

UWL REPOSITORY

repository.uwl.ac.uk

Nonparametric bootstrapping for multiple logistic regression model using R

Hossain, Ahmed and Khan, Hafiz T.A. ORCID: https://orcid.org/0000-0002-1817-3730 (2004) Nonparametric bootstrapping for multiple logistic regression model using R. BRAC University Journal, 1 (2). pp. 109-113.

This is the Published Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/3783/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

NONPARAMETRIC BOOTSTRAPPING FOR MULTIPLE LOGISTIC REGRESSION MODEL USING R

Ahmed Hossain Department of Public Health Sciences University of Toronto Ontario, Canada

and

H. T. Abdullah Khan Department of Statistics University of Dhaka Dhaka, Bangladesh

ABSTRACT

The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap allows us to estimate the sampling distribution of a statistic empirically without making assumptions about the form of the population, and without deriving the sampling distribution explicitly. The main objective of this study to discuss the nonparametric bootstrapping procedure for multiple logistic regression model associated with Davidson and Hinkley's (1997) "boot" library in R.

Key words: Nonparametric, Bootstrapping, Sampling, Logistic Regression, Covariates.

I. INTRODUCTION

Bootstrapping is a general approach to statistical inference based on building a sampling distribution for a statistic by resampling from the data at hand. Efron (1979) discussed bootstrap procedure that can be applied to estimate sampling distributions of estimators for the multiple regression model. A common approach to statistical inference is to make assumptions about the structure of the population (e.g., an assumption of normality), and along with the stipulation of random sampling, to use these assumptions to derive the sampling distribution on which the classical inference is based. This is called parametric Bootstrapping. But in certain instances, the exact distribution may be intractable, and so we instead derive its asymptotic distribution. This parametric bootstrapping may cause two potentially important deficiencies:

• If the assumptions about the population are wrong, then the corresponding sampling distribution of the statistic may be

seriously inaccurate. On the other hand, if asymptotic results are relied upon, these may not hold to the required level of accuracy in a relatively small sample.

• The approach requires sufficient mathematical prowess to derive the sampling distribution of the statistic of interest. In some cases, such a derivation may be prohibitively difficult.

II. NONPARAMETRIC BOOTSTRAPPING APPROACH FOR REGRESSION MODELS

The bootstrap method can be applied to much more general situations (Efron, 1982), but all of the essential elements of the method are clearly seen by concentrating on the familiar multiple regression model:

$$y = X\beta + \varepsilon \tag{2.1}$$

where X and β are fixed $(n \times k)$ and $(k \times 1)$ matrices with full rank and $n \ge k$. The components of ε are independent identically distributed random

variables with zero mean and common variance σ^2 .

The nonparametric bootstrap estimate of the sampling distribution of an estimator $\hat{\beta}^*$ of β is generated by repeatedly drawing with replacement from the residual vector

$$\varepsilon^* = y - X\beta^* \tag{2.2}$$

If e_h is a $(n \times 1)$ vector of n independent draws

from \mathcal{E}^{*} , then the corresponding bootstrap dependent variable is given by

$$y_b = X\beta^* + e_b \tag{2.3}$$

For each vector y_b the estimator is recomputed and the sampling distribution of the estimator is estimated by the empirical distribution of these estimates computed over a large number of y_b .

III. DATA

The kyphosis data frame has 81 rows representing data on 81 children who have had corrective spinal surgery collected from the book Statistical Models in S, Wadsworth and Brooks, Pacific Grove, CA 1992, pg. 200

The outcome kyphosis is a binary variable and other three selected variables (columns) are numeric. Kyphosis is a factor telling whether a postoperative deformity (kyphosis) is "present" or "absent". *Age* represents the age of the child in months. *Number* represents the number of vertebrae involved in the operation. And *Start* represents the beginning of the range of vertebrae involved in the operation.

In the paper, the generalized linear model (GLM) tool is used to fit logistic regression model using R statistical software.

IV. RESULTS

A logistic linear regression model is fitted to examine the influence of selected three covariates on kyphosis in R by using the following command:

glm(formula = Kyphosis ~ Age + Start + Number, family = binomial, data = Kyphosis)

The results of logistic regression are given in Table 1.

Table 1: Logistic Regression Coefficients.

Coefficients	Value Std.	Error	t value
(Intercept)	-2.03693	1.44918	-1.40557
Age	0.01093	0.00644	1.69617
Start	-0.20651	0.06768	-3.05104
Number	0.41060	0.22478	1.82662

(Dispersion Parameter for Binomial family taken to be 1)

Null Deviance: 83.23447 on 80 degrees of freedom Residual Deviance: 61.37998 on 77 degrees of freedom

Figure 1: Age Coefficient

Table 1 reveals that all three covariates are statistically significant and have expected directions. Table 2 shows the partial correlation between the covariates.

Table 2: Correlation Matrix.

