
UWL REPOSITORY

repository.uwl.ac.uk

Scalability of information centric networking using mediated topology

management

Alzahrani, Bander, Reed, Martin, Riihijärvi, Janne and Vassilakis, Vassilios (2015) Scalability of 

information centric networking using mediated topology management. Journal of Network and 

Computer Applications, 50. pp. 126-133. ISSN 1084-8045 

http://dx.doi.org/10.1016/j.jnca.2014.07.002

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/2699/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Scalability of Information Centric Networking Using

Mediated Topology Management

Bander A. Alzahrania, Martin J. Reeda, Janne Riihiärvib, Vassilios G.
Vassilakisc

aSchool of CSEE, University of Essex, Colchester, UK
bInstitute for Networked Systems, RWTH, Aachen University, Aachen, Germany

cCentre for Communication Systems Research (CCSR), Dept. of Electronic Engineering,
University of Surrey, Guildford, UK

Abstract

Information centric networking is a new concept that places emphasis on the
information items themselves rather than on where the information items are
stored. Consequently, routing decisions can be made based on the informa-
tion items rather than on simply destination addresses. There are a number of
models proposed for information centric networking and it is important that
these models are investigated for their scalability if we are to move from early
prototypes towards proposing that these models are used for networks oper-
ating at the scale of the current Internet. This paper investigates the scala-
bility of an ICN system that uses mediation between information providers
and information consumers using a publish/subscribe delivery mechanism.
The scalability is investigated by extrapolating current IP traffic models for
a typical national-scale network provider in the UK to estimate mediation
workload. The investigation demonstrates that the mediation workload for
route determination is on a scale that is comparable to, or less than, that
of current IP routing while using a forwarding mechanism with considerably
smaller tables than current IP routing tables. Additionally, the work shows
that this can be achieved using a security mechanism that mitigates against
maliciously injected packets thus stopping attacks such as denial of service
that is common with the current IP infrastructure.

Keywords: Information Centric Networking, Bloom Filter, Security,
Topology Management

Preprint submitted to The Journal of Network and Computer Applications May 10, 2014



1. Introduction

Networking has traditionally focussed on a node centric model: a user
connects to a particular server through an identifier such as a domain name
and obtains, or sends, a specific piece of information. This model has served
well and underpins highly successful networks such as the Internet. How-
ever, coping with scale has brought about changes to this model through
technologies such as content delivery networks (CDN) and HTTP redirec-
tion (HTTP-R) (Spagna et al., 2013). Both of these technologies effectively
break the node centric model, although users are essentially unaware that a
single domain name does not mean a single physical server with one address.
Recently researchers have questioned whether creating elaborate technolo-
gies to bolster up a node centric model is sensible and have turned instead
to alternate architectures which label information items in a manner that
focusses less on where they are stored and more on what they are, and how
they relate to other information items (Trossen et al., 2010). There is not
yet a single architecture which can be said to definitively provide this alter-
native paradigm and there are a number of alternative architectures said to
fall under terms such as information centric networking (ICN) (Trossen and
Parisis, 2012), content centric networking (CCN) or named data network-
ing (NDN) (Jacobson et al., 2009). This paper will concentrate on one of
these architectures, namely the publish subscribe Internet routing paradigm
(PSIRP), later furthered by the PURSUIT project (Fotiou et al., 2012), and
will use the term ICN for this new paradigm. One question that is important
to ask with the proposal for a new architecture is why it should be intro-
duced? Certainly the current Internet architecture is highly successful and
has, despite occasional “doom mongering” (Handley, 2006), managed to keep
up with strong demands for growth. Consequently, we do not propose ICN
because the Internet is “broken,” but rather look to an alternative so that it
can provide a basis for new services and future growth with lower transport
costs.

There are a wide variety of ICN solutions (Ahlgren et al., 2012), however,
we can generalize the architectures as systems that label information items
and provide a network architecture where: providers of the information items
can advertise the information items; consumers of information items can
request the items; and, network nodes can forward information based upon
the matching of provider, consumer and information label. An important
issue with regard to ICN architectures is the methodology for forwarding the

2



information. One strategy, taken by techniques such as NDN, is to forward
information based on the content labels directly (Jacobson et al., 2009). This
allows decisions on what to do with the data to be made based on the content
labels, for example items may be opportunistically cached if it is known they
may be useful for future users thus avoiding unnecessary transport from the
original, more distant, provider we will call this content based forwarding. An
alternative strategy is to forward using more conventional means, including
IP or label swapping, and use a mediation system to match the provider,
consumer and information to a suitable destination address or a path at the
latest possible moment, so called late binding ; we call this strategy mediation
assisted forwarding.

Content based forwarding is attractive as it allows feature rich forward-
ing/caching decisions. However, if we scale this technique to the size of the
Internet this potentially means that a core Internet forwarding node either
has to have a forwarding table the size of all the information item labels in
the Internet or at least the ability to obtain forwarding information for any
of the arbitrary items in good time i.e. at a speed compatible with increas-
ing packet forwarding speeds. The scalability of this approach has not been
suitably investigated and we leave it to the reader to draw conclusions or
further the investigation of the field.

