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Abstract This paper describes an approach to exter-

nalising and formalising expert knowledge involved in

the design and evaluation of hydrometallurgical pro-

cess chains for gold ore treatment. The objective of this

knowledge formalisation effort is to create a case-based

reasoning application for recommending and validating

a treatment process of gold ores. We describe a twofold

approach to formalise the necessary knowledge. First,

formalising human expert knowledge about gold mining

situations enables the retrieval of similar mining con-

texts and respective process chains, based on prospec-

tion data gathered from a potential gold mining site.

The second aspect of our approach formalises empiri-

cal knowledge on hydrometallurgical treatments. The

latter will enable us to evaluate and, where needed,

redesign the process chain that was recommended by
the first aspect of our approach. The main problems
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with the formalisation of knowledge in the gold ore

refinement domain are the diversity and the amount

of parameters used in literature and by experts to de-

scribe a mining context. We demonstrate how similarity

knowledge was used to formalise literature knowledge.

The evaluation of data gathered from experiments with

an initial prototype workflow recommender, Auric Ad-

viser, provides promising results.

Keywords Knowledge formalisation · Hydrometal-

lurgy · Case-based reasoning

1 Introduction

Nowadays rich gold ores that can easily be processed

with simple metallurgical processes like direct smelting

are getting rare. This situation leads to the (re)evaluation

of many less rich and difficult to process gold ore de-

posits, considered too cost intensive for mining before.

Refractory, or in other words difficult to process, gold

ores are gold ores that in general require complex and

cost intensive processes to extract a comparatively small

amount of gold from a large volume of ore. Thus the

large scale processes involved in the processing of such

ores are to be planned carefully to avoid failed invest-

ments in ore processing facilities either not adequate

for the ore mined at the mining site or not efficient

enough to extract sufficient quantities of gold and thus

sufficient revenues.

A key problem in today’s prospecting for gold mines

and in their planning is the estimation of the costs in-
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Fig. 1 Basic hydrometallurgical process chain

volved, not only in the mining of the ore but mainly

in its processing costs given, for example, by the use of

certain chemicals. Additional important factors are the

ore throughput capacity to reach a necessary volume

of ore to be processed per day as well as the amount

of gold to be extracted from this ore. An early and ex-

act estimate of these costs and factors allows excluding

early on potential mining operations that are not cost

efficient and helps to speed up planning of worthwhile

mining operations by reusing process knowledge previ-

ously employed in successful mining operations.

In this paper we examine the elicitation, formalisa-

tion and re-use of expert knowledge about gold min-

ing situations that operate on refractory gold ores, hy-

drometallurgical process design for processing these ores

and empirical knowledge focused on the diverse hy-

drometallurgical processes involved in the process chains.

Hydrometallurgy is a field of science which stud-

ies the recovery of metals from ores by using aqueous

chemistry. A typical hydrometallurgical process chain is

illustrated in Figure 1. When analysing or designing hy-

drometallurgical processes, a process chain is typically

considered to be composed out of smaller stages or sin-

gle process steps, we call treatments. For example, a

commonly used leaching technique for gold extraction

is cyanide leaching. However when it is a question of

refractory gold ores, for example, simple cyanidation

might not be effectively used. In such ores, gold is en-

capsulated inside a host mineral and thus cannot be

reached by the leaching agent. Thus the host mineral

must be broken using pre-treatment processes to liber-

ate the gold, before cyanide leaching.

Depending on the level of the refractoriness of the

gold ore and the mineralogical characteristics of the ore,

a variety of alternative processing routes exist. For ex-

ample an expert designing a process chain could face

the need to choose between oxidising processes, such as

roasting, pressure oxidation or bacterial leaching. Typ-

ically the design of process chains relies on laboratory

tests, which are time consuming and thus cost intensive.

Today there already is a large amount of published work

available, detailing on experiments about gold extrac-

tion from ore. Additionally on-going research is con-

stantly adding to this knowledge. If a process chain de-

signer could easily re-use this existing knowledge more

efficiently than manually researching on it, the needed

experiments would be selected more precisely or even be

made redundant. Furthermore bench and pilot scale ex-

periments, which are testing experiments on a designed

process chain before scaling them to production size in a

mining operation, would also be achieved more rapidly.

Thus the effort for the process chain design could be

significantly reduced. The work presented in this paper

demonstrates an approach at formalising the existing

knowledge on hydrometallurgical process chain design,

using CBR and thus make it readily available for re-use

by the process chain designer.

The knowledge involved in estimating a mining sit-

uation from prospection data and designing a process

chain for the specific gold ore expected in this potential

mining context is highly encoded. Usually a few experts

in the domain are consulted to give their experience-

based estimate of a prospected ore deposit and it being

worthwhile mining or not. Additionally there exists a

great amount of empirical knowledge, mainly from hy-

drometallurgical experiments on single process steps or

treatments. This knowledge about specific treatments

is mainly encoded in scientific publications on specific

hydrometallurgical treatments.

In this paper we demonstrate our twofold approach.