	Age	Start
Start	-0.28495	
Number	0.23210	0.11075

The coefficient standard errors reported by *glm* rely on asymptotic approximations and may not be trustworthy. Therefore, let us turn to the bootstrap. Here we want to fit a regression model with response variable *y* and predictors $x_1, x_2, ..., x_k$. We have a sample of n observations $z'_i = (y_{i1}, x_{i1}, x_{i2}, ..., x_{ik})$, i = 1, 2, ..., n. Here we simply select *B* bootstrap samples of the z'_i , fitting the model and saving the coefficients from each bootstrap sample.

We then construct confidence intervals for the regression coefficients using the methods discussed by Davidson and Hinkley (1997).

ORDINARY NONPARAMETRIC BOOTSTRAP

```
>boot.h
function(data, indices) {
    data <- data[indices, ]
    mod <- glm(formula = Kyphosis ~ Age +
    Start + Number, family = binomial, data
    = data)
    coefficients (mod)
}</pre>
```

boot (data = kyphosis, statistic = boot.h, R = 999)

Table 3 shows the results of logistic regression performed from bootstrapping sample with a replication of 999.

 Table 3: Bootstrap Statistics for Selected Variables.

	Original	Bias	Std. error
(Intercept)	-2.03671	-0.51139	2.92852
Age	0.01093	0.00214	0.00981
Start	-0.20650	-0.02979	0.11878
Number	0.41056	0.11311	0.51974

Figure 1-3 show the histograms and normal quantile-comparison plots for the bootstrap replications of the age (Figure 1), start (Figure 2) and number (figure 3) coefficients in Kyphosis data. The broken vertical line in each histogram shows the location of the regression coefficient for the model to fit to the original sample.

While considering bootstrapping sample we find that except for *Number*, the bias is too small for covariates *Age* and *Start*. Looking at Figures 1-3, one can conclude that they follow approximately normal which in turn help us to justify the usefulness of bootstrapping technique.

Tables 4 -9 show confidence intervals of coefficients of logistic regression model. The confidence intervals are observed to be very close for covariates *Age* and *Start;* on the other hand, it is wider for *Number*. So the application of bootstrapping provides us better understanding and better results.

> boot.ci (boot.out =boot.k, type=c("norm","prec",bca"), index=2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replications

CALL :

Boot.ci (boot.out = boot.k, type=c ("norm", "prec", "bca"), index=2)

Table 4: 95% Confidence Intervals for Age.

Level	Normal	Percentile	BCa
95%	-0.0104, 0.0280	0.0009, 0.0308	-0.0014, 0.0253

Figure 3: Number Coefficient

CALL:

Boot.ci (boot.out = boot.k, conf = 0.9, type = c ("norm", "prec", "bca"), index=2)

Table 5: 90% Confidence Intervals for Age.

Level	Normal	Percentile	BCa
90%	-0.0073, 0.0249	0.0022, 0.0266	0.0005, 0.0225

boot.ci (boot.out = boot.k, type = c ("norm", "prec", "bca"), index=3)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replicates

CALL:

boot.ci (boot.out = boot.k, type = c ("norm", "prec", "bca"), index=3)

Table 6: 95% Confidence Intervals for Start.

Level	Normal	Percentile	BCa
95%	-0.4095, 0.0561	-0.4337, -0.0969	-0.3507, -0.0454

boot.ci (boot.out = boot.k, conf = 0.9, type = c ("norm", "prec", "bca"), index=3)

Table 7: 90% Confidence Intervals for Start.

Level	Normal	Percentile	BCa
90%	-0.3721, 0.0197	-0.3787, -0.1101	-0.3245, -0.0721

boot.ci (boot.out =boot.k, type=c("norm", "prec", "bca"), index=4)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 999 bootstrap replications

CALL :

Boot.ci (boot.out = boot.k, type=c ("norm", "prec", "bca"), index=4)

Table 8: 95% Confidence Intervals for Number.

Level	Normal	Percentile	BCa
95%	-0.7212, 1.3161	-0.0631, 1.3212	-0.2074, 1.0777

CALL:

Boot.ci (boot.out = boot.k, conf = 0.9, type = c ("norm", "prec", "bca"), index=4)

Table 9: 90% Confidence Intervals for Number.

Level	Normal	Percentile	BCa
90%	-0.5575, 1.1524	0.0250, 1.1509	-0.1313, 0.9366

The normal theory and percentile intervals are reasonably similar to each other, but the more trustworthy BC_{α} intervals are somewhat different.

V. CONCLUSION

It may be concluded that the bootstrap method could potentially be applied to problems of statistical error assessment beyond biases and standard errors, in particular to the setting of approximate confidence intervals, but only if further progress were made in understanding the bootstrap's inferential biases.

VI. REFERENCES

- A. C. Davidson, D.V. Hinkley: *Bootstrap Methods and their Application*. Cambridge: Cambridge University Press. (1997)
- B. Efron: "Bootstrap methods: another look at the Jackknife" *Annals of Statistics*, 7, pp 1-26. (1979)
- B. Efron, R. J. Tibshirani: An Introduction to the Bootstrap. New York: Chapman and Hall. (1993)
- John M. Chambers and Trevor J. Hastie, Statistical Models in S, Wadsworth and Brooks, Pacific Grove, CA, pp. 200. (1992)