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Improving Prediction of Dam Failure Peak Outflow using Neuroevolution Combined with K-means Clustering

Abstract
Estimation of peak outflow resulting from dam failure is of paramount importance for flood risk analysis. This paper presents a new hybrid clustering model based on Artificial Neural Networks and Genetic Algorithm (ANN-GA) for improving predictions of peak outflow from breached embankment dams. The input layer of the ANN-based model comprises height and volume of water behind the breach at failure time plus a new parameter of ‘cluster number’. The cluster number is obtained from partitioning the input data set using K-means clustering technique. The model is demonstrated using the data samples collected from the literature and compared with three benchmark models by using cross-validation method. The benchmark models consist of a conventional regression model and two ANN models trained by non-linear techniques. Results indicate that the suggested model is able to estimate the peak outflows more accurately especially for big flood events. The best prediction for the current database was obtained from a five-clustered ANN-GA model. The uncertainty analysis shows the five-clustered ANN-GA model has the lowest prediction error and the smallest uncertainty. 
Keywords: Artificial neural networks; dam failure; genetic algorithm; hybrid model; K-means clustering.

Introduction
Embankment failures usually happen during hydrologic flash floods when the flood discharge greatly exceeds the maximum capacity of spillways or due to uncontrolled seepage through the embankment body and progressive internal erosion. Due to the potential risk of dam failure and the corresponding hazards to inhabited areas downstream, analysis of dam failure and the consequent damage resulting from the flood wave is of paramount importance to researchers, engineers and insurers. Because of numerous loss of life and the high level of economic damage in some past failure cases, dam failure can be considered to be one of the most catastrophic phenomena in the world. A brief review of some historical dam failure cases reveals the considerable range of hazards and subsequent financial and human losses. For instance, the South Fork Dam in Pennsylvania, USA, failed in 1889 due to overtopping in which over 2200 people died. It also resulted in significant property losses (Singh and Scarlatos, 1988). Breaching dikes in the Netherlands in 1953 due to a heavy coastal storm surge has been one of the biggest natural disasters in Dutch history, which caused thousands of lost lives and a direct economic loss of about 14% of the Dutch GDP (Huisman et al. 1998). Hence, finding reliable methods for assessing the dam failure and its consequences are critical for analysis of both flood risk and dam safety. 
Estimation of the probable flood under uncertain hydrologic conditions and routing the flood wave through downstream rivers could provide invaluable information for decision makers. However, the accuracy of assessment of flood outflow and corresponding damage are heavily reliant on the appropriate calculation of the outflow hydrograph caused by a dam break (Wahl 2010). In addition, dam failure risk assessment (DFRA) outlines two primary tasks: 1) to analyse the feasible dam failure scenarios and 2) to compute a more realistic flood wave. These tasks involve: 1) prediction of the reservoir outflow hydrograph and 2) routing of this boundary condition through the tail-water areas (Pilotti et al. 2010). The current study has addressed the first task of DFRA focusing on estimation of peak-discharge from embankment dam failures. This can then be used in flood routing methods to estimate peak flow rates at locations downstream from a breached embankment dam (SCS, 1981, Costa, 1985), Barker and Schaefer (2007), and Environment Agency 2014). More specifically, the estimated outflow hydrograph feeds the mathematical routing models as the main input parameter to produce water levels and flow velocities at downstream locations (Thornton et al., 2011). The hydraulic routing of large floods is a well-established science while modelling the prediction of an outflow hydrograph is a complex task due to the sources of uncertainty involved (Wahl 2010). Each of these methods requires an accurate estimation of the maximum outflow rate from the reservoir. In other words, an effective estimation of the peak outflow as the main parameter of a dam failure outflow hydrograph requires the specifications of the dam such as breach geometry, dam geometry and dam materials. Improvement of the quality of this estimation has been addressed by multiple research works (e.g. Pierce et al. 2010; Thornton et al. 2011; Gupta and Singh 2012; Froehlich 2016). 
Application of data mining techniques such as statistical methods for prediction of the peak outflow has received a lot of attention due to the desire to reduce mathematical complexity. Development of data mining methods is highly dependent on the data samples and their quality. While the number of samples from historic dam failures is rather small due to it being a relatively rare phenomenon, the existing data samples from real breached embankment dams are of high value (Thornton et al., 2011). This fact has not forced researchers’ to abandon attempts to develop predictive models of dam peak outflows. A number of researchers have developed such prediction models using traditional statistical regression methods and artificial intelligence techniques (e.g. neural networks and genetic programming). These predictive models have been used to estimate a variety of outflow parameters such as breach width and depth, flood hydrograph peak, and time to peak. Application of various multivariate regression analyses has been a common approach in recent years for prediction of peak discharge such as Froehlich (1995) with 32 data samples, Froehlich (2008) with 74 data samples, Pierce at al. (2010) and Thornton et al. (2011) with 87 data samples. The available historic data sets have also been expanded using statistical methods such as the copula technique to generate synthetic samples (Hooshyaripor et al. 2014). 
In addition, the lack of availability of various geometric elements in the historic databases points to likely inconsistency within and between the databases which may result in significant uncertainties in the statistical analyses (Hanson et al. 2005). Wahl (2004) showed that the uncertainty involved in the estimates by a number of regression models could range from ±0.32 to ±1. Overall, in spite of numerous historic data samples, predictions may not be sufficiently accurate. This can be attributable to some factors such as complexity of the dam-break phenomenon and limitations of the commonly used statistical methods (Pierce et al. 2010). 
Artificial intelligence (AI) techniques have been widely used for improved accuracy of approximation of unknown functions. To overcome some of the above shortcomings, these were applied by hydraulic researchers (Babaeyan Amini et al. 2011; Hooshyaripor et al. 2014; Hakimzadeh et al. 2014). For instance, Babaeyan Amini et al (2011) used the assembled data set by Wahl (1998) to predict peak outflow from breached embankments using Artificial Neural Network (ANN) and Genetic Algorithm (GA) methods. GA is a widely used evolutionary algorithm in many engineering disciplines with a successful application in flood management strategies (Javadi et al. 2005). Nourani et al. (2012) applied ANN with 24 experimental samples comprising 7 variables to investigate peak outflow. Sattar (2014) used 51 historical samples for peak outflow prediction, 63 data samples for dam breach width prediction, and 36 data samples for failure time prediction with Gene Expression Programming (GEP). Hakimzadeh et al. (2014) also applied Genetic Programming (GP) to those 24 experimental samples, which were used by Nourani et al. 2012. Hooshyaripor et al. (2014) showed that a better performance can be achieved by using an ANN model when compared with linear regression analysis when a richer database is used. Advantages of the ANN models over linear statistical methods can be explained by factors such as their data-driven nature, model–free form of predictions, tolerance to data errors, and lower uncertainty for prediction (Hooshyaripor et al. 2015). 
The ANN models need to be trained before use for prediction purposes. During the ANN training, the optimal ANN parameters including values of weights and biases are identified. Back propagation (BP) based algorithms are historically the most widely used techniques for ANN training for optimising the ANN parameters (Varshney et al. 2014). However, these algorithms are hindered by inconsistent and unpredictable performances (Subramanian and Hung 1990). In addition, the abilities of gradient-based search techniques such as BP are generally limited and questionable when searching for globally optimal solutions. Global search techniques have been proposed as a potential solution to this limitation. (Subramanian and Hung, 1990). Various alternative techniques for optimising ANNs’ parameters have been used, such as nonlinear programming techniques and evolutionary algorithms. The combination of ANNs with evolutionary algorithms (also known as Neuroevolution) has been demonstrated to strengthen the model performance for other water systems applications (Rivero et al. 2009; Behzadian et al. 2009; Mulia et al. 2013). Therefore, neuroevolution has been chosen in the present study for performance improvement of the predictive ANN model for dam failure peak outflow by integrating it with GA for efficient training. 
Obviously, the higher the accuracy of the input hydrograph, the more precise outputs would result in the routing models which significantly affect the ultimate risk management plan. Nowadays, data mining techniques are widely used by many researchers for estimation of the key parameters (e.g. peak value) of input hydrograph. Drawing upon the knowledge of the previous data mining models, this paper aims to enhance the quality of estimation of dam failure outflows by introducing a new neuroevolution approach in a data-driven model combined with a clustering method. The suggested model uses K-means clustering approach for dividing the dam failure database to a specific number of clusters with similar attributes. This improves the prediction accuracy. It also provides a more reliable way of training ANN by using a Genetic Algorithm and thus achieving global optimum rather than local optimum which is common in the previously developed ANN prediction models. Applications of data driven models have proved that imbalances within datasets can be alleviated by using an appropriate data clustering technique such as K-means clustering or fuzzy c-mean techniques (Hammouda and Karray, 2000; Arthur and Vassilvitskii, 2007; Kim and Seo, 2015). Data samples are partitioned into a number of clusters by using the K-means clustering method (Arthur and Vassilvitskii, 2007). The prediction performance of the developed model is then compared with a number of previously developed models as benchmarks. 