Alternatively, mediation assisted forwarding can use an efficient forward-
ing mechanism allowing use of high-speed network switching using either ex-
isting technology, or as used in the work of this paper, alternative switching
technology. However, mediation assisted forwarding requires some central-
ized, or semi-centralized, network resource that has knowledge of providers
and consumers and can quickly plan a suitable resource. At first sight this
may seem challenging, however, in the current Internet model there is a close
equivalent in the form of the domain name system (DNS); in most Internet
based communication there is a requirement for an application to contact this
network resource to find the forwarding address and return it to the consumer
(and often the provider in the form of a reverse name lookup). The current
Internet is evidence that such a “centralized” network resource is possible,
however, in ICN the granularity of requests is not at the scale of domain
names, but at the level of individual information items. Thus, the question
addressed in this paper is: can mediated assisted forwarding be achieved at
a scale equivalent to that provided by network operators that support the
current Internet? We affirm that the answer to this question is positive and
explore the parameters of the problem and suggest some solutions. The work

3



is focussed on solving this question for a single domain comparable in size to
a current autonomous system.

This paper presents an overview of an ICN architecture in Section 2 and
expands the description of the topology management function of the archi-
tecture in Section 3. Traffic models are described in Section 4 that are used
to drive estimates of the scalability that are presented and discussed in Sec-
tion 5.

2. The PURSUIT ICN architecture

The PSIRP project (and later PURSUIT) (Fotiou et al., 2012) brings
together two concepts to form an ICN solution: mediated assisted forward-
ing and publish/subscribe communication. A publisher notifies the mediation
system that it can provide an item, a subscriber notifies the mediation system
that it wishes to obtain the information item. These two events need not be in
the traditional client/server order: it is possible that the subscriber requests
something before a publisher has made it available. The mediation system
is broken down into two functions: Rendezvous and topology management.
These two functions control the third function: forwarding. It is assumed in
this paper that networks are owned and managed by autonomous systems in
the same manner as current network infrastructures. Consequently, the three
functions are required in each autonomous system and here we consider how
they operate within a single autonomous system. Connections between au-
tonomous systems might be expected to be maintained through mechanisms
such as that used in the current Internet through BGPv4 routing.

2.1. Mediation between publishers and subscribers: Rendezvous

The subject of this paper is mainly regarding the topology management
function, but to further understand the mediation mechanism it is impor-
tant to have a high-level understanding of the Rendezvous function. Each
information item is given a statistically unique Rendezvous ID (RID). The
Rendezvous is a distributed system that maintains an information graph that
links each RID in a hierarchical structure. Each RID is said to belong to a
parent scope and a scope may itself be the child of another scope. In this
manner it is possible to relate information items through ontologies that can
be flexibly defined (Tagger et al., 2013); for example a video content provider
could publish videos as each having a unique RID under different categories
(e.g. action, drama etc.) each defined by a different scope. The information

4



FW node FW nodeFW node

Rendezvous: Matching events

Topology Manager: Path 

Computation  

Publisher Subscriber

Publish (RID) Subscribe (RID)

Send FID 

21
3

4

5 Data forwarding

Create delivery path

Figure 1: The PURSUIT architectural model showing the mediation between publisher
and subscriber through the Rendezvous and topology manager.

graph allows an RID (or scope) to have more than one parent scope such
that, following on from the video example, a film that is both science fiction
and an action movie could have both categories as parents. The Rendezvous
is also responsible for matching publishers to subscribers as shown in Fig-
ure 1. The Rendezvous has been studied in some depth (Trossen and Parisis,
2012) using approaches that are either based on distributed hash tables (Kat-
saros et al., 2012) or hierarchical naming in systems such as data oriented
(and beyond) network architecture (DONA) (Koponen et al., 2007; Vasilakos
et al., 2012). It would be expected that a Rendezvous function would be
maintained by each autonomous system. Once the Rendezvous has received
both a subscription and publication event for a particular item (an RID) it
then passes over to the topology management function to perform the routing
required for the forwarding function. The Rendezvous mechanism has been
shown to be scalable to Internet scale solutions by Katsaros et al. (Katsaros
et al., 2012; Vasilakos et al., 2012).

2.2. Topology management - an overview

Topology management is responsible for maintaining intra-domain knowl-
edge of an autonomous system and to determine which publisher will be used
for providing a particular data item. When the Rendezvous requests that the
topology management function calculates a route, a topology manager uses

5



the topological data to construct a forwarding identifier (FID) that is used
by the forwarding function. A more detailed description of topology man-
agement is given in Section 3, here we present an overview of the function of
topology management. It should be stated here that the topology manage-
ment is a central network function, but this does not necessarily mean that
the function is carried out by a single topology manager instance. In practice
the number of topology manager instances may range from a single instance
to one running in every node in the network. One of the aims of this paper
is to determine how many instances may be needed and this is determined
for a typical intra-domain scenario in Section 5.

The core functionality of topology management consists of two basic
tasks: maintaining an up-to-date representation of the network topology;
and, the construction of delivery trees for forwarding. Maintaining an up-
to-date representation of the network topology, for example in a form of
an annotated graph, enables finding shortest paths and minimal multicast
tree construction. The details of this function vary somewhat between net-
work technologies, but in general resemble closely the neighbour discovery
mechanisms of classical Internet routing protocols such as OSPF. In an ICN
implementation the topology manager instances running at individual nodes
would subscribe to Hello-messages and other signalling information in a ded-
icated topology management scope, and periodically publish their identities
as Hello-messages in this scope. Information from these messages can then
be combined by the different nodes and published again to all interested
nodes, enabling the entire network topology to be reconstructed. This paper
concentrates on intra-domain topology management however inter-domain
routing is required as well. We assume that a mechanism such as BGP will
be used to maintain reachability information for remote autonomous systems
as in the current Internet.

The second core functionality of the topology management, the construc-
tion of delivery trees connecting publishers and subscribers, is based on the
topology data gathered from the network, and the information on the identi-
ties of the publishers and subscribers obtained from the Rendezvous. Typi-
cally this entails the construction of a shortest path spanning tree connecting
the publisher and subscribers, and informing the forwarding function of the
existence of this new delivery tree. In the following section we shall discuss
in more detail how the forwarding function can be implemented, and how
the delivery trees can be represented in a compact fashion.

