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ABSTRACT

Macroscopic and microscopic models are typical approaches for simulating crowd behaviour 
and movement to simulate crowd and pedes-trian movement, respectively. However, the two 
models are unlikely to address the issues beyond their modelling targets (i.e., pedestrian 
movement for mi-croscopic models and crowd movement for macroscopic models). In order 
to solve such problem, we propose a hybrid model integrating macroscopic model into 
microscopic model, which is capable of taking into account issues both from crowd 
movement tendency and individual diversity to simulate crowd evacuation. In each 
simulation time step, the macroscopic model is executed first and generates a course-grain 
simulation result depicting the crowd move-ment, which directs microscopic model for goal 
selection and path planning to generate a fine-grain simulation result. In the mean time, 
different level-of-detail simulation results can also be obtained due to the proposed model 
containing two complete models. A synchronization mechanism is proposed to convey 
simulation results from one model to the other one. The simulation results via case study 
indicate the proposed model can simulate the crowd and agent behaviour in dynamic 
environments, and the simulation cost is proved to be efficient.

Keywords: Crowd simulation, Hybrid modelling, Microscopic model, Macroscopic  model,

Cellular automation

I INTRODUCTION

Macroscopic and microscopic approaches are currently two main mod-elling 
techniques for crowd simulation. The microscopic model, such as the meth-ods used in 1–

5), emphasizes the issues of individual characteristics, including pedestrian’s 
psychological and social behaviors, communication amongst pedes-



trians, and individual decision making processes. With the ability to describe individual 
issues, microscopic models can generate a fine-grain simulation result. Since microscopic 
methods only consider issues about each individual, it can only reflect the individual 
behaviour and movement pattern. Global and local crowd information is scarcely reflected in 
the same model. Whereas, macroscopic meth-ods (e.g., in 6–8)) focuses on the movement 
features of the whole crowd. It can generate a simulation result reflecting the tendency and 
movement pattern about the whole crowd, which is what the microscopic methods lack. 
However, macro-scopic methods are hardly to produce a fine-grain simulation result to reflect 
the individual diversities in simulation, due to its lack of consideration of individual issues.

In evacuation scenarios, pedestrian moves not only based on her/his own desire, but 
also subject to the crowd movement tendency as well as environment constraints. Regarding 
this, the model for simulating crowd evacuation needs to reflect crowd characteristics of 
both global movement tendency and individ-ual behaviour, which can be obtained by 
macroscopic and microscopic models, respectively. The combination of these two models 
is hence a natural idea to achieve this objective. Existing work has attempted to combine 
di®erent mod-els together to build a hybrid model. The existing hybrid models mainly 
fall into three categories. Methods like 8–10) build their models by adopting partial 
microscopic and macroscopic model into di®erent layers, which essentially fall into 
microscopic approach. Another type, like the one proposed in 11), incor-porates both 
complete macroscopic and microscopic models and executes them inter-changeably. 
However, the macroscopic model can only be executed when crowd movement is mostly 
stable (or becomes stable eventually), and the two models have no interactive 
communications during the same simulation time step. The third type, as proposed in 12), 
adopts a complete microscopic and macroscopic model and executes them simultaneously 
by applying them to dif-ferent parts of the environment. However, global and individual 
issues can not be simultaneously reflected for any simulation area.

This paper proposes a hybrid model for simulating crowd evacuation to exploit the 
integrated advances in macroscopic and microscopic method. Is-sues like environmental 
and global crowd movement pattern are simulated by macroscopic model. Whereas, the 
microscopic model only simulates how agent makes decision and moves directed by the 
simulation result from the macroscopic model. In each simulating time step, the 
macroscopic model is first executed. The microscopic model then accesses simulation 
results from the macroscopic model, and each agent makes a further individual movement 
decision, according to the global information as response. At the end of each simulation 
time step, the macroscopic model updates the initial parameters, according to the simula-tion 
results by the microscopic model and ends the current simulation time step. An interactive 
synchronization method is also proposed to conduct information exchange and 
synchronization between two models. Existing macroscopic or microscopic methods can 
only reflect either global crowd movement pattern or individual diversity, due to the 
limitations of the two types models. The proposed



hybrid model in this paper, by contrast, is able to simulate both macroscopic and 
microscopic patterns, by executing the two models sequentially.

The simulation of crowd evacuation benefits from the proposed model by the 
following contributions:

1. The model integrates a microscopic model and a macroscopic model and executes
them sequentially in one time step.

2. The microscopic model is proposed to simulate how an agent is a®ected by the
crowd movement pattern and thus to generate a fine-grain simu-lation result with
individual diversity.

3. Simulation performance is improved by the macroscopic model resulting in a
global path planning which is not dependent on crowd size.

4. As a by-product, the simulation is able to obtain di®erent Level-of-Detail results
by exclusive execution of either macroscopic or the whole hybrid model.