Methodology
Artificial Neural Networks (ANNs), genetic algorithm (GA) and K-means clustering have been used here as the core tools for prediction of peak outflow (Qp) of a breached dam. More specifically, the ANN curve fitting and GA optimisation tools in MATLAB® (R2014b) platform were combined together with the data, clustered by using the K-means clustering function in MATLAB (R2014b). The basic principle of the data mining approach mainly used in the literature for estimation of peak outflow is described below and then followed by describing the benchmark models and the hybrid ANN-GA model.

 Prediction of peak outflows
Height and volume of a dam reservoir at failure time have been recognised as the main explanatory factors in most of the historic dam breach cases (Nourani et al., 2012). Since the main objective of this study is estimation of peak outflow (Qp) of a breached dam, these factors are included; i.e. water volume above the breach invert (Vw) and water depth above the breach invert (Hw) as shown in Fig. 1. Development of nonlinear regression relations fitted to the historic data is a well-established technique used by many researchers (Pierce at al., 2010). The most frequently used relation appears to be the one developed by Froehlich (1995) which was confirmed by Wahl (2004) as one of the best empirical relations that ever been developed. The general form of this relation which has been used here as an empirical approach is expressed in Eq. (1):

										(1)
where Qp= predicted peak outflow (m3/s); Vw= reservoir volume at the time of failure (m3); Hw = height of water in the reservoir at the time of failure (m); and a, b, and c= constant coefficients. These coefficients can be obtained by fitting observed and predicted variables to a training data set. The performance can then also be evaluated using a test data set.

 Benchmark models
To compare the performance of the suggested ANN-GA model with other developed models, three conventional methods are used here as benchmark: (1) nonlinear multivariate regression models derived from statistical analyses (MVR hereafter), (2) traditional ANN trained with Levenberg-Marquardt algorithm, (ANN-LM hereafter); and (3) ANN trained with Generalized Reduced Gradient (GRG) method, (ANN-GRG hereafter). The general form of the empirical relation proposed by Froehlich (1995) in Eq. (1) can be viewed as one of the best forms of the MVR model and is adopted here as the benchmark MVR model to predict the peak failure outflow. ANNs are model-free universal function estimators which can be trained to learn correlated patterns between input data set and corresponding target values (Cybenko 1989). A standard ANN architecture composed of three layers: input layer, hidden layer and output layer is used here. After 10 times iteration of the standard ANN model runs with different number of neurons (between 1 and 4) in the hidden layer, no improvement was observed for hidden layers greater than one and hence one hidden layer was selected. In addition, other similar studies show that ANN models with one hidden layer are sufficient to approximate a complex nonlinear function (Cybenko, 1989). Other applications of ANN models in hydrology and flood predictions have resulted in the best satisfactory state using a single hidden layer (Nourani et al. 2012; Noori and Hooshyaripor 2014; Hooshyaripor et al. 2015). The input layer provides input data for the prediction model and includes two conventional variables of Vw and Hw in the benchmark ANN models. The output layer consists of a single neuron that represents the prediction of the peak outflow.
The ANN-LM is used here as a benchmark model, which is trained by using the non-linear Levenberg-Marquardt (LM) algorithm (Noori et al. 2010). It is based on a feed-forward neural network with a single hidden layer and is set up with two input variables (Vw and Hw) and one output variable (Qp). The LM algorithm gradually updates the ANN weights and biases as shown here in Eq. (2) for updating weights:
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where ; J= the Jacobian matrix of the error vector ei evaluated in W; diag= the diagonal matrix consisting of the diagonal elements of JTJ; and = the gradient of the ei value. The vector error ei is the error of the network for ith data sample (ei = yip - yio). The parameter λ is the damping factor adjusted during every iteration.
ANN-GRG is used as a second benchmark with the same input and output layers but employs the GRG Algorithm to train the ANN. GRG is a nonlinear program to compute a least square errors solution developed by Lasdon et al. (1974). The GRG algorithm can be categorised as a nonlinear extension of the simplex method. The algorithm solves systems of nonlinear equations at each step to maintain feasibility by selecting a search direction and then a line search for each iteration (Lasdon et al. 1978).

 Hybrid ANN-GA combined with K-means clustering
The novel ANN-GA model is proposed, in which conventional ANN training techniques used for the benchmarks are replaced with the GA as a global optimisation tool to find the best values for the ANN’s weights and biases, aims to overcome limitations of the gradient descent based methods (e.g. error back-propagation) which suffer from the possibility of being trapped in suboptimal (i.e. local) error minima and thus cause the algorithm to converge prematurely (Vishwakarma, 2012). In other words, The ANN-GA model uses an evolutionary algorithm (i.e. genetic algorithm) for training the ANN. This evolutionary algorithm is more robust than the nonlinear methods in the conventional ANN for achieving near optimal parameters in the training process. More specifically, the GA enables global optimal solutions to be located by using a population of candidate solutions to explore the objective space concurrently as well as not relying on a gradient-based approach. Instead, the population proceeds through consecutive generations in which fitter solutions are selected as "parents" to be used to combine and produce offspring solutions for the next generation using crossover and mutation operators. 
Due to significant differences between the peak outflow values found in the existing database collected from various case studies (i.e. values with different orders of magnitude) (Wahl 1998), clustering of the input data set using the K-means method (Hammouda and Karray, 2000) is proposed. More specifically, a cluster identifier number (Nc) obtained from clustering input data samples (i.e. Vw and Hw) is proposed as a new input variable which represents the group to which that sample belongs (Fig. 2). The K-means clustering method is a process of partitioning a data set into a specific number of K groups based on the proximity to the corresponding cluster centres (Kim and Seo, 2015). The algorithm used here to identify the cluster centres minimises the objective function of dissimilarity measure which is considered as the Euclidean distance (Arthur and Vassilvitskii, 2007). Hence, the objective function of K-means clustering can be expressed as:
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where x = (x1, x2, …, xn) = set of inputs where each observation can be multi-dimensional real vector; K (≤ n) = the number of clusters; S = {S1, S2, …, Sk} = set of clustered data; μi =the mean of points in Si. The K-means clustering method relies on a pre-specified number of clusters as key feature. Therefore, the K-means clustering function for different numbers of clusters need to be analysed to partition the input data set (i.e. Vw and Hw) to identify the most appropriate number of clusters. 
Fig. 2 illustrates the ANN architecture which includes the number of layers and neurons. The above-mentioned additional input feature (not included in the benchmark models): the cluster number to which each data sample belongs (Nc) is included in the input layer. The normalised model output (yp) is calculated, as defined in Eq. (4), based on the normalised input variables (xi), constant trained ANN parameters and two transfer functions, i.e. tan-sigmoid and Purelin (linear) which are used in the hidden and output layers, respectively:
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where xi=ith input variable; Nin=the number of input variables (here Nin=3 given three input variables of Vw, Hw and Nc); M=the number of neurons in the hidden layer; =weight of ith input variable and jth hidden neuron; =weight for the output layer's input from the jth hidden neuron; = bias of jth hidden neuron; = bias for output neuron. To guarantee that the ANN is able to approximate any continuous function, the number of neurons (M) in the hidden layer is determined to be 4 based on a trial and error, so as to be smaller than 2Nin+1 (i.e. 7) as suggested by Hecht-Nielsen (1987). Given the known values for M, Nin and Nout (i.e. 1 for one output variable of Qp), the total number of decision variables equals M×(Nin+Nout+1)+Nout (i.e. Nvar=21) including M× (Nin+Nout) weights and M+ Nout biases. 

 Assessment of performance indicators
After identifying the model’s parameters using a training data set, the overall model performance is validated for a test data set which is ‘unseen’ data during model training. Conventional model validation involves in its simplest form, dividing a database into two subsets, for example, 70% training and 30% test observations (Garthwaite and Jolliffe, 2002). However, if sufficient data are unavailable or there are no appropriate spread of data when partitioning into separate training and test sets, the model error (e.g. root mean square error) on the test data set in the conventional validation method may not be a true representation of the model performance (e.g. the error in training performance may be much larger than the test performance error). To overcome this drawback and present true prediction performance, the cross-validation method can be used in which all data samples participate in the evaluation of the test set (Grossman et al. 2010). 
Given the small size of observed data for dam breaks, the m-fold cross-validation method (Kohavi, 1995; Vasios et al. 2004) is used here for assessment of the predictive ability of the analysing models. The m-fold cross-validation method is an extension of conventional model validation in which, instead of dividing the database into two subsets, it is divided into m subsets whose size are as nearly equal as possible. One subset is selected as the test set and the union of the remaining m-1 subsets form the training set. Then, the model is repeatedly re-trained and its performance is evaluated m times, each time using a different data fold as the test set (Stone, 1974; Hjorth, 1993). The overall performance of the m validated models is calculated by averaging all m individual performance values. The value of m between 3 and 20 is often used (Hjorth, 1993); here m is assumed to be 10 as suggested by Kohavi (1995), in which the union of 9 data-folds (i.e. 90% of data) is allocated for training and the one remaining fold (i.e. 10% of data) is used for test. The process is repeated ten times with a different test data fold in each case. The model performance is evaluated based on various statistics obtained from data samples for each test data subset. Five statistical indices which have been commonly employed in hydrologic and water models are used here for evaluation of the results: Root Mean Square Error (RMSE), Relative Square Error (RSE), coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR) with the following mathematical equations (Seibert, 2001; Hooshyaripor et al. 2015; Sattar, 2014; Moriasi et al. 2007; Behzadian and Kapelan, 2015):
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where yio= observed variable for test sample i; yip= predicted variable for test sample i; = mean observed value for test samples; = mean predicted value for test samples; and n = the number of test data samples. Note that the RMSE measure is also used here as the fitness function for training all the ANN-based models. The NSE measure is sensitive to extreme values and might yield sub-optimal results when the dataset contains large outliers in it. NSE values between 0.0 and 1.0 are generally viewed as acceptable levels of performance with the optimal NSE value of 1 (Moriasi et al. 2007). RSR also varies from the optimal value of 0 to a large positive value. The lower the RSR, the better is the model simulation performance (Legates and McCabe 1999). 