In the case of best-effort delivery – where paths between a publisher and

6



subscriber(s) can be made arbitrarily and no path state is required – a topol-
ogy manager instance can determine a suitable FID based only on topological
information. Consequently, any suitable topology manager instance can be
used for the FID calculation and the topology management function can be
spread across any suitable number of instances as is required to meet the
demand.

2.3. Forwarding

The PURSUIT ICN model allows a number of forwarding mechanisms to
be used. Indeed it is possible that IP could be used as the forwarding mech-
anism, in this case the topology manager sends a destination IP address
(or multicast IP address) as the FID. However, PURSUIT has developed
a default forwarding model based on an approach called Line Speed Pub-
lish/Subscribe Inter-networking (LISPIN) (Jokela et al., 2009), a multicast
forwarding fabric based on Bloom filters (Bloom, 1970). This has the ad-
vantage of providing stateless multicast forwarding. LIPSIN operates using
source routing that encodes the delivery path (or tree in the case of multi-
cast) using link identifiers (LIDs) that are assigned to each link. By using
Bloom filters it is possible to encode a number of m-length LIDs into a single
m-length Bloom filter.

The operation of LIPSIN is shown in Figure 2. Each unidirectional link
between two nodes is identified with a LID. This identifier is m-bits long
with k-bits set to 1, where k is the number of hash functions used to generate
bit-positions set to 1. The topology manager encodes all the delivery tree
elements that compose this path into the Bloom filter by simply forming
the logical OR of the individual LIDs constituting the tree. We identify the
FID constructed by the topology manager with this Bloom filter in order
to be compatible with the LIPSIN terminology. At the end of this process,
the topology manager sends the created FID to the publisher in order to be
placed in the packet header for forwarding.

Using the FID that is included in the packet header, a forwarding node
can decide where packets should be forwarded by performing a bitwise AND
between the FID and the LIDs of the outgoing adjacent links. If the result
of the set membership function is true, then the forwarder will forward the
packet through the link assuming that this link is part of the delivery tree.
It should be noted that, while the Bloom filter does not have false negatives,
it may have false positives; this is where an FID matches LIDs that were
not intentionally included. In the extreme case an all “1s” FID will match

7



Topology Manager: FID creation

LID1:   10100100    OR 

LID2:   00000110    OR    

LID3:   00110110  ______________

FID:     10110110

Publisher SubscriberFW1 FW2
LID1:10100100 LID2:00000110 LID3:00110110

Forwarding decision on 

FW1:

LID2 AND FID=LID2 

(forward)

FID

Figure 2: LIPSIN based forwarding using Bloom filters: one of the possible forwarding
models in the PURSUIT architecture.

every LID. In practice the parameters of the Bloom filter need to be chosen
carefully in order to reduce the false positives, this is discussed further by
(Carrea et al., 2014).

2.4. Security and scalability in ICN

Although the LIPSIN forwarding mechanism offers highly efficient for-
warding, it has several security issues that can be exploited to attack the
network (Rothenberg et al., 2009). An attacker can inject arbitrary traffic to
the network by using a previous valid FID that is created for another traffic
request. This attack is referred as a FID replay attack. Another threat could
be to inject traffic by using brute-force attacks. In this attack, a malicious
node tries all possible FIDs to cause some false positive over the links. Fur-
thermore, a computational attack is still possible by collecting and analyzing
many valid FIDs in order to infer some parts of the network topology and
then to build a valid FID without the topology manager providing it.

There are also fundamental scalability challenges in the topology man-
agement and forwarding mechanisms as described above. Since Bloom filters
have an inherent false positive rate that depends on the number of links
stored in the filter, the overhead of LIPSIN increases as the multicast trees
become denser. As discussed in (Jokela et al., 2009) this problem can be
mitigated by including some state back into the network, and including in-

8



formation on this state in the FID through the use of virtual link IDs. A more
fundamental scalability challenge is related to the topology management, as
the churn of publishers and subscribers creates a need to rapidly update the
delivery trees and continuously recompute their respective FIDs. One of our
key objectives in this paper is to demonstrate that this scalability challenge
can be overcome by sufficient computational resources at a scale similar to
the resources already available in present-day operator networks.

3. Topology management design parameters

Here we consider the design of the topology management function from
both the perspective of performing its core function – routing – and the
requirement that this routing function cannot be subverted by an attacker
to send a significant quantity of malicious traffic.

3.1. Routing functionality in the topology management

Recall that the topology management is aware of the network topology,
and mainly responsible for finding the best path between publishers and sub-
scribers. It creates a FID that is used to route information object through
the determined path. When the topology manager is instructed by the Ren-
dezvous to find a suitable path and to create FID, the following two strategies
may be used: running Dijkstra’s algorithm for each request, and, caching all
the network topology paths. In the first case each time a topology man-
ager receives a request from Rendezvous to create a delivery tree Dijkstra’s
algorithm is executed to compute the shortest path considering the present
network state. The average processing time of the algorithm increases as the
network size grows which may introduce some delay. In the case of caching
all the network topology paths, in the setup phase, the topology manager
computes paths between each node pair in the network and caches them into
a fast memory. Once the topology manager gets a request to find a path, the
pre-calculated route is used and then the path LIDs are encoded to create
the FID. In the case of multicast requests, where there is one publisher and
several subscribers, the topology manager will combine all paths into one
path by ORing all relevant LIDs. In the case where highly optimized mul-
ticast trees are required the topology manager could use an improved tree
routing algorithm, but a significantly higher computation cost.

