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Abstract—Community structure analysis is a critical task
for complex network analysis. It helps us to understand the
properties of the system that a complex network represents,
and has significance to a wide range of real applications. The
Label Propagation Algorithm (LPA) is currently the most popular
community structure analysis algorithm due to its near linear
time complexity. However, the performance of the LPA has preen
to be unstable and the correctness of community assignment
of nodes is unsatisfactory. In this paper a Self-Organizing
Community Detection and Analytic Algorithm (SOCDA?) based
on swarm intelligence is proposed. In the algorithm, a netwik is
modeled as a swarm intelligence system, while each node wiith
the network acts iteratively to join or leave communities baed
on a set of pre-defined node action rules, in order to improvette
quality of the communities. When there is not a node changings
belonging community anymore, an optimal community structue
will emerge as a result. A variety of experiments conducted o
both synthesized and real-world networks have shown resust
which indicate that the proposed algorithm can effectivelydetect
community structures and the performance is better than tha
of the LPA. In addition, the algorithm can be extended for
overlapping community detection and be parallelized for lage-
scale network analysis.

I. INTRODUCTION

could be based on degrees of node [1], k-cliques, k-clans, k-
clubs [2], etc. Intuitively, a community is a group of nodesai
network that has more edges (connections) among its member
but comparatively has less edges between its members and th
rest of network nodes. This simple concept is the core ofipear
all community definitions.

Community structure analysis of complex networks has
attracted much interest and a number of algorithms origigat
from different fields, such as physics, statistics, dataimgin
and evolutionary computation, etc., have been proposeseteTh
are many different strategies behind these community tletrec
algorithms, such as divisive hierarchy, agglomerativednizhy,
random walking, information diffusion, spectrum analysis
statistical inference, and much more. A comprehensivesvevi
of these methods has been conducted, for example, a surve
of community discovery methods was provided with a special
focus on techniques designed by statistical physicistsTB¢
meta definitions of a community in a complex network was
given, and the majority community discovery methods was
summed up based on their own definitions [4]. However,
most of these traditional algorithms are incapable of wagki
in large-scale network community structure analysis nyainl
because of their heavy computational cost or model linoites;

A variety of real-world systems could be modeled as€-d., requiring priori information of community structydata
mathematical complex networks. Social networks, proteinstructure representation of community structure, etc.

protein interaction networks, the WWW, and the Internet,
etc. are just some examples of such systems. These networks
usually show some interesting properties such as high mktwo

transitivity, power-law degree distribution, the existenof

community structure, and much more. The study of communit
structure can help us to understand those systems at a midd
scope level, just between the macroscopic level in which th
whole system is considered and the microscopic level in lwhic
each node is analyzed individually. Actually the analysis o

community structure has significance to many applicatibos.

example, community structure analysis can be used in alsoci&®
community or network (e.g. Facebook) which presents rela
tionships between community members. The analysis of suc
networks will help to design reliable friend recommendatio

systems. As another example, community structure analysf%
can be used in detecting communities of customers with gimil

purchasing interest in e-business network. This can leagtto

up efficient recommendation system and thus improve busine

opportunities for product retailers.

The Label Propagation Algorithm (LPA) [5] is currently the
astest algorithm for community structure analysis, withear-
linear time complexity. In LPA, each node is assigned a label
community identifier) indicating the community to which it
elongs. The community structure is exposed by iteratively

Qropagating labels among neighboring nodes. During label

propagation, each node reserves the label that most of its
neighbors hold. However, the result of LPA is unstable amd th
precision of correct node community detection is unsatisfa
due to the inner randomness of the algorithm: (1) as there
are several labels with the same number of neighbors hqlding
ode will take one of them randomly; (2) the sequence of node
abel updating is random, but the updating sequence of these
odes at the edge of communities has a considerable impac
on the final results. Many improved LPA-based algorithms
for community detection have emerged. Some algorithms [6],

%7] improve the unstableness problem, while some algoisthm

8]-[10] are extended LPA to detect overlapping commusitie
(a node may belong to several communities simultaneously).

An exact definition of community depends on the under-But further analysis shows that in all of these algorithrhs, t

lying problem and its application. For example, the defimiti

instability is inevitable.