Data collection and sample data set
The current database used to develop the data-driven model includes real-scale samples of recorded dam failures that are limited in the world due to the fact that the dam failure per se is a rare phenomenon (Wrachien and Mambretti 2009). In addition, data collection under dam breaching conditions is a risky operation and whatever data is collected is of high value (Gupta and Singh 2012). Having said this, there are a number of data-driven models which have been developed based on between 20 to 108 cases of dam failures with different parameters (e.g. Pierce et al. 2010; Thornton et al. 2011; Froehlich 2008 and 2016). These databases which are of great value have been used frequently in research works to develop empirical relationships for prediction of different aspects of dam failure (e.g. geometry of the breach, failure time and characteristics of the produced flood wave) based on the physical characteristics of dam reservoirs. For instance, Thornton et al (2011) proposed a multivariate regression model for prediction of peak discharge through breached dam embankments based on the data from 87 dam breach cases. Other empirical models for prediction of peak discharge have been developed based on 32 data samples by Froehlich (1995), 74 data samples by Froehlich (2008), and 87 data samples by Pierce at al. (2010). Examples of developing other data-driven models are Genetic Programming (GP) using 24 experimental samples by Hakimzadeh et al. (2014); Artificial Neural Network (ANN) with 24 experimental samples by Nourani et al. (2012); Fuzzy Logic using 69 historical datasets for prediction of dam breach width by Elmazoghi (2013) and Gene Expression Programming (GEP) with 51 historical samples by Sattar (2014).
Valuable information is available from various real embankment dam failures that have been documented by previous researchers. Wahl (1998) assembled a database comprising of 108 embankment failures from investigation of different case studies. During 1980s and 1990s, several researchers compiled valuable databases of well documented case studies in order to develop predictive relations for breach peak outflows (e.g. Singh and Snorrason, 1984; Froehlich, 1995; Xu and Zhang, 2009). Sattar (2014) collected a database of 140 embankment dam failures from a variety of sources containing various hydraulic, geometric, and geomorphic parameters. The database although is the most comprehensive in quantity, contains missing data for some parameters in some of the cases presented. However, a database needed to be prepared, in which all the main parameters of interest were available. Drawing upon all available databases in the literature, the current study collected all data samples from the cases in which the required parameters of dam failure (i.e. Vw, Hw and Qp) were available. Consequently, a database of 92 dam failures (Appendix I) was compiled from the previous studies of Singh and Scarlatos (1988), Wahl (1998), Taher-shamsi et al. (2003), Xu and Zhang (2009), Pierce et al. (2010) and Sattar (2014). The model input parameters of Vw and Hw vary from 0.0037mcm to 660mcm and from 1.37m to 77.4m, with average of 30.67cms and 15.7m, respectively. Similarly, the output parameter Qp ranges between 2.12 m3/s and 78100 m3/s with average of 4690.5 m3/s. According to the classification of dam size (Singh, 1996), 50% of these cases with available dam height are categorised as large dams. Thus a good combination of different dam sizes can be found in the database.
Based on the cross-validation technique outlined above, the database including 92 samples was first divided randomly into 10 subsets (the statistics of peak outflow for these subsets are given in Table 1). Then, union of 9 randomly selected subsets without replacement constituted 10 different training data sets (i.e. 90% of data) and the remaining 10% of data in each time was used as a test data set. Thus, each model was built 10 times, each time with a different training data set including 82 or 83 dam failures and evaluated with a different test data set including 10 or 9 dam failures, respectively. The test data sets included 9 dam failures for eight of the models trained with 83 dam failures; 10 dam failures were used for testing the two remaining models trained with 82 dam failures. Thus, all 92 dam failures from the database were used as unseen data during one of the test stages for the 10-fold cross-validation modelling of the prediction of dam failure. This guaranteed that all test data samples taken into account for evaluation were unseen. 