9



3.2. Securing the PURSUIT forwarding
The threats described in Section 2.4 are made possible because of the

use of static forwarding LIDs which allow reuse and inference of FIDs. To
secure the LIPSIN forwarding mechanism against these threats we make use
of, and extend, a technique proposed by Rothenberg et al., called zForma-
tion technique (Rothenberg et al., 2009), which is summarized in Figure 3.
The zFormation changes the LIDs within a certain timeframe which leads to
dynamic and expiring FIDs. To distinguish between the original LIDs, de-
scribed previously, we here refer to the new identifier as a link ID tag (LIT).
The zFormation technique uses a cryptographic function Z that accepts 4
parameters as input and outputs a new LIT. The input parameters to Z
are: (1) an in-packet flow ID i (e.g. the RID); (2) a periodically changing
time-based secret key Ki(t); (3) the incoming and outgoing port numbers
I and O; and, (4) the optimization index d of the LIT. The index d was
proposed by Jokela et al. (Jokela et al., 2009) to reduce the false positive
rate inherited with the use of the Bloom filter. In this proposal d different
LITs are assigned to each unidirectional link which subsequently allows the
creation of d different candidate FIDs by the topology manager. Then the
FIDs are evaluated and the one with lowest false positive rate is selected
and its index d is placed in the packet header. To create a dynamic FID, a
topology manager applies the function LIT= Z(i,Ki(t), I, O, d) to create all
the LITs of the delivery tree and then constructs the FID by simply ORing
all the computed LITs as for the standard Bloom filter. The function Z can
be implemented using a stream cipher that uses Ki(t) as a time-bound key
(Rothenberg et al., 2009).

For the topology manager to create a FID, it is required to share the time-
bound shared session key Ki(t). In every ∆t, which is the time that a LIT
is valid, synchronized shared session keys are generated. As a consequence,
the result of computing an LIT is different. After creating the FID in the
topology manager, the FID, flow ID i and the index d are sent to the publisher
which then uses this as the packet header for forwarding data. Upon receiving
this packet at a forwarding node, the node extracts the FID, flow ID i and d
then it computes the dynamic LIT of its outgoing interface using the function
Z. Then it tests the LIT with the FID for the packet to be forwarded.
However, as the LITs are changed every ∆t, the in-sessions FIDs need to be
updated according to the new values of LITs. Therefore, for long-lived flows,
that last longer than ∆t, the sessions need a new FID in order to extend the
communication before the old FID expires. In (Alzahrani et al., 2012), we

10



Z function

FID Flow ID d

Incoming interface number

Outgoing interface number

LIT & FID = LIT?
LIT

Data

Ki(t)

Figure 3: The creation of a zformation for mitigating against malicious traffic injection in
LIPSIN forwarding.

have proposed a solution that provides this updated FID by adding a new
entity called a FID updater that maintains all the necessary information for
creating an updated FID. This method relies upon the Rendezvous to extend
the FID as it has knowledge of active publishers and subscribers for each
information item. The Rendezvous achieves this by sending an extension
request to the FID updater. Furthermore, in (Alzahrani et al., 2013), we
demonstrated that the zFormation forwarding mechanism is still vulnerable
to successful brute-force attacks if either the fill factor of the FID is too large
or ∆t is too long. The fill factor specifies the most 1s that can be set in a
FID, as for example if a publisher was to set all the FID to 1s (highest fill
factor) the packet would match every possible LIT and thus would be sent
to every end node. This could be used by an attacker to launch a denial of
service attack which is highly undesirable and even more dangerous if one
considers that with one packet it would be duplicated to all end-nodes. This
can be virtually eliminated by only allowing a maximum fill-factor such that
it is not possible to send a packet to every node and it is improbable to send
a packet to an arbitrary end-node by guessing a FID. The probability p of
guessing a correct FID for a Bloom filter constructed with k-hash functions
for each LID, maximum fill-factor ρ and with a path length of h is given by
(Rothenberg et al., 2009; Alzahrani et al., 2013):

p = ρkh (1)

In practice we find that a maximum fill factor of 0.41 with k = 5 hash
functions gives a sufficiently low probability of sending a randomly generated

11



FID of p = 2.09 × 10−10 . If a sender could transmit 106 packets per second
this means that if we set ∆t = 40 minutes there is less than a 50% chance
that a packet would reach an arbitrary user within this time window. This is
considerably better than is possible with the current IP architecture which
allows arbitrary users to send packets to end nodes to cause denial of service.
For the remainder of this paper we will assume ∆t = 40 minutes, however,
the work holds generally true for other values with suitable adjustment. This
value is chosen as it gives reasonable security against packet injection with
relatively relaxed timing constraints as will be explored further in Section 5.

In this section we propose an alternative method of updating FIDs com-
pared to that introduced in (Rothenberg et al., 2009). For the mechanism
of updating FIDs, consider that LITs start to be valid at t and that they
are valid for ∆t. Define the time of updates to LIDs as occurring in a time
window of t + umin and t + umax, where t + umin is the time where the FID
update period begins whereas t + umax is the time where the period ends.
We require umax < ∆t to allow orderly updating without risking that LITs
will not be updated in time. The valid LITs during period t, . . . , t+ ∆t will
be overlapped with a new LIT being created at t + ∆c where ∆c = ∆t/2,
thus two sets of LIDs will be valid at any given time.