The first aspect or step in our approach is to reuse

knowledge about gold mining situations to retrieve sim-

ilar mining contexts based upon prospection data gath-

ered from a potential gold mining site. The second step

of our approach is then to evaluate the recommended

process chain automatically and recommend a re-design

of the process chain where necessary.
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In this paper we describe how the knowledge from

existing mining contexts was formalised and is used

in the Auric Adviser workflow recommender software.

We further show how Auric Adviser recommends on

the best process chain to be used in hydrometallur-

gical treatment of rich and refractory gold ores in a

potential mining project. We formalised the knowledge

we elicited from human experts and hydrometallurgi-

cal publications to re-use it for our case-based reason-

ing (CBR) approach. Case-based reasoning is an estab-

lished artificial intelligence technique. It allows for the

versatile handling of incomplete and fuzzy knowledge.

The rest of the paper is structured as follows. We

interlink our approach with related work on hydromet-

allurgy, workflow recommendation and knowledge rep-

resentation in the following section. In Section 3 we

survey the knowledge sources targeted in Section 3.2

and introduce our use of the different knowledge con-

tainers of CBR to provide the captured knowledge in

Section 3.3 and review the resulting knowledge model

in Section 3.4. Following a brief introduction to the

Auric Adviser software in Section 4 we detail on our

experiments in Section 5. We then introduce our on-

going work on our second knowledge model for indi-

vidual treatment recommendation in Section 6, detail-

ing on the sources and structuring of the knowledge in

Sections 6.1 and 6.2. The paper then evaluates and dis-

cusses the performance of our knowledge model and the

Auric Adviser (Section 7). A summary and outlook on

future aspects of our work concludes the paper.

2 Background and Related Work

Recommending workflows is a research area in CBR

(cf. [7,10]). CBR has been used successfully in a num-

ber of workflow recommender (cf. [9]). The approach to,

at least semi-automatise, the design of mining facilities

and their accompanying ore process facilities and pro-

cessing chains is also an established area of research. As,

for example, the work of Torres et al. [16,17] on their

IntelliGold system, has shown an approach to use deci-

sion rules and fuzzy sets to recommend ore processing

workflows and calculate an estimate of the associated

costs to establish such a process chain. However after

an initial small set of case studies this approach seems

to have not been followed further. In our view the com-

plexity and variety of the knowledge in the domain of

gold mining and refractory gold ore refining is a factor

that ultimately could not be covered by a rule based

system alone.

Picking up on the initial work of Torres et al. we

therefore present our new approach to ore processing

workflow recommendation. We were confident in the

decision to use CBR as we have already successfully

used CBR and its versatile use of similarity based re-

trieval, in the formalisation of knowledge in the highly

complex and encoded domain of audio mixing and sub-

sequently implemented an efficient audio mixing work-

flow recommender [15]. Additionally the use of the CBR

methodology is documented as successful in the field

of chemical engineering. It is used, for example, for the

separation process synthesis and as a method for combi-

natorial mixer equipment design from parts and the de-

velopment of feasible separation process sequences and

separation process structures for wood processing [11].

3 Knowledge Formalisation Approach for use in

CBR

As outlined we used case-based reasoning in our ap-

proach to reuse the elicited and formalised knowledge of

mining experts and empirical knowledge on hydromet-

allurgical treatments. We chose CBR as a suitable method-

ology [18] for our task as it is able to handle the inherent

vagueness and broad variety of the knowledge present

in our domain of interest.

CBR’s suitability for the knowledge formalisation

in our domain is backed up by a variety of CBR appli-

cations in similarly demanding domains ranging from

chemical process design to music composition [2,12].

The manner in which we employed CBR for our knowl-

edge formalisation is the subjects of this section. For

the purpose of modelling and testing the knowledge of

our system we used myCBRWorkbench1 in its latest

version 3.0. We then developed the java-based applica-

tion, Auric Adviser, with the myCBRSDK.

Broadly speaking CBR deals with storing/retrieving

as well as re-using/adapting experience. It mimics the

human approach of re-using problem-solving experience

encoded in cases. If we encounter a new problem we

most often try to remember a similar problem we solved

in the past. We try to match the problem description

of the problem at hand with problems we have encoun-

tered and solved in the past. The problem description

1 http://mycbr-project.net
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and its solution description can be seen as an episode of

experience. Cases, in CBR, are problem/solution pairs.

Facing a current problem we recall matching past prob-

lems and adapt their solution to our current situation [1]..

To further formalise this similarity towards human

memory, a CBR-system consists mainly of a case base

which is determined as a collection of cases. As men-

tioned a case is then formally described as consisting of

at least a problem description and a solution descrip-

tion [1,6]. A formal representation of a case base is thus

given by the following:

[[problem1, solution1], [problem2, solution2],...,[problem

n, solution n]] : case base

The classic process model of CBR, CBR-cycle [1],

starts with a new problem or query being considered

as a new case. This is initial case is consisting of the

problem description of the current problem presented

to the CBR system. Then, during the Retrieve step,

the case-base is searched for the most similar case to

the new case. To determine the similarity between the

query case and a given case in the case base, similarity

measures are used. These similarity measures determine

the relevance of attributes for a case and the similarity

between different values of one attribute. This ability

to ‘compare’ the current problem (case) with all stored

problems (cases) allows for the retrieval of either an

exact matching problem or at least the retrieval of the

most similar problem (case) known to the CBR system

so far.