Results and discussion
During the training process of the ANN-GA model, the ANN parameters were first optimised. The optimisation parameters in GA have to be set first before performing the optimisation runs as they can have major impact on the optimisation speed in finding optimal solutions and their quality. There is no systematic way to identify the optimal values of these parameters. The GA is first rigorously analysed in a number of trial runs with a combination of parameters in the recommended ranges to identify the optimal parameter values. The following GA parameters were identified after a maximum of 5 trial runs for each GA parameter : population size of 200; roulette selection operator; single point crossover and mutation by gene operators both with uniform function and a probability of 0.7 and 0.05, respectively. The stopping criteria were set as convergence to the best fitness value of a generation to RMSE less than 10-7 or the maximum number of 1000 generations having been reached. Also, note that in order to avoid unduly dominating effects of trapping in local minima, especially for non-linear algorithms, the model runs were iterated maximum 10 times with different number of neurons in the hidden layer to attain the best results. The obtained results show that the best model performance can be achieved by using 4 neurons in the hidden layer and therefore network structure of 3-4-1 shown in Fig. 2 was considered as the structure for the ANN-GA models.
All the aforementioned models were only analysed based on two input variables of Vw and Hw. To assess the performance of the four models, each model was built 10 times using different training data sets. For instance, Fig. 3 shows the scatter of estimated and observed values in the four analysed models for the first data subset. It is apparent in Fig. 3a and 3b that estimations in all the models are far better for the large peak outflows than small values which have been overestimated compared to the observed values. This can be attributed to the RMSE indicator in all models which minimise the overall error for all predictions including both low and high values. The apparent difference of the prediction estimations for these two data groups (i.e. the low and high values) can also be influenced by two main factors: the significant difference in 1) the order of magnitude and 2) the number of the data. As a result, the prediction errors obtained from the overestimations of high values have been balanced on the underestimations of prediction errors in low values. The impact of these two features also seems to be the main reason for large underestimations of low values compared to small overestimations of high values. 
Fig. 4 shows the performance of the analysed models with respect to the average of the three indicators (RMSE, RSE and R2) in 10 instances of test data subsets obtained from the cross-validation technique. The results show that the performance of the ANN-GA model is better than other models for all three indicators for both training and test data (i.e. lower values for RMSE and RSE and higher values for R2). Average value of RMSE for the ANN-GA model is less than 5000 m3/s while the value of RMSE for other models are between around 6000 and 8000 m3/s (i.e. between 16% and 38% improvement for the ANN-GA model). The same rate of improvement can be seen for other indicators. Comparison of the two nonlinear models in which a gradient-based optimisation is used for training (i.e. ANN-LM and ANN-GRG) shows that the LM is able to predict the peak outflow better in respect of all indicators. Some negative peak outflows were also observed for some cases in the ANN-LM model; these are assumed to be equal to zero. Such issue was easily removed in the ANN-GRG and ANN-GA models by adding a new constraint for avoiding negative prediction in the training phase. Therefore, the ANN-LM performance for predicting peak outflows of small dams would be slightly inappropriate. By comparing training and test indicators between ANN-GRG and MVR models, it can be seen that the prediction errors for training data in ANN-GRG are slightly better than the MVR model; whilst the prediction errors in test data increase in the ANN-GRG. Such problem can be linked to trapping of the GRG algorithm in local optima. This issue was also solved in the GA algorithm by finding global optima and thus prediction errors of the ANN-GA model were the minimum in both training and test data subsets. 
Due to highly variable values for the peak outflow, further improvement of the ANN-GA model was analysed by adding the data clustering number as a new input variable in the ANN structure. Therefore, appropriate number of clusters is identified by partitioning the variables of the input data set (i.e. Vw and Hw) into different numbers of clusters (from 2 to 7 clusters) using K-means clustering technique (Arthur and Vassilvitskii, 2007). Fig. 5 illustrates an instance of the clustering results with 5 clusters for the input variables of Vw and Hw with associated cluster centre. As can be seen, the first three clusters (i.e. clusters #1, #2, and #3 in Fig. 5) have separated a few data points; each containing a group of dam failures with large water volume while the last two clusters (i.e. clusters #4, and #5 in Fig. 5) encompass the majority of the input data related to especially small water volume dam failures. The single data point in cluster 2 relates to the failure of the Teton dam in Idaho, United States. The specification of this dam is unique within the existing database. More specifically, the dam is the highest (i.e. 77m) and its capacity (i.e. 310 mcm) is the third in the database. Compared to the other two dams with the largest capacity (i.e. 607.5 and 660 mcm), the height of the Teton dam is almost double the height of the largest dams (i.e. 31 and 35.8 m). This unique specification has led to the creation of a cluster with only one member in five data clustering. In addition, these data points should be kept in the database (i.e. not removed as outlier) because there is limited number of data available and also the special attributes of some data points can be reflected as a unique cluster number. As a result, this can better help the suggested clustering-based model recognise different specifications and predict their peak failure flows special more accurately than the previously developed models. Moreover, the single data point in cluster 2, when it is used for training the model, is not used for predicting any new data point in the same cluster anymore. However, it will be out of other clusters and thus avoid compromising the prediction of data points in other clusters because each cluster number represents similar characteristics of dams.
Also note that the suggested neuroevolution approach develops only one predictive model based on the training data points in all clusters (i.e. 90% of all data samples) not based on the data points in one cluster. More specifically, the k-means clustering technique adds a new attribute (i.e. cluster number) to each data sample that is used as a new independent input in the ANN-GA model. The results in the paper show that the new attribute has been very efficient for improving the prediction accuracy. This can be due to the fact that cluster number for each data sample is indicative of a specific range for physical characteristics of the dam failures. In other words, all this will make the predicative model more intelligent and will help identify the failure peak outflow more accurately. In particular, the single data point in cluster#2 with its unique characteristics (i.e. relatively large dam, especially in height) is regarded by the model as a unique cluster number and hence the model is prevented from being compromised by this data point which can lead to some level of inaccuracy in the model prediction.
The cross-validation technique was used to evaluate the performance of the ANN-GA dam failure prediction for each cluster number. These results were then compared with those without data cluster to identify the best number of clusters. Fig. 6 shows the scatter of estimated and observed values of the ANN-GA model for different numbers of clusters within the cross-validation process. All the model predictions in Fig. 6 still suffer from overestimating for small peak outflows. However, the model predictions without the data cluster input feature are almost skewed towards overestimation for moderate and big peak outflows, whilst the problem has been relatively balanced in the clustering-based models. This can be attributed to the fact that clustering of different sizes of the dam failure events can provide fair predictions around the real values, through allowing the ANN hidden units to specialise their responses for different clusters. 
Comparison of the statistics for the 5 aforementioned indicators can help to identify the optimum number of clusters. Fig. 7 shows the average of indicators in cross-validation technique for clustered and non-clustered predictions of the ANN-GA models. The model performance in both training and test data sets has improved by adding clustering data. More specifically, although the performances of the clustered models vary in different indicators, the best performance (i.e. the least errors and highest correlation coefficient) in the test step belongs to the five-clustered ANN-GA model. This type of ANN-GA model is able to improve 17% in RMSE (from 5260 to 4370) of test data predictions and 7.5% in R2 (from 0.80 to 0.86), NSE from -0.4 to 0.1, and 19% in RSR (from 1.18 to 0.95) compared to non-clustered model. The details of performance indicators of the five-clustered ANN-GA model for 10 data-folds cross-validation are also given in Table 2. It should also be noted that the model performance for the test phase for other numbers of cluster (i.e. 2, 3 and 7) had a considerably deteriorated accuracy for the predictions. Therefore, inappropriate selection of cluster number can result in a relatively poor performance of the dam failure predictions. The performance for other numbers of clusters (i.e. 4 and 6) contained both improvements and deteriorations - depending on indicator. Thus it was concluded that models with 4 and 6 clusters yielded relatively the same results as the ANN-GA model without clustering.
Fig. 8 presents the frequency percentage of the failure peak outflow and the interval RMSE of the predictions for the entire ‘unseen’ database for the three models (i.e. the MVR, non-clustered ANN-GA and five-clustered ANN-GA models). Fig. 8 also shows the performance of the suggested model and other models based on RMSE within different ranges of peak outflows predictions. As it can be seen, the performance of all analysed models for most ranges including small and medium peak outflows (i.e. ranging from 100 m3/s and less to 40,000 m3/s) are more or less in the same order of accuracy but the performance of the suggested model (i.e. five-clustered ANN-GA) is significantly better (i.e. low RMSE) than others for the intervals of large peak outflows (i.e. between 40,000 and 80,000 m3/s). The improved accuracy of the suggested model can be attributed to clustering of input data and considering the influence of their clusters on the prediction of peak outflow. As this interval only accounted for a small percentage of the entire data, the result showed that the 5-clustered ANN-GA models were able to recognise these events efficiently and thus provide more accurate predictions with lower errors. Although the prediction accuracy of both ANN based models were lower than the MVR model for intervals with low peak outflows, its significance could be overlooked for intervals with large peak outflows especially for the five-clustered ANN-GA model. Overall, the MVR model was comparable with the non-clustered ANN-GA model. However, addition of cluster number to the input feature set considerably improved the accuracy performance of the ANN-GA model for most of the intervals. Further, to analyse and confirm the performance of the suggested model, uncertainty analysis on the prediction values was investigated using the methodology presented by Wahl (2004) and Pierce et al. (2010). The uncertainty of predictions was calculated using two measures: 1) mean prediction error in logarithmic scale (ē) and the 95% confidence limits around the mean predicted value (±2Se), which can be calculated by Eqs. (10) and (11), respectively:

						         (10)

						 		        (11)
where yo and yp = observed and predicted values, respectively; σe=standard deviation of the prediction errors after excluding outliers. Negative and positive mean values in the confidence limits indicate the underestimation and overestimation of the predictors over the observed values, respectively. Fig. 9 illustrates the result of uncertainty analysis for only different forms of the clustered and non-clustered ANN-GA models since the prediction error of other methods were relatively higher than the suggested models. As can be seen, the lowest prediction error and smallest uncertainty was achieved again in the five clustered ANN-GA model with a mean prediction error of 0.199 and width of uncertainty of 0.84. In most of the cases the uncertainty indicators show improved performance for the models, which used clustered inputs.
The mean features of the model with the best performance (i.e. five-clustered ANN-GA), obtained from the above analysis, are presented for future reference. Table 3 provides the values of the weights and biases of the ANN illustrated in Fig. 2 when 5 clusters are used. Table 4 represents the main clustering features for the five-clustered ANN-GA model. The 5 clusters in Table 4 are represented by cluster centre values for both variables of the peak outflow predictor (i.e. Vw and Hw). Given these two variables for prediction of the peak outflow in a new case, the relevant cluster number can be identified by calculating the Euclidian distance between those variables and each of the corresponding cluster centres in Table 4. The cluster number with the least Euclidian distance is selected as the input value for the cluster number.

Summary and conclusions
The paper presented a data driven predictive model based on ANN combined with GA for training as an alternative to the both the common gradient based ANN training approaches and other statistical models for prediction of  peak outflow from breached embankment dams. Compared to the previous research works, the paper has developed a new (neuroevolution) approach in a data-driven model combined with a clustering technique for a more accurate estimation of peak discharge of a dam failure. The suggested approach can be efficiently used for prediction of reservoir outflow hydrograph outlined by DFRA with higher accuracy especially for large embankment dams that can cause immense destruction and numerous fatalities when they fail. The ANN-GA model was first compared with three models including two ANN-based models (trained using nonlinear Levenberg-Marquardt and Generalized Reduced Gradient algorithms) and multivariate regression (MVR). These models required the height and volume of water behind the breach at failure time as the inputs. The K-means clustering technique was applied to the data set to generate cluster number as an additional input feature in the ANN-GA model. The data samples for 92 cases in which all the input-output variables (including height and volume of water behind the breach and peak outflow) were collected from the literature and the performance of the analysed models were evaluated using cross-validation technique. Finally, the uncertainty analysis was applied to investigate the uncertainty of the predictions in the proposed ANN-GA model. Based on the results obtained, the following can be concluded:
1. The results show that the overall performance of the ANN-GA is better than other models with respect to all three indicators for both training and test data (i.e. lower values for RMSE and RSE and higher values for R2).
2. The predictions of the ANN-GA model without clustering are biased towards overestimation for moderate and big peak outflows where there are a few data available. Performance for these is relatively balanced for the clustering-based ANN-GA models.
3. Use of K-means clustering dataset pre-processing and adding cluster number as an additional input feature in the ANN-GA model considerably improves the performance of the prediction of the peak dam failure; minimises error and uncertainty and maximises correlation coefficients. The problem with the low peak outflow predictions has been alleviated by data clustering. The five-clustered ANN-GA model resulted in the best performance.
4. All the models have far better estimations for the large peak outflows than for small peak-outflows which have been overestimated compared to the observed values; although the regression based model had a better performance for small values. 
A procedure is proposed for estimation of peak outflow for any new embankment dam data sample based on recognition of membership of the most appropriate cluster from the database. However, it should be noted that if the database changes, the analysis should be repeated to identify: 1) the new weights and biases for the ANN-GA model and 2) the appropriate number of clusters which can result in the best performance for the test data set. It is also recommended that the aforementioned approach be developed for prediction of other dam breach parameters using similar clustering techniques.
List of Notation
The following list of acronyms is used in the paper:
	Fd= dam failure mode