In this paper, we propose a Self-Organizing Community ® 5
Detection and Analytic Algorithm (SOCDA based on the ‘ ‘
idea of Swarm Intelligence (Sl). Sl is the collective beloavi 2) (+) () —(7)

;

of decentralized and self-organized systems, either alatur (a) a networ of 7 nodes parttioned into two communtes,
g e . . . {1.2,3,4}and {5, 6, 7}

artificial. The expression was introduced in the context of

cellular robotic systems [11]. Generally, in an S| system,

there is a large number of simple individuals who can only
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perform simple actions and interact with nearby neighbors (0)2 possible LAR based communly structure
locally as well as with the environment. Intelligence engsrg ™ ©) ()
as a consequence of the sum of these simple actions and

interactions. It is believed that SI seems not to be a coin- © @

cidence but rather a property of a variety of systems. We
treat an analyzed network as a Sl system, in which each node

c) communities decoded from the LAR representation in (b)

decides its own actions, i.e., leaving its original comnyni 12 3 45 6 7
(communities) or joining into new communities, depending 23487
on whether the action could improve the quality of the relate -2 -|5]s
community. Obviously, a node can only form a community (or (d) SNR based community structure

communities) with its neighbors, thus the communities that

node acts to join are those its neighbors are belonging to alsFig- 1. An example of SNR in a community structure

The community (communities) a node is staying and those of

its neighbors belonging to, form the environment a node make i )

its own decision. An optimal community structure will finall ©f the community from which the node leaves and the members
emerge as each node acts iteratively, until no node chatgjes Pf the community to which the node joins. Since our focus is
community anymore. Due to the fact that nodes make action@" nhode action rules, the community structure and the graph
by referencing a whole community rather than just one hop ou{oP0logy are stored in central data structures, in padicuie

of labels as in LPA, the quality of the community structuratth Propose a Sequential Node Representation (SNR) to remembe
emerges is more likely to be better. the community structure of a network in our algorithm. The

SNR is inspired by the Locus-based Adjacency Representatio

In fact, SI covers a number of algorithms inspired by (LAR) [14], which is usually used in evolutionary community
natural bio-systems including the Genetic Algorithm (GAJla detection algorithms (such as genetic algorithm based) for
the Ant Colony Optimization (ACO) algorithm. Both of the individual representation.
two algorithms were used for community structure analysis _ _ )
[12], [13]. However, due to the limitation of the represdia [N LAR, @ community structure is encoded in a¥-
method for evolutionary individuals, the GA based algarith dimensional vector whiléV is the number of network nodes.
cannot be used for large scale network analysis. As for th&&ch component of a vector represents a node of the network
ACO based algorithm, it has a number of parameters to band the value of a component is a neighbor identifier of
set which introduces great complexity. Instead, our atgori  the corresponding node. These nodes linked together by thei
does not imitate any specific bio-system, and it is an asmifici N€ighborhood connections form a community. For example, in
swarm system built on the basic idea of SI. Our algorithm is? network with seven nodes partitioned into two communities

free of parameters except two simple ones in initializatiod @S shown in Fig.1 (a), a possible LAR community structure
post processing. representation is depicted in Fig.1 (b), in which each compo

nent is a neighbor of a corresponding node. By sequentially

The rest of this paper is structured as follows. In section Il decoding the LAR representation, i.e. finding the connected

we formally describe our algorithm and discuss its advasgag node groups, the community structure of the graph could be
and limitations. Then in section Ill, we show the evaluationextracted, as shown in Fig.1 (c).

results of our algorithm on both synthesized and real-world ) )
networks. Finally, section IV concludes the paper. Our SNR representation method denotes the community

structure of a network in & x 2-dimensional matrix, or a bi-
linked list. For the network in Fig.1(a), its SNR repres¢iota
Il.  ALGORITHM DESCRIPTION is shown in Fig.1 (d). In SNR, member nodes of a community