Having retrieved a case the CBR cycle enters its

Reuse step During the Reuse step the solution part of

the retrieved case is tried to be applied to the cur-

rent problem at hand. If the system retrieved an ex-
act matching test the reuse is the simple application

of the unchanged solution part of the retrieved, exact

matching, case. If however the retrieved case is only the

most similar case to the query case the solution has to

be adapted. This adaptation can be achieved by either

using a ‘transformational reuse’ or a ‘reuse by deriva-

tion’. When using a transformational reuse the system

identifies the differences between the two problem de-

scription of the query case and the retrieved case. The

system then alters the solution of the retrieved case

with regard to these differences; the system does so by,

for example, using replacement rule-based mechanisms.

If the system employs reuse by derivation it analy-

ses the solution of the retrieved cases to implicitly con-

clude the underlying means that led to this solution.

The system then transforms these means into explicit

methods that it then employs to derive a solution for

the query case [1]. The adapted solution, forming a new

solved case, together with the query problem, is then

being validated during the Revise step of the CBR cy-

cle. Based on the design of the CBR system the Revise

step can, for example, consist of the solution valida-

tion being done by a human expert or it can be done

by gathering feedback from the user of the system on

the applicability of the suggested solution or it might be

automated by using model based validation procedures.

Should the Revise step yield a rejection of the adapted

solution the case has to be re-run through the Reuse

step to derive a different adapted solution. Should the

Reuse step repeatedly fail to adapt the solution into an

acceptable, applicable solution the case must be dropped

and the system must fall back to the Retrieve step and

simply retrieve another ‘next-most similar’ case from its

case base. If a revised case yields an applicable solution

it should be learned or retained by the system.

3.1 Advantages of using CBR to formalise our specific

domain knowledge

CBR is able to ‘speak the customer’s language’, allowing

for the use of synonyms and missing terms and likely

vague terms describing the amount of, for example, a

mineral present within a query to our system. In our

case this means that fuzzy amount descriptors such as

‘some’ or ‘traces’ can be used to define queries. Ad-

ditionally CBR is also able to retrieve cases, in Auric

Adviser descriptions of existing mining operations as

well as hydrometallurgical treatments, based on only

sparse query data. This is useful while trying to re-

trieve mining operations only partly specified on sparse

prospection data. Furthermore CBR relies on similari-

ties which are comparatively easy to elicit from human

experts within our domain of interest. Finally CBR al-

lows for queries that combine retrieval and filtering in

the way of using key attributes as selection criteria for

a case before calculating the global case similarity, thus

reducing the computational effort of an retrieval. An

example for such a pre-selection attribute would be the

exclusion of all mining operation cases in which the ore

processed does includes clay, as the presence of clay is

instantly forbidding a number of chemical treatments

of the ore.
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A way to amend the described problems of a lack of

precisely quantifiable measures and vagueness and only

partial prospective data is given by using CBR to also

allow for vagueness and a certain amount of ambigu-

ity within the techniques used for retrieving a mining

operation best matching the prospective data from a

potential mining site and its ore deposit [1,5]. CBR ba-

sically is a form of similarity-based retrieval which also

allows for a vague query and, given for example a fuzzy

case representation, does not require an exact match of

a query to produce a result [18,4].

3.2 Knowledge Acquisition

In this section we review available knowledge sources

in our domain, we detail on the kind of knowledge we

drew from these sources and why we deemed it to be

important. We further describe the techniques we used

to elicit the knowledge.

We initially identified four sources from which we

gathered the following knowledge: Human experts on

gold mining, communities of human experts on mining,

scientific publications on existing gold ore mining oper-

ations, human experts on certain sets of hydrometallur-

gical treatments and scientific publications on very spe-

cific hydrometallurgical treatments. From these sources

we gathered the following knowledge:

1. Human experts on gold mining: Necessary attributes

and values to describe a gold mining operation

2. Scientific publications on gold ore mining opera-

tions: Attribute value ranges and applied ore pro-

cessing chains

3. Communities of human experts on mining: Similar-

ity measures and similarity measure evaluation

4. Scientific publications on specific hydrometallurgi-

cal treatments: Attributes and value ranges to de-

scribe treatments and knowledge about their appli-

cability

For our initial knowledge elicitation we used inter-

views with the human experts. We additionally created

questionnaires, combined with similarity measure tem-

plates, to be completed by the experts. We had to addi-

tionally keep in mind that our acquisition of knowledge

must follow certain strict guidelines and suit controlled

conditions [3]. To optimise our knowledge elicitation

process and techniques we employed an iterative elici-

tation process. In this iterative process we repeatedly

asked the experts about their feedback on our knowl-

edge elicitation approach, questionnaires and similarity

measure templates. The goal of this effort was to allow

for input of the experts on how to best enable them to

externalise their tacit knowledge. In short we wanted

to know if we ‘asked the right questions’. Therefore we

asked the experts:

1. Have we asked the right questions?

2. Have we provided the right templates for eliciting

the similarity measures (Tables, Taxonomies)?

