classification between pathological and control signals) based on bio-impedance signals. 
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Table 1: Summary of chosen laryngeal pathology detection systems from the literature. 

Authors Population Methods Results 

[8] 281 control, 
791 
pathological.  
 
 

DATA:  
Audio and Glottal Bio-impedance (EGG) 
(Saarbruecken Voice Database).  
FEATURE: 
Spectrograms and Mel-spectrograms. 
CLASSIFICATION: 
Pre-trained CNN (ResNet50, Xception, and 
MobileNet), Long Short-term Memory 
Network.  

AUDIO: 
Accuracy: 93.94%  
 
BIO-IMPEDANCE:  
Accuracy: 93.71%  
 
INTEGRATED:  
Accuracy: 95.65%  
 

[6] 25 healthy, 
25 
dysphonia.  
  

DATA:  
Audio and Glottal Bio-impedance (EGG) 
(Saarbruecken Voice Database).  
FEATURES: 
MFCC. 
CLASSIFICATION:  
CNN. 

AUDIO:  
Accuracy: 74.28%. 
 
BIO-IMPEDANCE: 
Accuracy: 50.41%. 
  

[9] 613 control, 
566 
pathological.  
  

DATA:  
Audio and Glottal Bio-impedance (EGG) 
(Saarbruecken Voice Database). 
FEATURES: 
Mel-spectrograms. 
CLASSIFICATION: 
Pre-trained CNN (ResNet18) with 
multimodal transfer module. 

INTEGRATED:  
Accuracy: 100%. 
Multi-class 
classification:  
accuracy: 98.02%, 
sensitivity 98.23%, 
specificity: 97.82%, F1-
score: 97.95%.  

[7] 303 control, 
303 
pathological.  
 
 

DATA:  
Audio and Glottal Bio-impedance (EGG) 
(Saarbruecken Voice Database). 
FEATURES:  
Various methods, including MFCC and 
GTCC.  
CLASSIFICATION:  
Support vector machine (SVM), k-nearest 
neighbour (KNN), Ensemble Learner and 
Neural Networks. 

BIO-IMPEDANCE:  
Ensemble Learner on 
GTCC:  
accuracy: 93.15%, 
precision: 96.70%, 
sensitivity: 90.29%, F1-
score: 93.38%.  
 
INTEGRATED:  
Accuracy: 79.97%. 

 
Recently, several voice pathology classification systems have emerged, coinciding with the increased 
prominence and accessibility of large glottal bio-impedance datasets. While these datasets have 
underpinned the success of numerous systems, most of laryngeal pathology classification based 
solely on bio-impedance have yielded suboptimal results in terms of accuracy [5, 6, 10, 11, 12]. For 
instance, In 2022, utilizing the Saarbruecken Voice Database, [6] proposed a binary classification 
system for vocal tract disorder detection. In the proposed system, both audio and bio-impedance 
signals were investigated. The MFCCs were derived from both data modalities, and, subsequently, 
fed into the CNN classifier. The reported accuracy for audio signals averaged at 74.28%, while for 
EGG signals – only 50.41%.  
 
To mitigate the low accuracy of the systems based on bio-impedance signals, a multimodal approach 
based on both EGG and audio signals was followed in [9], while others resorted to powerful tools 
such as very deep networks (a 50-layer residual network) [8] or ensemble learners [7]. The former 
approach requires additional audio recordings, and the latter involves complex, computationally 
expensive, and time-consuming methods. Hence, such lines of attack may limit the applicability of the 
given solutions.  
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In this paper, we present a method capable of improving the performance of a laryngeal pathology 
detection system by (a) employing better-suited feature extraction methods, and (b) selecting a more 
appropriate signal, while retaining a relatively simple neural network. 
 
 

3 METHODS  

For this research, we created a new dataset to provide novel insights into the classification of 
laryngeal pathologies. Furthermore, since majority of the related work pertains to sustained vowel 
phonation, we aimed at additional contribution into the research field by providing a new dataset that 
contains the electroglottographic measurements of speech. 
 
The flow of the system investigated in this research is shown on Figure 1. 
 

 
Figure 1: Block diagram of the processing stages of the system implemented in this study 

 

3.1.1 Dataset 

1) Data collection: 
All recordings used in this research were collected at the ENT department of Czerniakowski Hospital 
in Warsaw, Poland, in accordance with General Data Protection Regulation, outlined in the Regulation 
(EU) 2016/679 (General Data Protection Regulation) and the ethics approval was obtained.  
 
The dataset used in this research consists of bio-impedance signals gathered using Kay Model 6103 
electroglottograph, which is one of the most widely used electroglottographs within the research of 
laryngeal pathologies [11, 18]. All bio-impedance measurements were collected during the continuous 
speech performed by Polish-speaking participants reading the same paragraph of text in Polish 
language. The recordings were captured as mono WAV files, with the sample rate of 44.1 kHz and 
the bit depth of 16 bits per sample. 
 