	Hd= dam height (m)

	Vd= dam capacity (mcm)

	Vw= water volume above the breach invert (mcm)

	Hw= water depth above the breach invert (m)

	Qp= Peak outflow (m3/s)

	Nc= cluster number

	O= overtopping failure

	W= wave action failure

	S= sliding failure

	P= piping failure

	RSE= relative square error

	RMSE= root mean square error

	R2= coefficient of determination

	yo= observed value of peak outflow

	yp= predicted value of peak outflow

	σe= standard deviation of the prediction errors
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Appendix: The database of failure dam
	No
	Name 
	Hd (m)
	Vd (106×m3)
	Fd1
	Above Breach
	Qp (m3/s)
	Nc
	Reference

	
	
	
	
	
	 Vw (106×m3)
	Hw
(m)
	
	
	

	1
	Apishapa, US
	34.1
	22.5
	P
	22.2
	28
	6850
	4
	Xu & Zhang, 2009

	2
	Baldwin Hills, US
	49
	1.1
	P
	0.91
	12.2
	1130
	5
	Froehlich, 1995

	3
	Banqiao, China
	24.5
	492
	O
	607.5
	31
	78100
	1
	Xu & Zhang, 2009

	4
	Bayi, China
	30
	30
	P
	23
	28
	5000
	4
	Xu & Zhang, 2009

	5
	Big Bay Dam, US
	15.6
	 
	 
	17.5
	13.59
	4160
	4
	Pierce et al., 2010

	6
	Boystown, US
	 
	 
	 
	0.358
	8.96
	65.13
	5
	Pierce et al., 2010

	7
	Bradfield, UK
	28.96
	3.2
	 
	3.2
	28.96
	1150
	5
	Singh and Scarlatos, 1988

	8
	Break Neck Run Dam, US
	7
	0.0493
	 
	0.049
	7
	9.2
	5
	Singh and Scarlatos, 1989

	9
	Buffalo Creek, US
	14
	0.61
	S
	0.48
	14.02
	1420
	5
	Singh and Scarlatos, 1988

	10
	Butler, Us
	 
	 
	O
	2.38
	7.16
	810
	5
	Wahl, 1998

	11
	Caney Coon Creek, US
	 
	 
	 
	1.32
	4.57
	16.99
	5
	Pierce et al., 2010

	12
	Castlewood, US
	21.3
	4.23
	O
	6.17
	21.6
	3570
	5
	Xu & Zhang, 2009

	13
	Chenying, China
	12
	4.25
	O
	5
	12
	1200
	5
	Xu & Zhang, 2009

	14
	Cherokee Sandy, US
	 
	 
	 
	0.444
	5.18
	8.5
	5
	Pierce et al., 2010

	15
	Colonial #4, US
	 
	 
	 
	0.0382
	9.91
	14.16
	5
	Pierce et al., 2010

	16
	Dam Site #8, US
	 
	 
	 
	0.87
	4.57
	48.99
	5
	Pierce et al., 2010

	17
	Danghe, China
	46
	15.6
	O
	10.7
	24.5
	2500
	5
	Xu & Zhang, 2009

	18
	Davis Reservior, US
	11.9
	58
	P
	58
	11.58
	510
	4
	Xu & Zhang, 2009

	19
	Dells, US
	18.3
	13
	O
	13
	18.3
	5440
	5
	Xu & Zhang, 2009

	20
	DMAD, US
	 
	 
	 
	19.7
	8.8
	793
	4
	Pierce et al., 2010

	21
	Dongchuankou, China
	31
	27
	O
	27
	31
	21000
	4
	Xu & Zhang, 2009

	22
	Eigiau, UK
	10.5
	4.52
	 
	4.52
	10.5
	400
	5
	Singh and Scarlatos, 1988

	23
	Elk City, US
	9.1
	0.74
	O
	1.18
	9.44
	608.79
	5
	Taher-shamsi et al., 2003

	24
	Euclides da Cunha Dam, Brazil
	53
	13.6
	O
	13.6
	58.22
	1005.2
	5
	Taher-shamsi et al., 2003

	25
	Frankfurt, Germany
	9.8
	0.35
	P
	0.352
	8.23
	79
	5
	Xu & Zhang, 2009

	26
	Fred Burr, US
	10.4
	0.75
	 
	0.75
	10.2
	654
	5
	Wahl, 1998

	27
	French Landing, US
	12.2
	—
	P
	3.87
	8.53
	929
	5
	Xu & Zhang, 2009

	28
	Frenchman Dam, US
	12.5
	21
	P
	16
	10.8
	1420
	5
	Xu & Zhang, 2009

	29
	Frias, Argentina
	15
	0.25
	O
	0.25
	15
	400
	5
	Xu & Zhang, 2009

	30
	Goose Creek Dam, US
	6.09
	10.6
	O
	10.6
	1.37
	492.7
	5
	Taher-shamsi et al., 2003

	31
	Gouhou, China
	71
	3.3
	P
	3.18
	44
	2050
	5
	Xu & Zhang, 2009

	32
	Grand Rapids, US
	7.6
	0.22
	O
	0.255
	7.5
	7.5
	5
	Singh and Scarlatos, 1988

	33
	Hatfield, US
	6.8
	12.3
	O
	12.3
	6.8
	3400
	5
	Xu & Zhang, 2009

	34
	Haymaker, US
	 
	 
	 
	0.37
	4.88
	26.9
	5
	Pierce et al., 2010

	35
	Hell Hole, US
	67.1
	 
	P
	30.6
	35.1
	7360
	4
	Xu & Zhang, 2009

	36
	Hemet Dam
	6.09
	8.63
	 
	8.63
	6.09
	1600
	5
	Taher-shamsi et al., 2003

	37
	Horse Creek, US
	12.2
	21
	P
	12.8
	7.01
	3890
	5
	Xu & Zhang, 2009

	38
	Horse Creek #2, US
	 
	 
	 
	4.8
	12.5
	311.49
	5
	Pierce et al., 2010

	39
	Huqitang, China
	9.9
	0.734
	P
	0.424
	5.1
	50
	5
	Xu & Zhang, 2009

	40
	Ireland No. 5, US
	 
	 
	P
	0.16
	3.81
	110
	5
	Froehlich, 1995

	41
	Johnstown, US
	22.86
	18.9
	O
	18.9
	22.25
	7079.2
	4
	Wahl, 1998

	42
	Kelly Barnes, US
	11.6
	0.505
	P
	0.777
	11.3
	680
	5
	Xu & Zhang, 2009

	43
	Knife Lake Dam
	6.096
	9.86
	 
	9.86
	6.096
	1098.66
	5
	Taher-shamsi et al., 2003

	44
	Kodaganar, India
	11.5
	12.3
	O
	12.3
	11.5
	1280
	5
	Xu & Zhang, 2009

	45
	lake Avalon, US
	14.63
	7.77
	P
	31.5
	13.7
	2321.9
	4
	Taher-shamsi et al., 2003

	46
	Lake Latonka, US
	13
	4.59
	P
	4.09
	6.25
	290
	5
	Xu & Zhang, 2009

	47
	Lake Tanglewood, US
	 
	 
	 
	4.85
	16.76
	1351
	5
	Pierce et al., 2010

	48
	Laurel Run, US
	12.8
	0.379
	O
	0.555
	14.1
	1050
	5
	Froehlich, 1995

	49
	Lawn Lake, US
	7.9
	 
	P
	0.798
	6.71
	510
	5
	Wahl, 1998

	50
	Lijiaju, China
	25
	1.14
	O
	1.14
	25
	2950
	5
	Xu & Zhang, 2009

	51
	Lily Lake, US
	 
	 
	W/P
	0.0925
	3.35
	71
	5
	Froehlich, 1995

	52
	Little Deer Creek, US
	26.2
	1.73
	P
	1.36
	22.9
	1330
	5
	Xu & Zhang, 2009

	53
	Little Wewoka, US
	 
	 
	 
	0.987
	9.45
	42.48
	5
	Pierce et al., 2010

	54
	Liujiatai, China
	35.9
	40.54
	O
	40.54
	35.9
	28000
	4
	Xu & Zhang, 2009

	55
	Lower Latham, US
	 
	 
	P
	7.08
	5.79
	340
	5
	Froehlich, 1995

	56
	Lower Reservoir, US
	 
	 
	 