3. Were our data types and data value ranges correctly

set?

4. What input with regard to fundamental knowledge

modelling/eliciting did we got from the experts?

5. How would the experts have amended our questions

and our way of knowledge gathering?

Based on the feedback, we refined our knowledge

elicitation technique and went through a second cycle

of knowledge gathering. This iterative knowledge gath-

ering approach is applicable in our work, as the use

of myCBR Workbench allows us to refine our knowl-

edge model and integrate it in the running Auric Ad-

viser software. This is due to the modularisation of the

knowledge model component allowed by the use of our

myCBR SDK.

Our overall knowledge gathering process was again

twofold and focused on two areas: First, knowledge about

existing gold ore mining operations and the hydromet-

allurgical process chains used within these mining op-

erations, and , second, empirical knowledge on single

hydrometallurgical treatments and their applicability.

The knowledge on existing gold mining operations [8]

was used to create an initial episodic knowledge model

of mining operations. This knowledge model is now be-

ing used within Auric Adviser to realise the similarity

based retrieval of mining operations based on a query

composed from prospective data of a potential mining

site. The retrieved most similar gold mining operation’s

ore process chain is then recommended for re-use on the

potential mining site specified by the prospective data.

The knowledge on specific treatments is to be used

to form our second prototypical knowledge model that

will be used to realise the similarity based retrieval

of single consecutive process steps (treatments), in a

very strictly defined and specific context given by a

specific ore-constellation and a specific preceding treat-

ment. Thus our second knowledge model will be able
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to provide treatment recommendations to solve prob-

lems such as the need to ‘reduce sulphides’ for a spe-

cific ore/raw product constellation and with regard to a

(necessary) preceding treatment already applied to the

raw product.

The knowledge necessary for the design of the sec-

ond knowledge model will be elicited from existing pub-

lications on single hydrometallurgical treatments. We

assume this source as a valid sources of knowledge as

when the quality of published work available on sin-

gle hydrometallurgical treatments was studied [14], the

finding was that, apart from some exceptions, hydromet-

allurgical publications follow a common principle and

contain sufficient information needed to describe a treat-

ment’s characteristics.

3.3 Knowledge Formalisation

As already described we aim for a twofold approach of

representing the knowledge in our domain. Thus we had

to arrange for two different knowledge models serving

each of the two aspects of our approach. The first knowl-

edge model which we present in this paper is aimed at

holding the knowledge needed to recommend whole ore

process chains derived from existing gold mining oper-

ations.

Figure 2 shows the approach taken by us to rep-

resent and retrieve episodic cases representing existing

gold mining operations and their ore refinement process

chains. Figure 3 shows the approach which we intent to

deploy to represent the case of a preceding and consec-

utive specific treatment on a specific ore/raw material

constellation.

As stated in Section 1, we plan to employ these two

knowledge models in a consecutive approach in our final

version of the Auric Adviser. The first knowledge model

is now in use in the Auric Adviser in order to retrieve

similar existing mining contexts and their ore refine-

ment process chains based on queries composed from

prospective data on potential mining sites. Our next de-

velopment step is now to finalise the second knowledge

model to allow for the consecutive automated step-by-

step evaluation and, if necessary, re-design of the pro-

cess chain recommended by the first knowledge model.

As we employed CBR as the reasoning component

for the Auric Adviser we had to formalise the gathered

knowledge into the knowledge representation structure

used for CBR, namely the four knowledge containers;

Vocabulary, Cases, Similarity Measures, and Adaption

knowledge.

3.4 Initial Knowledge Model

Based on the knowledge gathered from the sources de-

scribed in Section 3.2 we created our initial knowledge

model using the approaches described in Section 3.4.

In the following we describe how we formalised the

gathered knowledge into the four knowledge contain-

ers of any CBR system: vocabulary, cases, similarity

measures, and adaptation knowledge [13].

Our vocabulary consists now of 53 attributes, mainly

describing the ore and mineralogical aspects of an ore

deposit. With regard to the data types used, we used

16 symbolic, 26 floating point, 6 boolean and 5 inte-

ger value attributes. The symbolic attributes describe

minerals and physical characteristics of minerals and

gold particles, such as their distribution in a carrier

mineral. Further symbols were elicited to describe the

climate and additional contexts a mining operation can

be located in, like for example the topography.

We then created a case structure catering for the

main aspects of a mining operation, namely: Mineralog-

ical context of the ore, geological context of the ore de-

posit, environmental context of the mining operation,

detailing into: Geographical, topographical, economic

and political context of a mining operation. For the ini-

tial knowledge model we focused on the mineralogical

and geological contexts. The additional environmental

contexts are already within our knowledge model but

are not yet used as they are intended to be used later

on for a more detailed calculation of potential costs of

a mining operation. Using this case structure we as-

sembled 25 cases based on mining situations described

in literature and from information on such operations

provided by experts.