Prior to data collection, all participants underwent thorough assessment by a phoniatrics specialist to 
ensure accurate diagnosis. The study comprised 20 participants from the control group – subjects not 
affected by any laryngeal pathologies, as well as 136 subjects diagnosed with various vocal tract 
pathologies. The pathologies included vocal fold polyps, other laryngeal growths not affecting the 
vocal folds, vocal fold paralysis, laryngitis, Reinke’s Oedema, and functional dysphonia. Technical 
issues with recordings led to the exclusion of data from 15 participants affected by laryngeal 
pathologies. Additionally, the distribution of participants across pathology categories was uneven, 
resulting in an unbalanced dataset – a study limitation worth noting. Conclusively, the number of 
participants totalled at 141, including 121 affected by a laryngeal pathology, and 20 from a control 
group. The representation of the number of participants in each category can be seen in Figure 2. 
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Figure 2: Number of participants in each category. 

 
2) Data pre-processing  

First data pre-processing stage consisted of normalizing all signals’ amplitude. To avoid any signal 
alternations to existing recordings, and thus preserve the real information contained within them, we 
chose the peak normalization technique instead of compression. The target peak level was set at -3 
dB. The peak normalization process consisted of the following steps: computation of the peak level 
of a processed signal, computation of the gain required to normalize that signal to the target level, 
the multiplication of that signal with the computed gain. All normalized files were saved to a separate 
folder.  
 
Additionally, to address variations in the length of speech recordings, we pre-segmented all data into 
one-second-long segments. Each recording was split into consecutive one-second segments, 
comprising 44100 samples each, and saved as individual WAV files. This segmentation strategy 
eliminated the need for zero-padding and ensured uniformity across the dataset.  
 
Once fully pre-processed, the database consisted of 3809 data samples in speech dataset (3421 of 
pathological samples, 388 of control), and 3239 data samples in dataset of sustained phonation (2549 
pathological, and 690 control). 
 
 

3.1.2 Feature Extraction 

The derivation of MFCCs and GTCCs from a raw signal in time domain follows the similar processing 
that consists of following stages: the calculation of Fourier Transform, application of appropriate filter 
bank (Mel filter bank for MFCCs and Gammatone filter bank for GTCCs), logarithmic compression, 
and performing of the Discrete Cosine Transform [19]. The key distinction lies in the frequency scale 
characteristics; MFCCs exhibit triangular filter responses, characterized by coarse shapes that lead 
to minimal overlap between neighbouring filters, while GTCCs employ smoother filter responses. By 
utilizing the ERB scale, GTCCs attain superior filter bank resolution, particularly at lower frequencies.  
The Gammatone filter response, used for GTCC derivation, is described by the equation [20]: 
 

𝑔(𝑡) = 𝐴 ∙ 𝑡𝑛−1 ∙ 𝑒−2𝜋𝐵𝑡 ∙  𝑐𝑜𝑠 (2𝜋𝑓𝑐𝑡 +  𝜑) (1) 

 
where A is a normalization constant responsible for the gain (usually equal to 1), t represents time, n 
is the order of the filter, B is the bandwidth of the filter, fc is the center frequency of the filter, and φ is 
the initial phase shift of the filter. 
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In this study, to ensure the capture of all most relevant features, 40 coefficients were calculated for 
both MFCCs and GTCCs. The signals were analysed window by window, with an overlap set to half 
of the frame size. The Hann window was chosen, with a frame size set to 512 samples. 
 
 

3.1.3 CNN Classifier  

The CNN classifier proposed for this study relies on the one-dimensional convolutional layers, 
designed to process cepstral features effectively. It applies four blocks combining convolutional 
layers, followed by ReLU activation functions, and normalization layers. To counteract potential 
overfitting, the model integrates the dropout layers with a dropout rate of 0.2 after the second and 
fourth blocks. Furthermore, a one-dimensional global average pooling layer was incorporated, 
alongside two fully connected layers interspersed with a dropout layer with a dropout rate of 0.5. The 
final layer employs the SoftMax transfer function. 
 
To train the model, we partitioned the dataset into an 80% training set and a 20% validation set. We 
applied Adam optimisation algorithm, with a mini-batch size of 32 and a maximum of 100 epochs. 
Padding direction was set to ‘right’, and data was set to shuffle at every epoch to augment training 
efficacy. To monitor the model’s performance, validation frequency was set to 512 samples. 
 
 

4 RESULTS AND DISCUSSION 

In this study, the four methods of laryngeal pathology detection were evaluated: (1) classification of 
MFCCs derived from sustained vowel phonation, (2) classification of GTCCs derived from sustained 
vowel phonation, (3) classification of MFCCs derived from speech signals, and (4) classification of 
GTCCs derived from speech signals. Each approach was tested by feeding the coefficients into the 
proposed CNN model in 80% training and 20% validation data split.  
 