In this section, we will describe our proposed SOCDA aré requwed to order sequentlal_ly according to their iifiens.
algorithm in detail, including community structure repes 1 hen, in the first row of the matrix, the component value of a n-
tation, community structure initialization, communitysass-  ©d€ iS its next adjacent node belonging to the same community
ment, node evolution, post process and more. in the ordered community member sequence, and in the secont

row, the component value is its previous adjacent node. We
1) Community Structure Representatidn: our algorithm, call the first rowforward-link and the second rowackward-

each node needs to know communities of its own and itdink. The values of the last node in forward-link and the first
neighbors’ for evolution decisions. It is straightforwandlet  node in backward-link are recorded as the end of links. Note
each node remember the members of the community to whicthat the link relationship in SNR is not connections between
it belongs. However, when a node changes its communitpodes as in LAR, but a new relationship introduced among
belonging, it is difficult to notify the related nodes of the nodes merely indicating community memberships. With this
changes if there is not a convenient communication wayommunity structure representation, it is easy to extrhet t
between the nodes. Here the related nodes include the membeommunity members for any given node. For example, to get



ALGORITHM 1 : community initialization 4) Node evolution:Node evolution is the key step of the
INPUT: graph adjacent matrix 'G'; ratio 'p algorithm. Network nodes are considered as a swarm and eacl
OUTPUT: community structure 'C’ in SNR . . -
node in the swarm aims to act to create a better community
1: calculate Jaccard similarity of each node with its eadighimr. structure. The community structure and the network topplog
2: for each node n not belonging to any community (in degree desugnd are the environment in which the swarm lives. A node can

order) do o _ only communicate with the environment and get the local
bt if n's ?95.;5".‘:&'&2#‘9'9“2% brf_'tongs to a commurtiten information that includes: (1) the community to which thelro
g oge |0 o fhe communt. belongs, (2) its neighbor nodes, (3) each neighbor’s conmun
6: n forms a new community with its most similar p% neighbors ty, and (4) the connections between these nodes, i.e., thialpa
that belong to none community. topology related to nodes belonging to these communities.
7 end if _ _ The node can decide its actions based on assessment of the:
g o fourpdate community structure in C. communities.

Nodes can be classified into two categories, the inner
node and the boundary node. An inner node has neighbor:
Fig. 2. Core community structure initialization algorithm that all stay in the same community as the inner node itself

(i.e., it has no connection with the rest nodes outside of the

] ) community), while a boundary node has some neighbors in the

the members of the community to which node 3 belongs, frontommunity it belongs to, and some neighbors who belong to
the third column, along the forward-link, node 4 is founddan other communities. Obviously, an inner node does not need to

along the backward-link, nodes 2 and 1 are recognized. Notghange its community attribution, while a boundary node wil
that it is also simple to update a community, i.e., to add ayolve to make better communities.

node into or delete a node from a community. The addition or

deletion is simply bi-linked list insertion or deletion apéons. In general, there are two main types of questions a node
needs to answer: (1) "Should | leave the community in which

2) Community Structure InitializationThe initialization is  |'m staying?” To answer this, the node compares the quality
the first step in SOCDA The initialized core community score of the community before and after it (potentially v
structure has impacts on node evolution performance anf the former is greater, then the node does not leave its

the quality of the finally obtained community structure. Theoriginal community, else the node will leave. (2) "For each
initial communities are built based on the structural samity  neighbor’s community, should I join into it?” It is worthwiki

between nodes defined as mentioning that: (a) some neighbors may coincidently stay i
o |IN (i) N N(j)] the same community as the node, and it is not necessary to joir
S(i,j) = NOUNG) (1) into the community the node already stays in, and (b) some

neighbors themselves may stay in a same community, thus the
where N (i) and N (j) are the neighbor node sets of nade node only needs to decide once that if it should join to the
and j, respectively. Apparently, the more common neighborssommunity. We refer these unique communities of neighbors
two nodes have, the more similar they are. In the initialarat as independent communities, therefore a node only needs tc
procedure, at first, we calculate similarities between emde decide whether joins to these independent communities. To
and all of its neighbors. Then, a node which is not part of anyanswer this, likewise the first question, the node compéres t
community will have two choices: (1) it joins the community quality score of the community before and after (poteryjall
to which its most similar neighbor belongs if the community joining and makes a decision based on the comparison result
exists, and (2) it forms a new community with its most similar The objective of deciding on the leave or join action is to
p% neighbors who do not belong to other communities yet. limake the related community become better. Therefore, we say
the first choice is impossible, then the second is employedh node has "good-will” or "aims to” improve the community
The node with large degrees is processed preferentially agructure.
it has more chance to form a better core community. The

designed core community structure initialization algonitis . _MOSt possibly, a node may join into several communities
summarized in pseudo code in Algorithm 1 as shown in FigSimultaneously. It is necessary to merge some communities i
2 the quality of the merged community is better than the sum of