Figure 4 shows a limited excerpt from the case data

we generated. Our cases were distinctive mainly with

regard to the mineralogical context of the mined ore.

Thus we created 5 cases describing refractory arsenopy-

ritic ores, 5 describing free milling gold ores, 2 on silver

rich ores, 6 cases on refractory ores containing iron sul-

phides, 4 on copper rich ores and one each on antimony

sulphide rich ores, telluride ore and carbonaceous ore.

To compute the similarity of a query, composed of

prospective data, and a case we modelled a series of sim-

ilarity measures. We had the choice between compar-
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Fig. 2 Case representation of whole ore refinement process chains

Fig. 3 Case representation of a specific preceding, consecutive pair of treatments

Fig. 4 Excerpt from the generated cases

Fig. 5 Example of a similarity measure for the gold distribution within an ore
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ative tables, taxonomies and integer or floating point

functions. For our initial knowledge model we mainly

relied on comparative tables.

Our approach includes the idea to model as much of

the complex knowledge present in the domain of ore re-

finement into the similarity measures as possible. This

was based on our assumption that the similarity based

retrieval approach provided by the use of CBR would

allow us to capture and counter most of the vagueness

still associated with the selection of the optimal process

in the hydrometallurgical treatment of refractory ores

domain. For example, we tried to model into the simi-

larity measures such facts as that the ore does not need

any more treatment if it contains gold grains greater

than 15 micro meters in diameter. Such facts are easy

to integrate into the similarity measure and thus are op-

erational (having an effect) in our knowledge model. We

deem this capability of the similarity measures to cap-

ture and represent such ‘odd’ behaviours of the knowl-

edge model very important. These ‘odd’ facts or bits

of knowledge are hard to capture by rules, which may

has ultimately kept the IntelliGold approach, which we

introduced in section 2, from succeeding on a broad

scale [16,17].

For the global similarity measure of our cases we

use a weighted sum of the attributes local similarities.

We have not yet investigated further on the impact of

different weight distributions other than the obvious

emphasise of important attributes, such as for example ‘

Clay Present’, as the presence of clay forbids a selection

of hydrometallurgical treatments.

As we are mainly aiming for case retrieval the need

for adaptation knowledge is not yet pressing. We there-

fore have not formalised any adaptation knowledge. We

will however need adaptation knowledge for our second

knowledge model which will be deployed to enable the

process chain validation and possible re-design. Thus a

part of our future work will be to gather and formalise

the relevant knowledge to allow for adaptation within

our second knowledge model.

With regard to further developing the first knowl-

edge model, or speaking more broadly, enable it to learn,

the addition of new cases to the knowledge model’s case

base will provide this learning ability as within any case

based reasoning system.

4 Software Prototype Auric Adviser

Using our initial knowledge model we implemented a

java-based workflow recommender software, the Auric

Adviser. Auric Adviser ’s task is it to retrieve a selection

of descriptions of existing gold mining operation best

matching the ore and mineralogical context described

in a query to the Auric Adviser. Once the best matching

mining operations are retrieved Auric Adviser provides

the knowledge about the ore refinement process chains

used in these best matching mining operations.

The retrieved case provides the planner of a poten-

tial mining operation and subsequent ore refinement

process chain with a first draft of what kinds of treat-

ments would be involved in a potential mining on the

prospected site. Furthermore the planer gets insights

into how to potentially arrange these treatments in a

process chain to most efficiently refine the ore at the

potential site. Additionally, Auric Adviser provides the

planner with a possibility to estimate the effort, the

costs and some ore refinement constraints involved with

the potential mining site.

The Auric Adviser ’s straight forward user interface

allows a planner to specify the data gathered from a

prospection into a problem description part and thus

compose the query case to be post to the CBR knowl-

edge model (Figure 6). Then the process planner can

select the number of retrieved cases she wishes to be

displayed. The best retrieved cases are then presented

in a tabular field and the process chain description and

diagram of the best matching case is displayed in a sep-

arate UI element called ‘Solution view’.

We are aware of the complexity of the GUI, offer-
ing over 30 elements of input to the planner but we

plan to clarify the problem description part of our GUI

by breaking it down into the contexts described in our

knowledge model, such as Mineralogical, Geological, En-

vironmental etc.

5 Experiments with the Auric Adviser and

Resulting Refinements to the Initial

Knowledge Model

In this section we describe our retrieval experiments

with our initial knowledge model. We further detail on

the changes we applied to our knowledge model, based

on the outcome of the experiments.
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Fig. 6 The Auric Adviser process chain recommender UI

For example, we performed retrieval experiments

with super weighting single attributes, by outweighing

their value against all other local similarities of other

attributes, to establish the accuracy of a single discrimi-

nant attribute. We did so to establish the effective value

ranges for the single attribute being analysed in these

experiments.