The 5-fold cross-validation was applied to provide a further insight into the obtained results. 
Subsequently, the average precision, sensitivity, and F1 scores were calculated for each investigated 
method, as follows: 
 

• Precision, representing the ratio of the correct predictions against all predictions made for the 
class:  

Pr =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

 

• Sensitivity, representing the ratio of the correct predictions against all instances of the 
investigated class fed into the classifier:  

𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

 

• F1-score, representing the balance between the precision and sensitivity:  

𝐹1 =
2 ∙ 𝑃𝑟 ∙ 𝑆𝑛

𝑃𝑟 + 𝑆𝑛
 

(4) 

 

• Accuracy, representing the ratio of correctly classified instances against all possible 
instances:  

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(5) 

 
 
The results obtained from all four investigated methods are depicted in Table 2. 
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Table 2: Validation accuracy obtained from all cross-validation instances. 

Cross-validation 
instance: 

MFCC on 
sustained 
phonation 

GTCC on 
sustained 
phonation 

MFCC on 
speech data 

GTCC on 
speech data 

1 89.03% 87.94% 92.12% 97.83% 

2 83.93% 89.18% 92.53% 95.11% 

3 91.96% 92.12% 92.93% 94.57% 

4 87.64% 89.80% 94.02% 95.92% 

5 90.88% 91.96% 93.61% 96.33% 

AVERAGE 
VALIDATION 
ACCURACY 

88.69% ±3.14 90.20% ±1.81 93.04% ±0.78 95.95% ±1.25 

 
According to the validation accuracy delivered by the proposed CNN model, the ability of sustained 
phonation-derived MFCC to convey the pathological patterns in bio-impedance signals remains at a 
satisfactory level of 88.69% ±3.14. This result surpasses many of the existing laryngeal pathology 
detection systems [5, 6, 10, 12]. However, the implementation of the sustained phonation-derived 
GTCCs further exceeds the accuracy delivered by MFCCs, achieving 90.20% ±1.81. This result 
suggests that the GTCCs outperform the MFCCs in the pathological pattern recognition for laryngeal 
disorders.  
 
The speech-derived MFCCs achieve even higher accuracy of 93.04% ±0.78 in the proposed laryngeal 
pathology detection system. Nevertheless, the speech-derived GTCCs surpass this result by 
achieving 95.95% ±1.25 validation accuracy. This result confirms the previously stated hypothesis of 
GTCC outperforming the MFCC, furthermore, it proves that speech signals deliver better results in 
laryngeal pathology detection than sustained vowel phonation. 
 
Table 3 shows the average precision, sensitivity, and F1 scores obtained for all four methods 
investigated in this study. 
 
Table 3: Average precision, sensitivity and F1 scores calculated for all tested methods. 

Parameter: 
MFCC on 
sustained 
phonation 

GTCC on 
sustained 
phonation 

MFCC on 
speech data 

GTCC on 
speech data 

Precision 88.95% ±3.83 91.38% ±2.75 93.84% ±0.81 96.81% ±1.51 

Sensitivity 98.00% ±1.06 96.78% ±1.56 98.73% ±0.76 98.76% ±0.84 

F1-Score 93.20% ±1.68 93.97% ±1.02 96.21% ±0.42 97.77% ±0.68 

 
 

5 CONCLUSION 

The two objectives of this study were: (1) the comparison of MFCC and GTCC feature extraction 
method in pattern recognition related to laryngeal pathologies, as well as (2) the comparison of the 
performance of two data types in the detection of laryngeal pathologies; bio-impedance signals 
recorded during continuous speech, and bio-impedance signals recorded during sustained vowel 
phonation.  
 
In this study, we investigated four methods in laryngeal pathology detection based on 
electroglottographic signals. The four methods included: (1) classification of MFCCs derived from 
sustained vowel phonation, (2) classification of GTCCs derived from sustained vowel phonation, (3) 
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classification of MFCCs derived from speech signals, and (4) classification of GTCCs derived from 
speech signals. Each method was evaluated with the designed CNN classification model.  
 
Based on the accuracy, precision, sensitivity, and F1 parameters, it is shown that the GTCCs 
outperform the MFCCs in laryngeal pathology detection in both data types. Furthermore, in this study 
we proved that the bio-impedance signals recorded during speech deliver better results in laryngeal 
pathology detection than the bio-impedance signals recorded during sustained phonation. This finding 
contributes to the main and most crucial novelty of this study.  
 
Nevertheless, since main limitation of this work relate to the imbalanced dataset, the recommended 
future directions for this research include further investigation of the matter on other existing and 
publicly available datasets. The investigation of the multi-modality concept and the fusion of audio 
recordings and bio-impedance measurements is also planned for the future of this research. 
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