The Rendezvous keeps states of all events that have a match between
publisher and subscriber. Therefore we give the responsibility of extending
FIDs to the Rendezvous. If a subscriber is no longer interested in any sub-
scribed item, then the subscriber unsubscribes by sending a request to the
Rendezvous to be deleted from the list, otherwise the Rendezvous assumes
that the subscriber is still walling to receive this item. At time t+ umin the
Rendezvous checks for matching event entries for all events that exist from
the previous update slot and have not been updated before. Then it sends
them gradually to the topology management function until time t + umax.
This time window is designed to reduce the workload on updating in any
given time slot ∆t. Here the Rendezvous needs to have an approximately
synchronized clock with the topology managers, with a tolerance such that
there can be no risk that FID updates are not completed before the LIDs
become invalid. This update mechanism is shown in Figure 4 where ∆t = 40
min and three different information item lifetimes are considered. Informa-
tion item 1 has a lifetime less than the FID and thus does not need to have
an updated FID. Information item 3 has a lifetime greater than the FID and
thus will require updated FIDs. Additionally Item 3 becomes published after
the first LID change and thus uses the first updated FID.

12



Y-Axis

t (min)20 30 40 50 60

Update

FID1           FID2

38 58

LITx1

LITx3

Safety

margin 

Safety

margin 

4 25 6434

Update

FID2           FID3

umin umax 40+umin 40+umax

Information Item 1
Information item 2

Information item 3

14 18

LIT change 1 LIT change 2 LIT change 3

LITx2

FID update FID update

Figure 4: The proposed method for updating the FID to mitigate against malicious traffic
injection. The figure shows how three information items, with different dissemination
durations, need different forwarding identifier updates due to the periodic changes in link
identifiers.

In practice the topology management function cannot know the lifetime
of an information item, as with Information item 2 in the example. At time
∆C = ∆t/2 = 20 min. in the example Information item 2 is still required
to be published and thus the topology management prepares to update the
new FID. It does not make sense to immediately update the FID for all
such information items as it might be the case that it finishes before it is
actually required and updating all FIDs immediately requires a high-data
rate. Consequently, the FIDs are updated over a suitable window. In this
case we propose updating over a window of 8 min. starting 10 min. after the
FID change and completing 2 min. before the end of the valid period of the
FID to allow for a loose tolerance on the synchronization of the clocks in the
topology managers and the forwarding nodes. These values are not highly
sensitive and are design parameters to be selected by the network designer
depending upon timing tolerances. The values given here are indicative of
possible choices.

4. Traffic modelling

An important aspect with regard to mediation models used in ICN is
the scalability of the solution. We know from the existing IP DNS model
that it is possible to create and maintain a global database used for the
so called “slow-path”, however, with the ICN approaches this generally re-
quires much finer granularity hence increased resource requirements. Here

13



we are concerned with the scalability of topology management, others have
considered the scalability of matching function such as performed by the Ren-
dezvous in the PURSUIT model. There are two key aspects for calculating
the scalability of the topology management solution: the first is the num-
ber of topology management FID requests which is related to the number of
new publish/subscribe events; the second is the number of publish/subscribe
matches that exist beyond the time limit for FID expiry as these will need
to have FIDs that are refreshed. Thus, we need to consider two aspects of
the traffic model: how many new requests are made each second and how
long each item may need to remain available. Ideally, this should be esti-
mated from an actual ICN scenario using ICN events, but as this ICN is
far from deployment there are no existing statistical models of ICN traffic.
Consequently, we estimate ICN traffic from existing IP data as, while the
ICN architecture is quite different from IP, we may expect that at least the
existing services will be required from an ICN architecture.

To estimate the required resources we investigate the future growth of
Internet traffic and estimate the expected number of flow requests per second.
While we do not expect an ICN to follow a traditional flow based delivery
model we find in current TCP/IP, it is a reasonable assumption that there
will be a similar number of user instigated events that can be represented by
a TCP/IP session start or by an ICN publisher/subscriber/information item
matching event. Consequently the methodology used in the paper is to base
ICN event workload on Internet traffic scaled to a near future demand. Here
we use a model based on a carrier in a country the size and demographics
of the UK with traffic models from known voice, video, HTTP and peer-
to-peer application statistics. Specifically the model is based upon the UK
population with 52 million Internet users and the carrier serving 30% of this
population. These types of traffic have been considered as they form the vast
majority of today’s Internet traffic. Thus, although other applications are
available in the Internet, restricting the model to these application types is
not likely to significantly affect the outcome of this analysis. In particular
the HTTP traffic encompasses a wider range of applications than just simply
“web browsing.”

The specific goal of this analysis is to estimate the number of FIDs re-
quired per second so that we can estimate the topology management workload
and computation requirements needed to handle all FID requests. Addition-
ally, we analyze the flow duration with regard to the requirement to update
FIDs for flows that have duration that span a FID update every ∆t. The

14



methodology extrapolates from a flow-based model of Internet traffic to in-
dependently analyze the four types of traffic. Then we compose all these
types of traffic that form large proportion of today’s Internet traffic as a to-
tal number of requests. The explanation of how the estimates were obtained
is given below.

4.1. Voice model

Assumption: For the voice traffic we assume the model of (Kaufman,
1981). This model assumes a transmission link of fixed bandwidth capacity
C. Each voice call has a bandwidth requirement b. The capacity C and
the requirement b are measured in bandwidth units (b.u.). For example 1
b.u. could be 24 kb/s if we assume a G.729 coding for the voice channel.
The arrival rate of the voice calls is denoted by λ and follows a Poisson
distribution. The call service rate is exponentially distributed and denoted
by µ. The system state j(j = 0, . . . , C) is defined as the total number of
occupied b.u. in the system.