During our first set of case retrieval experiments, we

ran 13 test queries on our initial 25 cases, we noticed

a set of dominant cases being retrieved disproportional

often as the best matches to any given query. The ex-

perts advised us to try and add more data to the cases

by providing more attribute values but there was still a

set of dominant cases. As we re-questioned the domain

experts about this again they advised that we could

add even more detail to the cases and refine our selec-

tion of the discriminant attributes. By doing so we were

able to significantly increase the accuracy and variety

of our retrieval results, eliminating the dominant case

retrieval.

Based on our experimental data we also noticed that

we had to remodel some of the attributes within our

knowledge model to represent discriminant Boolean val-

ues. These attributes were: Free milling gold present,

LeadIISulfide present and ZincSulfide present. We did

so to allow for a quicker exclusion of cases, based on

these boolean attributes.
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We also simplified our initial knowledge model by

excluding a number of attributes by setting them as

non-discriminant in the calculation of the global simi-

larity. We did so to narrow down our knowledge model

to the more important attributes and refine the accu-

racy of these important attributes representations. See

figure 7 for the performance data of the 3 versions of

our Prototype during the respective retrieval tests.

Starting off from a sub optimal accuracy reported

by the experts testing our knowledge model we were

able to enhance its performance. After the application

of the changes described above we are now getting a

more positive feedback from the hydrometallurgical ex-

perts. Based on the experiments we are now able to see

that our initial knowledge model was over engineered

with regard to the number of aspects we tried to cover

with it. By reducing these details, focusing on impor-

tant attributes in the mineralogical context and by re-

fining the value ranges of these attributes we were able

to significantly increase the performance of our knowl-

edge model. The results for the queries III and IV in-

dicate to us the need to further refine our knowledge

model with regard to the representation of sulphides

in it. We deduced from our experiments that we can

solve the recommendation problem for the queries III

and IV by further adjusting the weight of the sulphide

attributes and add additional classifying attributes fur-

ther detailing the presence or absence of specific kinds

of sulphides. We further were able to establish that our

knowledge model will also benefit from a finer grained

similarity measure modelling of the geological context

of an ore deposit, which we plan to implement as future

work for the knowledge models further refinement.

6 The second knowledge model

The second knowledge model required for our two fold

approach is the knowledge model representing domain

knowledge on individual treatments applied to specific

types of ore or raw materials whereas a raw material

is any kind of partially processed ore before the final

extraction of the actual bullion.

As already described the aim of our second knowl-

edge model is it to allow for the step by step vali-

dation of a whole process chain recommended by our

first knowledge model. Next to the validation aspect

our second knowledge model is also intended to rec-

ommend better suited, more efficient, treatments based

on more recent research reflected in more recent scien-

tific publications from which the treatment cases are

extracted. The idea behind this aspect was that at the

time of the creation of the whole process chain that

was recommended by our first knowledge model the

knowledge on hydrometallurgical treatments had a cer-

tain state. If our software recommends the same process

two years on in time there might be new insights into

certain treatments involved in the process chain. By

constantly gathering recent scientific insights from hy-

drometallurgical publications these new insights into,

for example, more effective treatments would then be

’picked up; by our second knowledge model and sub-

sequently would be used in the process chain valida-

tion to recommend more effective treatments, based on

recent publications on hydrometallurgical treatments.

Thus the second knowledge model enables the system

to effectively learn the newest specific treatment and

apply them to the process chains recommended by the

first knowledge model.

6.1 Knowledge sources and Knowledge gathering for

the Second Knowledge Model

After surveying the available sources of knowledge for

our second knowledge model we chose publications in

hydrometallurgical studies of gold extraction, for exam-

ple scientific papers and industrial reports, as source for

cases.

A general principle for a scientific study and for

writing a scientific document is repeatability. The study

should be describing as detailed as to another researcher

should be able to replicate the study and publish results

which support or refute the presented theory. When the

quality of publication on hydrometallurgical treatments

was studied [14], the assumption was that, apart from

some exceptions, hydrometallurgical publications follow

that principle. It was assumed that most of the publi-

cations contain requisite information about treatment

characteristics. The outcome of the study was indeed

that the majority of publications on hydrometallurgi-

cal treatments have a certain, reoccurring, structure.

This structure usually consists of the description of an

or or raw material, a treatment or family of treatments

applied to it involving a set of substances and parame-

ters of the treatment experiment as well as a description

of the results of experimental studies of the treatment

describing how effective the treatment was.
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Fig. 7 Snippet of the performance evaluation of the first three versions of the knowledge model. (∗ 0 = conflicting, not
applicable; 3 = applicable but suboptimal; 5 = applicable, 7 = applicable and well suited; 10 = optimally applicable)

Additionally to the reoccurring structure found it

was also found that the quality of the published infor-

mation about gold extraction varied a lot more than

expected [14]. The trends in process description were

that gold content and gold recovery were usually well

described. The leaching solution and process parame-

ters were not described as detailed. In cases where the

treated raw material was a mineral or concentrate, ma-

terial description was often lacking several details. The

mineral type and chemical analysis were described more

often in conference proceedings and books than jour-

nals.

6.2 Case Structure of the Second Knowledge Model

As mentioned previously we validate the recommended

whole process chain in a step to step approach exam-

ining the consecutive application of all the individual

treatments in the process chain on their subsequent ini-

tial ores and resulting raw materials.