each quality. The merging action will induce acceleratién o

3) Community assessmenk node evolves its community community growth. If there ar& communities a node belongs
belongings depending on the impacts of its actions on theo, then there will bé2” — K —1) candidate merging strategies.
related community. That means it needs a community qualityf K is a large number, it is time consuming to try all possible
measure method. We use the Normalized Conductance (NGjrategies. Unfortunately, initiallyx is usually large. For
[15] as the community quality assessment function in oussimplicity, now we only try to merge two possible commurstie
algorithm. Denote the member node set of a community aor which the mergence will induce the maximum increment of
A, and the rest node set of the networksthen the NC is  quality score. The members of other communities that should
defined as follows: be merged could be finally added into the community gradually

C(A) = €AA B €aea ) in later evolution steps.

eaateap  eaeateaep If it is not the goal to merge all communities, then the node
while e4 4 is the number of edges withid andeap is the can be an overlapping node, i.e. it belongs to these rengainin
number of edges betweeA and B. Theey = e + eap communities simultaneously. To record the multiple belong
andep = epp + eaB. ings, the SNR in this work should be improved. Currently we




ALGORITHM 2 : node evolution ALGORITHM 3 : post processing
INPUT : node id 'n’; graph adjacent matrix 'G’; current communitpsture INPUT: detected communities 'dcoms’; merging threshold, 'TH’
'C’in SNR OUTPUT: improved communities
OUTPUT: updated community structure 'C’

1: sort communities according to their size in ascendingord

1: get n's neighbors from G. 2: for each detected communitjo
2: get n's current community from C. 3: if community size is less than or equal to 'THien
3: if nis an inner nodé¢hen 4: get all neighbors of each member.
4: return 5: merge the community with the one having the maximum
5: end if neighbors as its members.
6: for each n’s neighbor, get its current community. 6: remove this community.
7: remove duplicated communities. 7: end if
8: assert if n should leave its original community. 8: end for
9: for each independent neighbor community, assert if n lshjoin to.
10: if n joins to no communitythen
11: joins to the one with minimum quality reduction. . . . .
12: else ifn joins to multi communitieshen Fig. 4. Community structure post processing algorithm
13: if exist optimal merging strategyen
14: merge some communities. ALGORITHM 4 : community detection
15: n joins into the merged community. INPUT: graph adjacent matrix 'G’; evolution generation 'E’
16: else OUTPUT: community structure 'C’ in SNR
17: n joins into the community with the maximum score.
18 endif 1: call 'community initialization'(Algorithm 1).
19: end if ) ) 2: while evolution generation is lesser than 'Bo
20: update community structure in C. 3: generate a random node evolution order sequence.
4: call 'node evolution’ (Algorithm 2) for each node accargito the
sequence.
Fig. 3.  Community structure evolution algorithm g if no rl;(r)g;kchanges its community belonging anyntoemn
7: end if
8: increase evolution generation.

assume a node can only belong to one community at a time9: end while

If a node aims to joins multiple communities by its actions,10: call post processing’ (Algorithm 3).
the node will select the one with the greatest quality score t
actually join it. In addition, we assume there is no isolated
node, i.e. a node must belong to a community. If a node joingig. 5. Framework of the algorithm
no community after its actions, it will then join the commiyni

with the minimum quality score reduction. The pseudo node

evolution algorithm is illustrated in Algorithm 2 as showm i TNis will introduce randomness into the algorithm. If no eod
Fig. 3. evolves or the maximum number of generations is reached, the

algorithm starts the post processing.

5) Post Processing:Once there is no node changing it-

s community belonging anymore, the algorithm assumes ) . ) . . .
community structure that is considered as the best, thoug} Uickly find better community structure since its nodecact

the best outcomes of different runs of the algorithm may S €réncing the whole community. In LPA, a node selects its
abel mainly depending on the one-hop labels, which may

be different as a result of the randomness of the algorith Jave lost some network topology information. In additidre t
Due to the quality measure function, the obtained community!2V€ '0St S pology Ir lon. 'n additiarg
uality assessment of a community (the evolution objective

structure may contain some small sized communities whiclf - . X
have only a few members. These small size communities ar%f community structure) in the SOCDAalgorithm could be

very possibly a part of a larger size community, that is todNy one that relates with the definition of a community in the