Below we calculate the voice traffic utilization, U , with the aim of finding
the inter-arrival time that gives the number of required FIDs per second. In
(Kaufman, 1981) the author derives the following recurrent formula for the
calculation of the state probabilities:

q(j) = b× 1/j × λ/µ× q(j − b) (2)

with q(x) = 0 for x < 0 and
∑C

j=1 q(j) = 1.
Using the state probabilities it is possible to calculate the link utilization

as (Kaufman, 1981):

U =
C∑

j=1

jq(j) (3)

The number of FID requests for voice traffic: according to the assumption
used in (Gabale et al., 2010), with a village population around 1000 there
will be on average 10 simultaneous voice calls. Therefore for the UK, we
will need approximately 15 GB/s (i.e. 660,000 calls 24000 b/s,) to allocate
all voice calls assuming 50% utilization with zero blocking probability and
G.729 compression coding algorithm is used. Therefore, the total capacity for
this voice network is 30 GB/s. Also according to typical values reported in
(Birke et al., 2007; Ramachandran and Beeram, 2009) the mean call duration,
1/µ, is 2 min., and with voice compression coding algorithm G.729 the total

15



bandwidth required to transmit each voice over an IP based network would
be 24 kb/s. While other codecs could be used, this gives a bandwidth mid-
way between the older G.711 codec (likely to be less used by 2016) and other
more recent low-bandwidth codecs. If we apply the parameters: mean call
duration of 120 s, 30 GB capacity and mean call bandwidth 24 kb/s to the
theoretical model described above, the mean time between calls is 0.0002 s.
This means the topology management needs to create 5,000 new FIDs each
second to route each voice call.

Voice traffic growth: the previously calculated number of FIDs for voice
traffic is based on 2010 data. It is estimated that voice traffic has increased by
an annual growth rate of 13% from the year 2010 until 2012 (Cisco, 2009),
and there will be a further expected increase of 3% from 2012 until 2016
(Cisco, 2011). This growth allows an estimation of 7,185 FIDs/s required for
voice communication in 2016.

4.2. Video model

Recent studies have indicated that video streaming is responsible for 25-
40% of all Internet traffic and will reach 62% by the end of 2015 (not including
P2P video file sharing) (Cisco, 2011). YouTube is the most popular Internet
video service (Gehlen et al., 2012); consequently, YouTube is a good example
of Internet video traffic to be applied to an ICN architecture, especially for
the topology manager.

The number of FID requests for video traffic (YouTube): in order to
know how many FIDs are needed to handle YouTube traffic by the topology
management it is important to know how many requests/s are sent to the
topology management. The study by Zinka, et al. (Zinka et al., 2009) mea-
sured YouTube traffic in a university campus of 25,000 students and found
4,000 requests sent per hour. So we can estimate that for the UK, with 52
million Internet users, the number of FIDs to be created by the topology
management to handle all user requests is approximately 2,000 FIDs/s.

Video traffic growth: the YouTube data used above was from 2009. Video
traffic has generally increased by an annual growth rate of 62% from 2009
until 2012, a further increase of 34% are expected from the year 2012 to
2016 (Cisco, 2011). Therefore the total number of FIDs requests of YouTube
traffic by 2016 would be 87,507 FIDs/s.

16



4.3. HTTP and peer-to-peer traffic

Web traffic (HTTP) has been found to follow an exponential distribution
(Mori et al., 2005; Bhole and Popescu, 2005). Study of Internet traffic at
the University of Calgary (33,000 users) found web traffic arrival rate was
80 flows per second (Basher et al., 2008). Scaling this to the UK, gives
approximately 126 × 103 FIDs/s for web traffic. Web traffic growth: this
number of web requests is built on a study done on 2008. Using an annual
growth rate of 26% from the year 2008-2012 (Cisco, 2009) and an expected
growth rate of 35% from the year 2012- 2016 (Cisco, 2011) gives 1,054,841
FID/s by 2016 for web traffic.

In the same study of (Basher et al., 2008), it was found that peer-to-peer
traffic has arrival rate of only 6 flows/s and from this we estimate that there
will be around 9,400 FID/s for the UK based on 2008 figures. P2P traffic
growth: Using an annual growth rate of 25% from the year 2008-2012 (Cisco,
2009) and 26% from the year 2012-2016 (Cisco, 2011) the total number of
peer-to-peer traffic requests is expected to be 57,842 FID/s by the year 2016.

5. Results and discussion

Using the estimates of traffic models it is possible to investigate the num-
ber of FID updates needed for each type of traffic and also compare the total
number of FIDs created by the topology management for all types of traffic
to the total number of FIDs required to be updated. This can be done once
the mean flow duration of each traffic type and the time between each up-
dated ∆t are known. Following measurements reported in the literature, we
use mean durations of voice, YouTube, web and P2P flows as 2, 3, 0.033 and
266 minutes respectively (Birke et al., 2007; Zinka et al., 2009; Brownlee and
Claffy, 2002; Steiner et al., 2009). Then following the traffic models described
in Section 4 the number of FID required can be determined for each traffic
type giving the results shown in Table 1. The results show the number of
new FIDs required for each new publisher/subscriber event and the number
due to updates for long-lived flows.