	0.604
	9.6
	157.44
	5
	Pierce et al., 2010

	57
	Lower Two Medicine, US
	11.3
	19.6
	P
	19.6
	11.3
	1800
	4
	Xu & Zhang, 2009

	58
	Mahe, China
	19.5
	23.4
	O
	23.4
	19.5
	4950
	4
	Xu & Zhang, 2009

	59
	Mammoth, US
	21.3
	13.6
	O
	13.6
	21.3
	2520
	5
	Xu & Zhang, 2009

	60
	Martin Cooling Pond Dike, US
	10.4
	136
	P
	136
	8.53
	3115
	3
	Xu & Zhang, 2009

	61
	Middle Clear Boggy, US
	 
	 
	 
	0.444
	4.57
	36.81
	5
	Pierce et al., 2010

	62
	Mill River, US
	13.1
	2.5
	 
	2.5
	13.1
	1645
	5
	Wahl, 1998

	63
	Murnion, US
	 
	 
	 
	0.321
	4.27
	17.5
	5
	Pierce et al., 2010

	64
	Nanaksagar Dam, India
	15.85
	210
	 
	210
	15.85
	9709.5
	3
	Taher-shamsi et al., 2003

	65
	North Branch, US
	5.5
	 
	 
	0.022
	5.49
	29.5
	5
	Wahl, 1998

	66
	Oros, Brazil
	35.4
	650
	O
	660
	35.8
	9630
	1
	Xu & Zhang, 2009

	67
	Otto Run, US
	5.8
	 
	 
	0.0074
	5.79
	60
	5
	Singh and Scarlatos, 1988

	68
	Owl Creek, US
	 
	 
	 
	0.12
	4.88
	31.15
	5
	Pierce et al., 2010

	69
	Peter Green, US
	 
	 
	 
	0.0197
	3.96
	4.42
	5
	Pierce et al., 2010

	70
	Prospect, US
	 
	 
	P
	3.54
	1.68
	116
	5
	Xu & Zhang, 2009

	71
	Puddingstone Dam, US
	15.24
	0.616
	O
	0.617
	15.2
	480
	5
	Froehlich, 1995

	72
	Qielinggou, China
	18
	0.7
	O
	0.7
	18
	2000
	5
	Xu & Zhang, 2009

	73
	Quail Creek, US
	24
	50
	P
	30.8
	16.7
	3110
	4
	Xu & Zhang, 2009

	74
	Salles Oliveira, Brazil
	35
	25.9
	O
	71.5
	38.4
	7200
	4
	Singh and Scarlatos, 1988

	75
	Sandy Run, US
	8.5
	0.0568
	O
	0.0568
	8.53
	435
	5
	Singh and Scarlatos, 1988

	76
	Schaeffer Reservoir, US
	30.5
	3.92
	O
	4.44
	30.5
	4500
	5
	Xu & Zhang, 2009

	77
	Shimantan, China
	25
	94.4
	O
	117
	27.4
	30000
	3
	Xu & Zhang, 2009

	78
	Site Y-30–95, US
	 
	 
	 
	0.142
	7.47
	144.42
	5
	Pierce et al., 2010

	79
	Site Y-36–25, US
	 
	 
	 
	0.0357
	9.75
	2.12
	5
	Pierce et al., 2010

	80
	Site Y-31 A–5, US
	 
	 
	 
	0.386
	9.45
	36.98
	5
	Pierce et al., 2010

	81
	Sinker Creek Dam, US
	21.34
	3.33
	S
	3.33
	21.34
	926
	5
	Taher-shamsi et al., 2003

	82
	South Fork, US
	 
	 
	O
	18.9
	24.6
	8500
	4
	Froehlich, 1995

	83
	South Fork Tributary, US
	1.8
	 
	 
	0.0037
	1.83
	122
	5
	Pierce et al., 2010

	84
	Stevens Dam, US
	 
	 
	 
	0.0789
	4.27
	5.92
	5
	Pierce et al., 2010

	85
	Swift, US
	47.9
	37
	O
	37
	47.85
	24947
	4
	Xu & Zhang, 2009

	86
	Taum Sauk Reservoir, US
	 
	 
	 
	5.39
	31.46
	7743
	5
	Pierce et al., 2010

	87
	Teton, US
	93
	356
	P
	310
	77.4
	65120
	2
	Xu & Zhang, 2009

	88
	Upper Clear Boggy, US
	 
	 
	 
	0.863
	6.1
	70.79
	5
	Pierce et al., 2010

	89
	Upper Red Rock, US
	 
	 
	 
	0.247
	4.57
	8.5
	5
	Pierce et al., 2010

	90
	Weatland Number, US
	13.6
	11.5
	P
	11.6
	12.2
	566.34
	5
	Pierce et al., 2011

	91
	Zhugou, China
	23.5
	15.4
	O
	18.43
	23.5
	11200
	4
	Xu & Zhang, 2009

	92
	Zuocun, China
	35
	40
	O
	40
	35
	23600
	4
	Xu & Zhang, 2009

	Max.
	93
	650
	
	660
	77.4
	78100
	
	

	Min.
	1.8
	0.049
	
	0.0037
	1.37
	2.12
	
	

	Ave.
	21.6
	44.15
	
	30.67
	15.7
	4690.5
	
	


1 Note that O=overtopping; P=piping; S=sliding; W=wave action
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Fig 1 Schematic representation of a dam breach and the main geometric parameters for (a) profile of dam reservoir and (b) cross-section of dam breach  
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Fig 2. Architecture of the proposed ANN-GA
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Fig 3. Estimated versus observed values of peak discharge in a) training and b) test for the first data subset

	
	
	


Fig 4. Performance of the analysed model in terms of a) RMSE, b) RSE, and c) R2.


Fig 5. Input data clustering with five clusters and corresponding cluster centres shown as C Clus.




Fig 6. Scatter of observed and estimated values for different test sample sets of cross-validation method in the ANN-GA model a) without clustering and clustered data samples with b) 3, c) 4, d) 5, e) 6, and f) 7 groups.
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Fig 7.  Performance indicators of the ANN-GA models for different numbers of clusters
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Fig. 8 Comparison of the models with respect to interval RMSE of peak outflow

  
Fig. 9 uncertainty analysis for prediction error as a) mean prediction error (ē) and b) width of uncertainty band (±2Se)
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Table 1. Statistics of peak outflow for ten data subsets
	Parameter
	Sample set number

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	No of data
	10
	10
	10
	10
	10
	10
	10
	10
	10
	10

	mean
	5723.8
	1979.8
	3667.0
	8500.3
	2139.6
	9198.2
	3862.5
	5415.5
	2303.7
	4955.3

	max
	24947
	9709.5
	23600
	65120
	7360
	78100
	24947
	28000
	8500
	28000

	min
	4.42
	8.5
	7.5
	7.5
	16.99
	36.98
	14.16
	4.42
	2.12
	29.5

	standard deviation
	8149.9
	3031.6
	7656.1
	21467.5
	2294.7
	24920.3
	8172.1
	9188.6
	3288.1
	9243.3




[bookmark: _GoBack]Table 2. Performance indicators of the five-clustered ANN-GA model for 10 data-folds
	Subset No.
	Train
	Test

	
	R2
	RMSE
	RSE
	NSE
	RSR
	R2
	RMSE
	RSE
	NSE
	RSR

	1
	0.97
	2235
	0.03
	0.97
	0.17
	0.82
	5266
	0.47
	0.53
	0.69

	2
	0.95
	2806
	0.05
	0.95
	0.22
	0.93
	955
	0.11
	0.89
	0.33

	3
	0.95
	2623
	0.05
	0.95
	0.22
	0.69
	5385
	0.56
	0.44
	0.75

	4
	0.92
	2999
	0.08
	0.92
	0.28
	0.99
	978
	0.002
	1.00
	0.04

	5
	0.96
	2536
	0.04
	0.96
	0.20
	0.77
	4638
	4.59
	-3.59
	2.14

	6
	0.94
	2103
	0.06
	0.94
	0.24
	0.95
	6236
	0.07
	0.93
	0.26

	7
	0.95
	2699
	0.05
	0.95
	0.22
	0.95
	6230
	0.65
	0.35
	0.81

	8
	0.96
	2460
	0.04
	0.96
	0.20
	0.74
	4986
	0.33
	0.67
	0.57

	9
	0.94
	2902
	0.05
	0.95
	0.22
	0.76
	4330
	1.95
	-0.95
	1.40

	10
	0.95
	2555
	0.04
	0.96
	0.20
	0.95
	4737
	0.29
	0.71
	0.54

	Average
	0.95
	2592
	0.05
	0.95
	0.22
	0.86
	4374
	0.90
	0.10
	0.75






Table 3. The weights and biases of the five-clustered ANN-GA model
	Weights in the first layer
	Biases in the first layer
	Weights of the second layer
	Bias of the second layer

	W11
	23.181
	W21
	17.485
	W31
	13.436
	b1
	-13.18
	W'1
	7.951
	b'
	5.38

	W12
	-12.855
	W22
	-0.068
	W32
	5.193
	b2
	18.632
	W'2
	3.113
	
	

	W13
	15.546
	W23
	-6.628
	W33
	16.406
	b3
	4.743
	W'3
	-0.37
	
	

	W14
	18.235
	W24
	1.016
	W34
	10.461
	b4
	4.248
	W'4
	1.186
	
	



Table 4. Main clustering features of the five-clustered ANN-GA model 
	Cluster No.
	