say, the algorithm could find fine-grained communities. Wen]?t;/r\:orla v;{hi_lt(_a in :BP’? a no%e csn only join éo the commu?ity
introduce a post process to merge small size communitie%ith %osilgloggs inathg sr:aom: coanimr?ﬁwrify?egetsrécr?gg:;:j%%stz
below a threshold into an appropriate larger community. Th he label that the most of its neighbors hold. Therefore,

criterion is that a small size community should be merge . : L
with the community which has the maximum neighbors ofarlznzﬁgsa& algorithm could be potentially used in wider

nodes in small size community as its members. The mergin
is carried out in the ascending order of the size of mergedlsma  Similar to LPA, randomness is also inevitable in the
communities. Note that if the communities to be merged aresSOCDA? algorithm as nodes update their community joining
in the same size, they will be merged in a random order. Thén a random order in each evolution generation. However,
pseudo code of post processing is shown in Algorithm 3 ashe impact of the randomness is much less than that of LPA
shown in Fig. 4. because in the SOCHAalgorithm, a node can much likely
leave a community it has joined previously by mistake. The
experiment described in next section will back this.

Comparing with LPA, the algorithm could be more likely

The framework of our proposed SOCBAalgorithm is
summarized in Algorithm 4 as shown in Fig. 5. The maximum
evolution generation is a measure employed to make sure the The SOCDA algorithm, however, still faces certain lim-
algorithm terminate. Mostly, node evolution will end in avfe itations. For example, before making a decision, a node has
generations. We will show this in later experiment. Notet thato evaluate whether its action will improve the community
in each generation, the nodes evolve in a new random ordeguality. This is a more complex task compared to a simple



label selection used in the LPA algorithm. Additionally the and fourth phenomena can be explained by the fact that the
is the task of merging tries while a node joins into multiple modularity and NMI values are statistic and thus expose the
communities simultaneously during evolution, for the gpat  quality of the community structure as a whole. Both values
candidate merging strategies may be huge. Moreover, as tlege affected by the factors such as the number of communities
algorithm is running, there will be more stable communitiescontaining wrong members, the number of nodes assigned intc
of which members will not change, i.e., these nodes havingncorrect communities and its distribution, and so on. &abl
neighbors in such stable communities may repeatedly, but shows the statistics of some factors. (Due to space limit,
unnecessarily, re-compute the quality scores of such comwe only give out results of networks with = 0.4. Those
munities. This computation burden could be alleviated byof networks withy = 0.3 are similar.) Note that we put 30
remembering each community’s current score, and therefoneins of generating community structures together to getethe
the re-computation can be avoided. statistic.

From this table, it is clear that: (1) the numbers of com-
[1l. EXPERIMENT AND EVALUATION munities detected by both algorithms are equivalent; (2) in
gnost cases, the number of communities including incorrect
member nodes found by the SOCBAlgorithm is more than
c}hat of LPA; (3) always the number of nodes of LPA joining
a wrong community is much more than that of SOCDA
algorithm; and (4) the maximum number of incorrect members
contained in a community determined by LPA is much greater
than that of SOCDA algorithm e.g., as can be seen, that
)@_umber of the SOCDAIs just several, while that of LPA is

mum number of mistakenly included members of communitiescOMmpParable with the size of a community (S0 nodes). The first

We implemented the SOCD3algorithm on MATLAB and ran phenomenon indicates that the followed statistics is nmegai
it on a virtual server with 8G memory. For comparison weln that the situation is avoided that communities found by th

5 . 4 X : -
implemented the LPA algorithm on MATLAB as well. SOCDA’ algorithm are fine-grained, i.e., found communities
have a small nhumber of members and thus consequently