The results show that peer-to-peer flows have the highest number of up-
dating requests with update percentage of more than 92% of sessions requir-
ing updates. This is due to the long mean flow duration of peer-to-peer traffic.
Web flows have the highest number of FIDs in a second with more than one
million requests each second requiring a new FID, but almost no updates
are required. This is because web traffic is characterized with a very short

17



Flow type Number of New FIDs Required Peak % of
new FID/s every ∆t updates updates/s update

each ∆t
Voice 7185 8.62 × 106 329,725 686 3.8
Video 87507 1.05 ×108 561,769 1170 0.53
P2P 57,842 6.94 × 107 6.4 × 107 134,161 92.2
Web 1.05 × 106 1.27 × 109 ≈ 0 ≈ 0 ≈ 0

All flows 1.20 × 106 1.45 × 109 6.49 × 107 136,017 4.5

Table 1: The number of FID/s (forwarding identifiers per second) that have to be created
by the topology manager in order to deliver information items from publishers to sub-
scribers. The number of updates/s represents the number of updated FIDs that need to
be sent due to the security mechanism that requires periodic FID changes every ∆t.

session periods. In the same table we show the total percentage of all FIDs of
all types of flows that are required for update with all FIDs originally created
by the topology management. This percentage is approximately 4.5% from
the total flows requests, almost all of which is accounted for to P2P traffic.
This is small and indicates that most sessions will be terminated before any
update needs to take place. The total peak load on the topology manage-
ment function, including the new updated FIDs, is approximately 1.3 × 106

FID/s.
With the knowledge of the peak FID calculation rate we can estimate the

number of topology management entities required for handling all types of
traffic requests which have been calculated i.e. 1.3×106 requests per second.
Using the Blackadder ICN platform that is publicly available under GNU
GPL2 license (Parisis and Trossen, 2013), we experimentally measured the
average time taken by a single topology manager entity to create a unicast
FID. The Blackadder was running on a machine with a processor capability
of an Intel Core2 Quad CPU Q6600 @ 2.40 GHz 4 and RAM capacity was 4
GB. Only one core was used to carry out the processing. In this experiment
we use a large real network topology, the KDL network with 754 nodes and
899 edges as reported by the Internet Topology Zoo (Knight et al., 2011).
By running the experiment many times with different random publisher and
subscribers we found that the average time is 0.26 ms/FID. This time is for
processing one request received from the Rendezvous and includes finding
the shortest path and creating a FID. For efficiency, once a path between a
publisher and subscriber was found it was cached for later use.

18



Using the average FID calculation rate for single entity, the total num-
ber of topology manager entities to handle all traffic requests in a particular
intra-domain can be calculated. Here we assume a traffic for the UK follow-
ing the traffic models in Section 4. With 1.3 × 106 requests per second and
0.26 ms/FID we can estimate there is a need for approximately 340 topology
manager cores, assuming similar CPU capabilities. By 2016 standards this
is likely to be a modest capability. However, for a single carrier this is likely
to be much smaller, for example in the UK, the largest carrier has approxi-
mately a 30% share of the total number of UK Internet users. Therefore, 102
topology managers are needed for a carrier of this size. However, the experi-
ment of calculating the topology management capability has been carried out
on a normal characteristic machine to estimate future traffic on 2016. This is
a fairly modest CPU requirement and significantly less computational power
than in current IP routing platforms that would be required at every for-
warder. It should be remembered that the forwarding complexity of LIPSIN
forwarding is considerably less than an IP or even an IP/MPLS router. For
example a network node using LIPSIN forwarding with a node degree of 20
only needs 20×d LIT entries (with typically d = 8). This is favourable com-
pared to an IP routing table that is approximately equal to the number of
intra-domain links (typically hundreds in a large operator) if using IP/MPLS
or equal to the number of BGP routing prefixes in a pure IP implementation.
Consequently, the overall routing/forwarding complexity can be said to be
considerably reduced compared to an existing IP infrastructure.

With the zFormation scheme, and its extension of FID update that we
propose, the forwarding plane can resist an attacker’s malicious packet in-
jections, such as a denial of service attack. This is because the LITs become
dynamic and changeable within certain periods thus any valid FID gets ex-
pired in due course. Consequently, determining a valid FID becomes difficult
and an attacker that manages to determine a valid FID cannot use it to
inject unwanted traffic indefinitely. Additionally, by including the In and
Out interfaces in the FID construction process, an FID is tightly bound to a
specific path and originator, so the attacker cannot reach another subscriber
using an existing FID.

6. Conclusion

There are a number of ICN architectures that are being proposed with
differing models for route determination. The scalability of these solutions

19



needs careful inspection if we are to move from early prototypes towards
proposing them as models for a future network operating at the scale of
the Internet. Here we have considered an ICN architecture following the
architecture proposed by the PSIRP/PURSUIT which has a central network
function called topology management. We have extended this function to
provide mitigation of injected malicious traffic by using periodically updated
forwarding identifiers. This gives protection from attacks such as denial of
service.

Although the topology management function is termed a central func-
tion we have shown that it can be distributed among an arbitrary number
of topology manager instances. By analyzing traffic models of the current
Internet and extrapolating them to levels in 2016 and applying them to the
proposed architecture we have shown that the processing requirements are
less than today’s IP routing infrastructure. Thus we propose that this archi-
tecture is a viable proposition for a future ICN based network operating at
the scale of a major Internet network provider.

References

Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B., 2012.
A survey of information-centric networking. Communications Magazine,
IEEE 50 (7), 26–36.

Alzahrani, B., Vassilakis, V., Reed, M., 2013. Mitigating brute-force attacks
on bloom-filter based forwarding. In: Future Internet Communications
(CFIC), Conference on. pp. 1–7.

Alzahrani, B. A., Reed, M. J., Vassilakis, V. G., 2012. Enabling z-filter up-
dates for self-routing denial-of-service resistant capabilities. In: Computer
Science and Electronic Engineering Conference (CEEC), 4th. IEEE, pp.
100–105.

Basher, N., Mahanti, A., Mahanti, A., Williamson, C., Arlitt, M., 2008. A
comparative analysis of web and peer-to-peer traffic. In: Proceedings of
the 17th International Conference on World Wide Web. WWW ’08. ACM,
pp. 287–296.