We do so to optionally recommend a different treat-

ment if the treatment in the process chain is not match-

ing to a specific ore or raw material expected in our

prospective mining side or if there exists knowledge on

more effective treatments to replace the treatment ap-

plied in the process chain. So we check every treatment

in the process chain if it is the optimal thing to do with

the ore or raw material we have at hand. Next to the op-

timisation aspect we have to perform this validation as

we just get a rough recommendation of a process chain

from our first knowledge model, based on the mining-

context, which uses the rather broad description of a

whole mining operation.

Of course if at one place in the process chain we

have to recommend another process step based on our

more precise knowledge on individual treatments the

process chain will break at this point and must be re-

considered, as the replacement of a single process step

might result in a different subsequent raw material, for

example a chemical solution instead of a foam and thus

the following part of the process chain must redesigned

accordingly.

Again, as with our first knowledge model, we chose

structural CBR as the technique of choice to represent

and retrieve the knowledge on individual hydrometal-

lurgical treatments. Based on the characteristic of an

individual hydrometallurgical treatment, frequently de-

scribed in the literature, we derived the following core

attributes for the case structure of our second knowl-

edge model:

1. Ore or raw material properties: A number of param-

eters describing a raw material
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Fig. 8 Step by step evaluation and optimisation of the recommended process chain

2. Treatment: Description of the Treatment that is ap-

plied

3. Substances used: Information on the substances in-

volved in the treatment

4. Parameters: Conditional parameters of the treat-

ment, such as temperature, duration or pressure

5. Results: Numerical (per-cent success) or symbolic

(”‘very good”’) descriptions of the effectiveness of

the treatment

Next to these core attributes that ore case struc-

ture is covering we plan to extend the case structure to

cover for more additional knowledge on an individual

treatment once we have established a sufficiently effec-

tive version of our second knowledge model covering

the core attributes. Figure 9 provides an overview of

the case structure we employ within our second knowl-

edge model.

As stated earlier we aim to derive cases for our sec-

ond knowledge model on individual treatments from

publications on individual hydrometallurgical treatments

in a semi-automatic way. To achieve this goal we began

our approach with an analysis of the structure of these

publications. Starting from surveying the available lit-

erature we first derived a hand crafted classification sys-

Fig. 9 Case structure describing an individual hydrometal-
lurgical treatment case

tem to identify hydrometallurgical publications of the

following types:

1. 1) Clearly structured paper on one specific treat-

ment, following a simple structure like : Ore property-

Treatment-Substance-Parameters

2. 2) Papers on a specific family of treatments (like

electro-chemical treatments), with a structure like:
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Treatment, Treatment family, Ores, Substances, Pa-

rameters”,”’Amount or quantity”’, ’Treatment fam-

ily applicable / not applicable”’

3. 3) Papers on a specific substance or a specific raw

material (ore), with a structure like: Ore or Raw

Material Preferable, non-preferable treatments or

preferable, non-preferable substances

4. 4) Survey papers on treatments or raw materials or

substances, with no definite structure

We aimed to identify these types of publications to

be able to automatically classifying papers into these

categories with regard to the latter case extraction from

these papers. We did so as we deem an individual tech-

nique and auxiliary data necessary for each category of

publications to extract cases from these categories.

For the semi-automatic extraction of cases from pa-

pers that are of the Grades 1 or 2 we are currently

employing a customised ANNIE 2 information extrac-

tion application, which is part of the GATE natural

language processing framework developed by the Uni-

versity of Sheffield. The purpose of this application is

to classify literature on treatments into the described

specific categories of treatments. To being able to do

this the ANNIE Application is designed to annotate

certain keywords from categories as: Substance names,

ore or raw materials, parameters, keywords from re-

sult descriptions. To enable this automatic annotation

we created a set of auxiliary data that is used by the

ANNIE application to annotate terms form the cate-

gories described above. Such auxiliary data is for exam-

ple a set of Gazetteers for treatment names, Substance

names, Ore specifications, Parameters and terms often

found in descriptions of results. Additionally to these

Gazetteers we created a set of Jape rules, Jape being

part of the GATE framework, to identify terms from

these categories that are not covered by the Gazetteers

as well as to perform basic stemming.

7 Discussion

In this section we will analyse the gathered data from

our usage experiments on the Auric Adviser. We evalu-

ate the usability and performance/accuracy of our knowl-

edge model and subsequently our Auric Adviser soft-

ware. We do so based mainly on initial feedback from

experts in the field of gold mining and hydrometallurgy

2 http://gate.ac.uk

as our prototype’s knowledge models are not yet scaled

to a scale that would allow for the gathering and quan-

titative analysis of usage data. We therefore rely on the

qualitative analysis of feedback we gathered form ex-

perts that used our prototype.

7.1 Knowledge Modelling: Feedback on myCBR

Workbench

After presenting the prototype software to selected ex-

perts we were able to obtain the following first feed-

back from the domain experts. The experts were gener-

ally satisfied with the accuracy of the recommendations

provided by our prototype. The experts further were

particularly pleased with the ability of our prototype

to provide very suitable workflow recommendations on

very sparse queries entered into the prototype.