] ] these small size communities very possibly contain lessigvro
A. Synthesized network experiment members. The second and the third phenomenon state the
For the synthesized networks we use the LFR model [1g]incOrrect joining nodes of the SOCBATistributes dispersedly
which is popular in community detection algorithm perfor- N more communities, while those of LPA concentrate in a
mance evaluation. LFR network is characterized by a mixind!Umber of communities. The fourth phenomenon backs this
parametefs — zput /(2o + 7out)) that gives the ratio between conclusion as well. As there are more communities with
external degree of a node and its total degree. Fhand 2o, incorrect member nodes,.though the number of which is quite
are the internal and external degree of a node with respést to Small, the accumulated difference between these comreaniti
community, respectively. Ag < 0.5, the community structure and the corresponding real ones may overrule the difference
is well defined. The parameters setting of the model used ar@€tween a community structure which has a lesser number of
(1) average node degree, 20, (2) maximum node degree ggommunities but containing more incorrect members and the
(3) exponent of degree distribution, -2, and (4) exponent of€al community structure. This can explain the phenomenon
community size distribution, -1. We generate networksfaf  that the community structure detected by the SO€RAgo-
0.3 and 0.4 with node number from 1000 to 10000, incremenfithm iS sometimes worse than that of LPA from modularity

by 1000. The ratio parameter in initialization is 30% and the®" NMI view. In fact, in the community structure obtained
threshold in post processing is 10. by the SOCDA algorithm, both of the number of incorrect

members within each community and the total number of
Due to the random property of both SOCBAnd LPA  nodes joining into incorrect community are less, therefore
algorithms, for each network we ran both algorithms 30 timesrom the application point of view, the quality of community
and computed the average quality score (and associateastndstructure by the SOCDAalgorithm is better. Fig.8 compare
deviation) for each network. The modularity and NMI resultsthe frequency distribution of the number of nodes joining
are shown in Fig. 6 and Fig. 7, respectively. into incorrect community.(Due to space limit, only resuifs

These two figures indicate that: (1) in most cases, thé etworks with;: = 0.4 are given. Those of neworks with

. = 0.3 are similar.) Note that there is no number 0. The figure
results of the SOCDAalgorithm are better than those of LPA, K O . )
either in modularity or in NMI, and the modularity scores of further indicates the performance of the SOCDaigorithm is

the SOCDA algorithm are closer to the real ones; (2) the better. Therefore, it can be concluded that SOCRAgorithm

standard deviations of the SOCBAlgorithm are smaller than Insetz\j/lvfrekger method for community structure in synthesized
those of LPA, indicating the former is more stable; (3) in gom '

cases, the conclusion from modularity disagrees the oma fro
NMI, e.g., asp = 0.4 and network size is 1000, 4000 or
6000, the modularity score states the SOCDa#gorithm is We further tested our algorithm on three real-world net-
better, while the NMI score declares LPA; and (4) though inworks whose real community structures have been estallishe
most cases, the quality of the community structure dis@er already, to evaluate the algorithm’s performance. Theseeth
by the SOCDA algorithm is better than that of LPA, the real-world networks are the Zachary's karate club network
absolute difference of values is not much significant. Tlelth [19], the bottlenose dolphins network [20], and the America

We used a variety of synthesized networks and real-worl
networks to check the ability of our approach to successfull
detect the community structure of a network. We employe
the modularity [16] and the Normalized Mutual Information
(NMI) [17] to evaluate the quality of community structure.
In addition, to depict more details about results, we cal@&d
the statistics such as number of communities containingngro

B. Real-world experiment
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TABLE I. PRECISION STATISTICS OF SYNTHESIZED NETWORK ANALYSIS
network # of detected communities # of communities containing wrong # of nodes joining to wrong com{ maximum # of wrong members
members munities

w size LPA SOCDA? LPA SOCDA? LPA SOCDA? LPA SOCDA?
1000 852 870 213 450 1201 542 58 3
2000 1829 1862 211 290 1706 367 81 4
3000 2630 2654 237 370 1393 470 50 9
4000 3673 3720 240 415 1993 659 58 5

0.4 | 5000 4845 4838 343 370 2256 490 71 4
6000 5546 5555 417 717 2123 887 41 4
7000 6357 6390 511 597 3036 765 57 5
8000 7228 7232 315 471 2402 640 44 4
9000 8189 8194 438 653 2923 908 63 5
10000 || 9116 9098 548 748 3257 1044 62 6

college football games network [21]. The properties of thetwo type community structures are detected for both the
three networks are listed in Table 1. karate club network and the dolphins network, and both of
the structures are very close to the real one. For the karate
club network, in the first type structure, two communities

are detected and only node 10 is assigned to an incorrec

3\]/8 :chresg(_)ld ?If commumt;: m?{g'“g In Igos;r pr?celssmg IS Stcommunity, and in the second, two communities are discavere
€ found in all runs our aigorithm could €liectively eXpose 55 el and the node 9 and 31 join an incorrect community.
the community structure of the three networks. For example,