Bhole, Y., Popescu, A., 2005. Measurement and analysis of http traffic. Jour-
nal of Network and Systems Management 13 (4), 357–371.

20



Birke, R., Mellia, M., Petracca, M., Rossi, D., 2007. Understanding VoIP
from backbone measurements. In: INFOCOM. 26th IEEE International
Conference on Computer Communications. IEEE. IEEE, pp. 2027–2035.

Bloom, B. H., 1970. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM 13, 422–426.

Brownlee, N., Claffy, K., 2002. Understanding internet traffic streams: drag-
onflies and tortoises. Communications Magazine, IEEE 40 (10), 110–117.

Carrea, L., Vernitski, A., Reed, M., Jan. 2014. Optimized hash for network
path encoding with minimized false positives. Computer Networks 58, 180–
191.

Cisco, 2009. Cisco visual networking index: Forecast and methodology. Tech.
rep.

Cisco, 2011. Cisco visual networking index: Forecast and methodology. Tech.
rep.

Fotiou, N., Nikander, P., Trossen, D., Polyzos, G. C., 2012. Developing infor-
mation networking further: From psirp to pursuit. In: Broadband Com-
munications, Networks, and Systems. Springer, pp. 1–13.

Gabale, V., Raman, B., Chebrolu, K., Kulkarni, P., 2010. LIT MAC: Ad-
dressing the challenges of effective voice communication in a low cost, low
power wireless mesh network. In: Proceedings of the First ACM Sympo-
sium on Computing for Development. ACM, pp. 1–11.

Gehlen, V., Finamore, A., Mellia, M., Munaf, M., 2012. Uncovering the
big players of the web. In: Traffic Monitoring and Analysis. Vol. 7189 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 15–28.

Handley, M., 2006. Why the internet only just works. BT Technology Journal
24 (3), 119–129.

Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H.,
Braynard, R. L., 2009. Networking named content. In: Proceedings of
the 5th international conference on Emerging networking experiments and
technologies. ACM, pp. 1–12.

21



Jokela, P., Zahemszky, A., Esteve Rothenberg, C., Arianfar, S., Nikander,
P., 2009. LIPSIN: Line speed publish/subscribe inter-networking. ACM
SIGCOMM Computer Communication Review 39 (4), 195–206.

Katsaros, K. V., Fotiou, N., Vasilakos, X., Ververidis, C. N., Tsilopoulos, C.,
Xylomenos, G., Polyzos, G. C., 2012. On inter-domain name resolution
for information-centric networks. In: NETWORKING 2012. Vol. 7289 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 13–26.

Kaufman, J., 1981. Blocking in a shared resource environment. Communica-
tions, IEEE Transactions on 29 (10), 1474–1481.

Knight, S., Nguyen, H., Falkner, N., Bowden, R., Roughan, M., 2011. The
internet topology zoo. Selected Areas in Communications, IEEE Journal
on 29 (9), 1765–1775.

Koponen, T., Chawla, M., Chun, B.-G., Ermolinskiy, A., Kim, K. H.,
Shenker, S., Stoica, I., 2007. A data-oriented (and beyond) network ar-
chitecture. ACM SIGCOMM Computer Communication Review 37 (4),
181–192.

Mori, T., Uchida, M., Goto, S., 2005. Flow analysis of internet traffic: World
wide web versus peer-to-peer. Systems and Computers in Japan 36 (11),
70–81.

Parisis, G., Trossen, D., 2013. Blackadder node implementation, v0.4. Source
code published through GitHub, accessed 8th March 2014.
URL https://github.com/fp7-pursuit/blackadder

Ramachandran, K., Beeram, S., 2009. Supporting enterprise-grade audio con-
ferencing on the internet. In: Passive and Active Network Measurement.
Springer, pp. 143–152.

Rothenberg, C. E., Jokela, P., Nikander, P., Sarela, M., Ylitalo, J., 2009.
Self-routing denial-of-service resistant capabilities using in-packet bloom
filters. In: Computer Network Defense (EC2ND), European Conference
on. pp. 46–51.

Spagna, S., Liebsch, M., Baldessari, R., Niccolini, S., Schmid, S., Garroppo,
R., Ozawa, K., Awano, J., 2013. Design principles of an operator-owned

22



highly distributed content delivery network. Communications Magazine,
IEEE 51 (4), 132–140.

Steiner, M., En-Najjary, T., Biersack, E. W., 2009. Long term study of peer
behavior in the kad dht. IEEE/ACM Trans. Netw. 17 (5), 1371–1384.

Tagger, B., Trossen, D., Kostopoulos, A., Porter, S., Parisis, G., 2013. Real-
ising an application environment for information-centric networking. Com-
puter Networks 57 (16), 3249 – 3266.

Trossen, D., Parisis, G., 2012. Designing and realizing an information-centric
internet. Communications Magazine, IEEE 50 (7), 60–67.

Trossen, D., Sarela, M., Sollins, K., Apr. 2010. Arguments for an information-
centric internetworking architecture. SIGCOMM Comput. Commun. Rev.
40 (2), 26–33.

Vasilakos, X., Katsaros, K., Xylomenos, G., 2012. Cloud computing for global
name-resolution in information-centric networks. In: Network Cloud Com-
puting and Applications (NCCA), Second Symposium on. pp. 88–94.

Zinka, M., Suhb, K., Gua, Y., Kurosea, J., 2009. Characteristics of youtube
network traffic at a campus network measurements, models, and implica-
tions. Computer Networks 53 (4), 501 – 514.

23