The graphical user interface of myCBR Workbench

with which we modelled our domain knowledge, was

seen as logical and easy to follow. Adding new concepts

and attributes to our knowledge model, was deemed

simple and effective by the experts. Additionally the

experts noted that it was very useful that the concepts

and attributes are shown in alphabetical order in both,

knowledge modelling view and case base view.

However the experts also noted that when re-examining

the knowledge model and when adding new cases, it

would be more practical if the user could organise con-

cepts and attributes in a logical order. This custom or-

dering of a case’s attribute would also ease the pro-

cess of feedback gathering from domain experts as they

could prioritise attributes and thus review them faster.

By allowing for a custom sorting of the case attributes

the user could focus on adding correct values into the

cases, instead of concentrating on the rigid order of

attributes provided by myCBR. Additionally some of

the experts suggested using the same interface for case

adding as it is used now for retrieval testing within my-

CBR.

Feedback on the User Interface of the Prototype:

The experts suggested that a user should be able to

choose if the attributes ‘ore throughput rate’ (tons per

day) and ‘gold recovery’ are included in the similarity

calculation or not.

The assumption behind this was that the experts

deemed the volume of ore and its gold content two very

important factors with great impact on the design of a

process chain. The experts recommended using a fixed
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Fig. 10 Semi-automatic case extraction process for the second knowledge model

set of terms for the display of the description of the

process chain within the solution part of our cases.

With regard to case ranking the experts advised

that we could simplify the case representation in our

initial knowledge model. The experts recommended us-

ing a table display for the case ranking. Furthermore

the readability of our solution display could be further

enhanced by relying on colour coding of the local simi-

larities or the use of other visual aids.

An additional feature suggested by the experts for

our Auric Adviser prototype was the ability to save a

query and its resulting retrieval result for later reuse

and export, for example into an Excel table. We plan

to integrate this useful feature as one of the next devel-

opment steps within our software.

We are currently in contact with the hydrometallur-

gical experts to gather feedback on the first iteration of

our second knowledge model. We do so by, again, the

use of questionnaires, asking the experts about the ap-

plicability of recommended treatments on a given ore

or raw material as well as for alternative suggestions by

the expert. We do so to test the accuracy of our sec-

ond knowledge model, by retrieval testing and feedback

from experts, as well as to establish if our knowledge

model still ”‘misses”’ opportunities to recommend bet-

ter treatments, where this is possible within the recom-

mended whole process chains.

As stated in section 2, the only system implemented

yet, being directly comparable to our prototype, was

the IntelliGold system created by Torres et al. [16,17].

The intention of the IntelliGold system was focused on

recommendations on the costs of a potential mining

site, whereas our approach is focused on the recom-

mendation of workflows for a potential mining site. It is

also noteworthy that the IntelliGold system followed a

wider approach, trying to model more information on a

mining site, whereas our approach strictly focusses, yet,

on the hydrometallurgical workflow to be employed in a

potential mining site. However in this context of recom-

mending hydrometallurgical workflows, our case-based

reasoning system appears to be more versatile than the

rule based approach employed in the IntelliGold ap-

proach. The reason for this was identified as the ca-

pability of the case-based approach to better handle

sparse data than a rule based system would be able to.

Additionally the similarity measures employed within

our case-based reasoning approach proved to be more

capable to model the ’odd’ facts in the domain of hy-

drometallurgical processing than a purely rule based

system would have been.
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8 Summary and Outlook

We presented our twofold approach to eliciting and for-

malising knowledge in the domain of hydrometallurgical

processing of gold ore. We did so based on the relevant

work in the fields our research touches, namely struc-

tural CBR, hydrometallurgy and workflow recommen-

dation.

We demonstrated our processes of formalising the

captured knowledge and detailed the resulting first knowl-

edge model and its use in the Auric Adviser workflow

recommender software. We established its usability and

the quality of its recommendations as well as the accu-

racy and performance of our knowledge model in a set

of first experiments.

Based on initial feedback we have shown that our

first knowledge model was slightly over engineered and

lacked in the quality of its recommendations. Fortu-

nately, based on the detailed feedback we gathered from

experts in the gold ore treatment domain, we were able

to significantly increase the accuracy and performance

of our knowledge model. We provided prove for this

enhancement, by detailing on the knowledge model re-

finements, within the evaluation section of this paper.

We also demonstrated the composing of the second

knowledge model for recommending single treatments,

based on ‘lessons learned’ from the development of the

first knowledge model. Parallel to this we will further

refine our first knowledge model, used for retrieving pro-

cess chains based on prospective data.

All in all we are now confident with the on-going de-

velopment of our CBR knowledge models and are now

working on gathering and formalising further knowl-

edge from the domain. We plan to employ this knowl-

edge in our future work to further enrich our knowledge

models. When both knowledge models are finalised we

will combine them into a new and complete version of

the Auric Adviser.
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