We ran the SOCDA algorithm 30 times for each network
as well. The ratio parameter in initialization is 30% while
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TABLE II. PROPERTIES OF REAEWORLD NETWORK
0 220004
network # of nodes | # of edges| # of communities ©)
karate club 34 78 2 ® ©. ® ©
. ® ©®
dolphins 62 159 2 ®
football games| 114 613 19, with 8 contain @ @
only 1 team. ® ©) ®
& E—@
©
0 B8 @ s 8 ©
©) (]
® -
e
o ®
Fig. 10. The real community structure of the bottlenose hiolp network.
Node shapes represent community attribution. The pink siademis-assigned
o by SOCDA in two types of community structure.
14
o] community structure were discovered in the 30 runs of the
algorithm. The difference between them is the members of
GJ the 'Mid- American’ conference (community) are split into

two finer communities in several runs. Since our algorithm
Fig. 9. The real community structure of the karate club netwdNode  assumes there is no singleton node community, the eight inde
shapes 2re_present community attri_bution. The pink nodesnéseassigned by pendent teams (NotreDame, Navy, Connecticut, CentraiFlor
SOCDA in two types of community structure. da, MiddleTennesseeState, LouisianaTech, Louisianatonr
and LouisianaLafayette) will join into incorrect commuesg,
as shown in the figure. Essentially, the detected community

The results for dolphins network are similar: two commuasiti structure is very close to the real TSE conference assigtsmen

are detected, and in the first node 40 (label 'SN89’) joins - - .
wrong community, and in the second node 37 (label ’SN100’6)‘n summary, the SOCDA algorithm is stable and it can,

and 40 join an incorrect community. Fig.9 and Fig.10 show?s shown here, effectively detect communities on real world
the real community structure of the karate club network and' etworks.
the dolphins network, respectively. Intuitively, the nd@and

31 of the karate club network and the node 37 of the dolphins IV. CONCLUSION AND FUTURE WORK

network are hard to be assigned to an incorrect community In thi d i . .
since all of them have more connections with the correct N this paper, we proposed a self-organizing community

community. The results stem from the randomness of the ordéittUcture detection and analysis algorithm called the S&CD

of communities merging during post process when there ar@/90rithm. The algorithm is based on the idea of swarm
several merged communities of the same size. intelligence. We treat the analyzed network of nodes as a

swarm intelligence system, and each node as an individual
The detected community structure of the football gamesvho can make its own decision to join or leave communities.

network is shown in Fig.11. Each box (including the dash-A node joins or leaves a community simply because its action

line box) represents a detected community. Two types o€an improve the quality of the related community. By having
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Fig. 11. The detected community structure of the footbaltamanetwork.
Node shapes and fill colors represent community attributiecept the 7
'independent team’ that is one of the eight independent $eam
L : - (8]
all nodes iteratively making these decisions over a humber o
generations, an optimal community structure is emergitg T [9]

algorithm first forms a core community structure depending o
the nodes structure similarities. Then each node acts t@mak
related communities become better. When no node acts any-
more, the algorithm terminates as it is assumed that an aptim
community structure is reached, eliminating the need ahgrr
actions of any node in the community structure. A variety of
experiments on both synthesized and real-world networbwsh [11]
that the performance of the SOCBAlgorithm is much better

than that of LPA, and additionally, SOCADalgorithm can
effectively discover network community structures. (12]

Overlapping communities are common in real systems.
The self-organizing algorithm inherently supports ovepiag  [13]
community detection by simply allowing a node joining mul-
tiple communities simultaneously. As future work we aim
to extend our algorithm to support overlapping community
detection. In addition, the node view computation of the
algorithm makes it easily to parallelize the algorithm. W w
implement a parallel version of the self-organizing altjon
using Giraph++ [22], which is an open source large-scalptyra
processing platform that utilize Apache Hadoop’s MapReduc
implementation to process big graphs for large-scale nétwo (16]
analysis. The execution and experiment of our parallel-algo
rithms for large-scale social network analysis demandsivas (7]
computing and storage resources. We will leverage Amazon
Web Services (AWS) which provides massive and elastic cloughg
based computing and storage resources to run and benchmark
the performance of our algorithm.

[14]

[15]
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