	Variable limit

	
	Variable name
	Cluster centre
	minimum
	maximum

	1
	Vw (mcm)
	633.75
	607.5
	660

	
	Hw (m)
	33
	31
	35.8

	2
	Vw (mcm)
	310.0
	310
	310

	
	Hw (m)
	77
	77
	77

	3
	Vw (mcm)
	154.33
	117
	210

	
	Hw (m)
	17
	8.5
	27.4

	4
	Vw (mcm)
	30.48
	17.5
	71.5

	
	Hw (m)
	25
	8.8
	34.4

	5
	Vw (mcm)
	3.41
	0.0037
	37

	
	Hw (m)
	12
	1.37
	58.22




Train	ANN-GA	ANN-LM	ANN-GRG	MVR	4015.7785964748355	4632.8709291236155	5333.8639095307044	7634.3434425277937	Test	ANN-GA	ANN-LM	ANN-GRG	MVR	4970.8480783718824	6064.2509388361486	7953.8426851615104	6361.5945333524151	RMSE (m3/s)


Train	ANN-GA	ANN-LM	ANN-GRG	MVR	0.12789255042613273	0.18011356408347626	0.23423276901902748	0.43822517555336832	Test	ANN-GA	ANN-LM	ANN-GRG	MVR	0.91418975708315764	1.2030676280433714	1.0889972755591462	1.0318123659421599	RSE


Train	ANN-GA	ANN-LM	ANN-GRG	MVR	0.87361332993933138	0.83039522035470303	0.76790899388136169	0.65748671783633861	Test	ANN-GA	ANN-LM	ANN-GRG	MVR	0.79985762652493864	0.76790899388136169	0.55218387974576477	0.65748671783633861	R2


Cluster 1	607.5	660	31	35.800000000000004	Cluster 2	310	77.400000000000006	Cluster 3	117	136	210	27.4	8.5300000000000011	15.850000000000007	Cluster 4	27	18.899999999999999	23.4	71.5	18.899999999999999	40	22.2	23	58	31.5	17.5	19.7	40.54	18.43	31	22.25	19.5	38.4	24.6	35	28	28	11.58	13.7	13.59	8.8000000000000007	35.9	23.5	Cluster 5	2.38	6.17	10.7	13	1.1800000000000008	13.6	10.6	0.255	12.3	12.3	0.55500000000000005	0.61700000000000044	0.91	0.3520000000000002	3.8699999999999997	16	3.18	12.8	0.42400000000000027	0.16	0.77700000000000058	4.09	0.79800000000000004	1.36	3.54	7.08	4.9000000000000037E-2	0.44400000000000001	3.8199999999999998E-2	0.3510000000000002	0.87000000000000044	4.5199999999999996	0.75000000000000044	0.37000000000000022	8.6300000000000008	4.8	9.8600000000000048	4.8499999999999996	0.98699999999999999	0.60400000000000043	0.44400000000000001	2.5	0.32100000000000023	2.1999999999999999E-2	0.12000000000000002	1.9699999999999999E-2	0.14200000000000004	3.570000000000001E-2	0.38600000000000023	3.7000000000000028E-3	7.8900000000000012E-2	4.4400000000000004	37	5.6800000000000003E-2	13.6	0.7000000000000004	11.6	0.35800000000000021	3.2	3.3299999999999987	5.39	0.86300000000000043	0.24700000000000011	7.1599999999999975	21.6	24.5	18.3	9.44	58.220000000000013	1.37	7.5	6.8	11.5	14.1	15.2	12.2	8.23	8.5300000000000011	10.8	44	7.01	5.0999999999999996	3.8099999999999987	11.3	6.25	6.71	22.9	1.6800000000000008	5.79	7	5.18	9.91	9.75	4.57	10.5	10.200000000000001	4.88	6.09	12.5	6.0960000000000001	16.760000000000002	9.4500000000000028	9.6	4.57	13.1	4.2699999999999996	5.49	4.88	3.96	7.4700000000000024	9.75	9.4500000000000028	1.83	4.2699999999999996	30.5	47.85	8.5300000000000011	21.3	18	12.2	8.9600000000000026	28.959999999999987	21.34	31.459999999999987	6.1	4.57	C Clus. 1	633.70000000000005	33	C Clus. 2	310	77	C Clus. 3	154	17	C Clus. 4	30	25	C Clus. 5	3.5	12	Vw (mcm)
Hw (m)


sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	722.06214198702048	6835.8164968231513	724.07899865804586	703.76226934553745	218.24121069663423	139.56431920489857	3988.2798756069151	22065.723465618812	14024.396416792004	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1430.3099722431243	1795.0616997916948	10705.484288128691	303.22252353849069	2125.1010029917816	2082.3698110251098	1171.2087112356019	26469.382552126557	426.61245625455808	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	10657.979701692015	4077.4890265336721	2680.4713353808393	2947.9658389499509	4109.8493517146835	7269.2695831710926	2458.4837652119036	2656.9778694679553	2104.3992328543654	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	4187.4488030369803	2094.3210509987771	883.36848795308811	1326.188102615572	48232.690506939034	422.97923106520904	332.15500769310586	0	2509.927537392085	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	2473.6100230592442	2800.3787040667185	4837.8243174349527	2618.5311402071625	713.7973120427431	878.01162601609735	3138.0088276015667	4655.2805376792048	9098.1375998728709	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	71331.385203306621	6505.4083405120846	12432.935808567148	495.36322825497354	1165.9270328283749	1230.8471912247785	5097.2654481864602	8810.8741138177411	4401.446588249567	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	1555.2659523225782	4071.5818643972043	0	973.40132826995386	960.39278267114514	1052.5273469444846	114.12362839560791	0	14295.145191151692	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	694.75140008724986	670.75927989604759	5602.8538616436854	398.18365917549374	248.75185650052003	663.5011066787016	9537.8121112475419	1731.07851088396	5419.0515015935553	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	5437.7147991722804	8409.4667457100677	508.4412861139873	7121.0927141727734	1360.3719295642547	153.83121011519239	735.83711502987649	14643.42988929133	4383.1207986405234	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	13831.810296096297	6697.2182532550914	360.20373882015156	465.20955440803988	250.46956683444114	3187.9400660085562	1140.4309879415246	163.35875159287119	15612.539048109255	Observation (m3/s)
Estimation (m3/s)

sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	375.72968988210187	5732.8693060098813	539.92801380402818	708.55418114510724	397.813603794296	353.34049077715662	6612.6511316123933	12401.733008162182	15399.801342334329	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1240.4160643631312	1921.2663887440101	11052.750755695302	24.294042844976481	2341.3133310312337	2199.6272294582882	961.76368766712574	15870.5738923882	183.87935748056501	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	7103.2387228130965	248.07442125254758	124.48499510857712	774.13028051353251	393.89605289022529	7266.3814849306818	411.33829513349878	621.15060394445936	16.507471557294593	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	3028.5188334254303	1131.878329760307	661.28195023271155	783.94310757922278	-18257.185794984351	531.5542702227126	505.89577193822367	387.5314755240006	1316.7511591172165	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	1423.7907568685584	1208.43769723336	2684.7212581826307	1116.1900354352128	91.777546609969363	116.76341481312784	2222.6515055475979	5061.6040723183169	16073.212729235491	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	24325.029549409748	5003.568797348752	10112.497122342615	134.84405765064722	572.39462114756839	181.39092886730995	1968.799732694577	7098.3377834660669	3144.9060048078745	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	1420.2247539519251	3251.0175879136841	1672.734256041088	1461.826815109268	1465.9634148197156	1452.4323781535195	1621.7845666482681	1685.9017598097716	10170.418852647572	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	382.46286005486667	126.22005613498136	4433.3319020478502	118.15691973780145	18.33233164162878	92.950645217959348	7663.5388727183608	1438.3765582412248	2385.652103727014	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	4946.4566014572947	656.38903569935064	438.01128723262195	5885.6329749818742	984.9921034312174	34.208524410989412	735.72538449210901	13765.280317805958	5277.5856456110114	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	9709.5	8500	510	116	48.99	793	1645	29.5	28000	Observation (m3/s)
Estimation (m3/s)

sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	476.19345076440197	5055.7874609098699	541.80377780772551	614.2651151370402	430.47921871509965	404.06247498355401	4396.6161300247923	23991.150493427445	18394.921634435759	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1240.4160643631312	1921.2663887440101	11052.750755695302	24.294042844976481	2341.3133310312337	2199.6272294582882	961.76368766712574	15870.5738923882	183.87935748056501	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	7103.2387228130965	248.07442125254758	124.48499510857712	774.13028051353251	393.89605289022529	7266.3814849306818	411.33829513349878	621.15060394445936	16.507471557294593	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	2222.4629382850471	907.8356329791369	506.37835285106593	645.25447642757786	65088.461482184422	429.48633862401743	418.14624440800225	334.64375115415731	1278.3715062328608	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	1423.7907568685584	1208.43769723336	2684.7212581826307	1116.1900354352128	91.777546609969363	116.76341481312784	2222.6515055475979	5061.6040723183169	16073.212729235491	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	24325.029549409748	5003.568797348752	10112.497122342615	134.84405765064722	572.39462114756839	181.39092886730995	1968.799732694577	7098.3377834660669	3144.9060048078745	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	885.06602191073148	4401.1884954260331	432.86397912801198	607.72570999585002	610.0206863344464	639.01542346338897	444.08509009466201	389.84483216518174	4842.7056537167291	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	382.46286005486667	126.22005613498136	4433.3319020478502	118.15691973780145	18.33233164162878	92.950645217959348	7663.5388727183608	1438.3765582412248	2385.652103727014	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	4946.4566014572947	656.38903569935064	438.01128723262195	5885.6329749818742	984.9921034312174	34.208524410989412	735.72538449210901	13765.280317805958	5277.5856456110114	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	9709.5	8500	510	116	48.99	793	1645	29.5	28000	Observation (m3/s)
Estimation (m3/s)

sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	1271.3223514741569	9032.042016477697	1004.6880161599256	895.72666859099718	866.14281240347862	860.3815654931002	1131.6415058265109	30288.473155402826	21723.888128179264	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1240.4160643631312	1921.2663887440101	11052.750755695302	24.294042844976481	2341.3133310312337	2199.6272294582882	961.76368766712574	15870.5738923882	183.87935748056501	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	7103.2387228130965	248.07442125254758	124.48499510857712	774.13028051353251	393.89605289022529	7266.3814849306818	411.33829513349878	621.15060394445936	16.507471557294593	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	1260.2874127628982	1058.4470321507811	892.18018283506251	982.39811072998941	64955.473156130072	872.69629350648461	874.7165956291766	834.14285607775332	1279.0334225177874	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	1423.7907568685584	1208.43769723336	2684.7212581826307	1116.1900354352128	91.777546609969363	116.76341481312784	2222.6515055475979	5061.6040723183169	16073.212729235491	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	24325.029549409748	5003.568797348752	10112.497122342615	134.84405765064722	572.39462114756839	181.39092886730995	1968.799732694577	7098.3377834660669	3144.9060048078745	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	1142.171378483107	3249.6773882538905	1009.1793528936815	920.16157320635375	930.84587938869595	948.41605394246949	900.13333413982571	876.37074756666232	6436.63103566461	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	382.46286005486667	126.22005613498136	4433.3319020478502	118.15691973780145	18.33233164162878	92.950645217959348	7663.5388727183608	1438.3765582412248	2385.652103727014	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	4946.4566014572947	656.38903569935064	438.01128723262195	5885.6329749818742	984.9921034312174	34.208524410989412	735.72538449210901	13765.280317805958	5277.5856456110114	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	9709.5	8500	510	116	48.99	793	1645	29.5	28000	Observation (m3/s)
Estimation (m3/s)


sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	1640.1491739712499	1641.026103650225	1730.653641202083	1702.6418967680386	1709.649567866885	1711.0717034757129	1706.5488311568508	32028.609356817167	27834.962335955021	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1240.4160643631312	1921.2663887440101	11052.750755695302	24.294042844976481	2341.3133310312337	2199.6272294582882	961.76368766712574	15870.5738923882	183.87935748056501	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	7103.2387228130965	248.07442125254758	124.48499510857712	774.13028051353251	393.89605289022529	7266.3814849306818	411.33829513349878	621.15060394445936	16.507471557294593	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	1879.337075823775	1809.6910024663118	1794.3456807990501	1799.166547507685	93718.256464456616	1791.6459529215181	1791.254139601084	1788.6434015332402	1782.9689912596714	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	1423.7907568685584	1208.43769723336	2684.7212581826307	1116.1900354352128	91.777546609969363	116.76341481312784	2222.6515055475979	5061.6040723183169	16073.212729235491	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	24325.029549409748	5003.568797348752	10112.497122342615	134.84405765064722	572.39462114756839	181.39092886730995	1968.799732694577	7098.3377834660669	3144.9060048078745	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	1853.1815791955801	1792.7467708537451	1859.5112183353071	1834.0867067445861	1835.2803547632343	1836.4244249191704	1840.5410934150716	1842.5702031488524	28001.237230694445	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	382.46286005486667	126.22005613498136	4433.3319020478502	118.15691973780145	18.33233164162878	92.950645217959348	7663.5388727183608	1438.3765582412248	2385.652103727014	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	4946.4566014572947	656.38903569935064	438.01128723262195	5885.6329749818742	984.9921034312174	34.208524410989412	735.72538449210901	13765.280317805958	5277.5856456110114	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	9709.5	8500	510	116	48.99	793	1645	29.5	28000	Observation (m3/s)
Estimation (m3/s)

sample 1	492.7	8500	290	157.44	31.150000000000013	4.42	4500	24947	7360	1086.6812957939198	4138.6235343786648	1090.6978215035338	1090.3507164622401	1073.4759290383308	1071.0196086485512	1818.6456952647652	19139.838044277487	18756.695544373692	sample 2	3400	1130	2050	110	1420	311.48999999999978	1098.6599999999999	9709.5	8.5	1240.4160643631312	1921.2663887440101	11052.750755695302	24.294042844976481	2341.3133310312337	2199.6272294582882	961.76368766712574	15870.5738923882	183.87935748056501	sample 3	1005.2	400	7.5	3400	480	23600	290	1098.6599999999999	60	7103.2387228130965	248.07442125254758	124.48499510857712	774.13028051353251	393.89605289022529	7266.3814849306818	411.33829513349878	621.15060394445936	16.507471557294593	sample 4	3570	1200	7.5	929	65120	8.5	48.99	122	566.33999999999958	1038.7914209135504	945.45089115952567	943.7521576353397	943.860764697474	125386.28226471781	943.45479785418831	943.41125809637947	943.31324735277542	1008.0668425929503	sample 5	1200	400	2950	1420	16.989999999999977	60	1800	3110	7360	1423.7907568685584	1208.43769723336	2684.7212581826307	1116.1900354352128	91.777546609969363	116.76341481312784	2222.6515055475979	5061.6040723183169	16073.212729235491	sample 6	78100	21000	7200	48.99	1600	36.980000000000004	4500	28000	11200	24325.029549409748	5003.568797348752	10112.497122342615	134.84405765064722	572.39462114756839	181.39092886730995	1968.799732694577	7098.3377834660669	3144.9060048078745	sample 7	1200	4950	116	14.16	79.28	654	17.5	122	24947	960.78558149381831	1487.2111153354408	937.43814477940998	936.56695963885556	937.38073537894854	939.48045104671155	930.17689596522541	926.58959650513452	14461.943296807634	sample 8	810	7.5	6850	8.5	4.42	144.41999999999999	28000	566.33999999999958	7743	382.46286005486667	126.22005613498136	4433.3319020478502	118.15691973780145	18.33233164162878	92.950645217959348	7663.5388727183608	1438.3765582412248	2385.652103727014	sample 9	2500	1005.2	7.5	8500	400	4.42	2.12	7360	1150	4946.4566014572947	656.38903569935064	438.01128723262195	5885.6329749818742	984.9921034312174	34.208524410989412	735.72538449210901	13765.280317805958	5277.5856456110114	sample10	9709.5	8500	510	116	48.99	793	1645	29.5	28000	9709.5	8500	510	116	48.99	793	1645	29.5	28000	Observation (m3/s)
Estimation (m3/s)

Test	No cluster	2 clusters	3 clusters	4 clusters	5 clusters	6 clusters	7 clusters	0.35583704055883225	0.40583704055883224	0.47727422008875681	0.40254531945970085	0.19906684197164723	0.3532978017629933	0.42205639829538971	Train	No cluster	2 clusters	3 clusters	4 clusters	5 clusters	6 clusters	7 clusters	0.39693744560904937	0.43148783667772406	0.38750031544392338	0.34888617065059924	0.3077521921523465	0.35898511760451107	0.44749920319968162	
ē (m3/s)

Test	No cluster	2 clusters	3 clusters	4 clusters	5 clusters	6 clusters	7 clusters	1.17264018298463	1.166307759457482	1.4822528106312403	1.3787806261882574	0.84082202826423391	1.110709128826225	1.228015135864412	Train	No cluster	2 clusters	3 clusters	4 clusters	5 clusters	6 clusters	7 clusters	1.2508041660588991	1.0476140816740496	1.3366326474451342	1.1600193133572061	0.91778033786348745	1.0523680514044778	1.1034299186897956	
±2Se (m3/s)
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