The rest of the paper is organized as follows: the existing related work is 
summarized in Section 2. How the macroscopic model is integrated into the 
microscopic model is depicted in Section 3. Experiment results given via case studies 
are represented in Section 4. The proposed model is evaluated and analyzed in 
Section 5. The paper is concluded in Section 6.

II RELATED WORK

This section gives a brief summary of existing related work for crowd 
simulation. Models for crowd simulation can be categorized in terms of 
modelling granularity of crowd that reflects in the grain of s imulation result.

2.1 Microscopic Models
One of the typical methods to model and simulate large scale human 

crowd evacuation is to use the agent-based model (a kind of microscopic method), in 
which each pedestrian in the crowd is simulated individually. It is based upon the 
assumption that pedestrians have distinct characteristics and make decisions depending 
on personal desires. For example, 13) adopted the social comparison theory in the 
crowd behavior and 1) also employed a multi-agent based frame-work to demonstrate 
emergent human social behaviors, for instance, competing, queuing, and herding. 
Several collision avoidance methods were proposed, like the rule-based flocking 
model,14, 1 5) v elocity-obstacles-based formulation.5, 16, 17) There are a number of models 
accounting for more sophisticated variants, like motion dynamics,18) sociological 
factors,19) psychological e®ects,20, 21) situation-guided control,22) and cognitive and 
behavioural models.23, 24)

Another type of microscopic approach simulates individual movement 
by employing particle system models, which considers individuals as a set of homo-
geneous entities. It treats crowd as a discrete set of homogeneous particles, and 
simulates pedestrians as particles in the physical world. The typical method is 
Helbing’s social force model.2) The motions of individuals were usually influenced by 
some global laws based on physical or socio-psychological forces. Some global



emerging phenomena such as jamming and flocking were generated in simulation 
results.

2.2 Cellular Automata
Cellular Automata (CA) model 25, 26) is an important branch of microscopic 

model for crowd simulation. The environment in CA model is abstracted as 
discreet cells with equal size, and each individual is treated as a particle moving 
from one cell to a neighboring cell subjected to some local transition rules among 
neighboring cells. The CA model either reflects and imitates individual level 
details or macroscopic movement pattern depending on its considering issues.

Models aiming at microscopic level attempts to simulate the behaviour and 
movement of pedestrians.27) aimed at individual-level features to reflect and imitate 
individual intelligence.28) presented a CA model for pedestrian dynamics, which 
applied bionics approach to describe the interaction between pedestrians using ideas 
from chemotaxis.

Models aiming at macroscopic level attempt to simulate the whole move-
ment pattern of the crowd. 29) used floor field for the CA model to reflect macro-
scopic and environmental issues for crowd evacuation.30) presented a CA model 
based on lattice gas, which is usually used in macroscopic model. With this 
scheme, it was able to reflect the macroscopic pattern of crowd movement. 31) used 
a so-called floor filed to simulate collective phenomena like lane formation, flow 
oscillations at doors. The floor field is still a macroscopic method to describe the 
global feature of crowd movement.

Methods presented in 32) are the example to obtain both macroscopic and 
microscopic pattern of pedestrian and crowd movement in a CA model, which is 
derived from 28). It introduced a vector-based particle filed to represent the 
macroscopic pattern. However, this method is based on the approach of particle 
system, which is hard to reflect real pedestrian’s behaviour and movement.

2.3 Macroscopic Models
The individual behavior is constrained by the whole movement of the 

crowd. The higher the pedestrian density is, the more the individual will follow the 
average movement of the crowd. Regarding this, macroscopic models, such as 
those in 6, 7, 33, 34), studied the principles of crowd movement and simulate the 
movement pattern of the whole crowd instead of simulating each individual in the 
crowd. The basic idea of these macroscopic models is to model a crowd as 
continuous flow of fluid. Due to the inherent nature of flow-based models, they 
neglected the features and diversities of individuals. In this sense, flow-based 
models are mainly useful in estimating the flow of movement/evacuation process for 
huge and dense crowds.

2.4 Hybrid Approaches
It is obvious that the advances of macroscopic and microscopic models are 

complementary. Aiming at exploiting the advances of both models, some existing 
work attempts to combine the two types of models. Methods used in 8–10)



adopted part of modules from both the macroscopic and microscopic models and combine them into 
a single model. The basic idea was to divide the model into two layers: a set of 
governing equations are applied from the macroscopic model at the top layer. This performed the 
role of the cognitive module which results in the overall movement pattern of whole crowd. 
Based on this result, the movement of each individual was simulated by a simplified m 
icroscopic model at the bottom layer. For example, in 8), a macroscopic model was used at the 
crowd level to generate simple rules to govern the movement of individuals; while a microscopic 
model simulated collision avoidance for each individual. Since the methods mentioned 
above still need to execute a complete microscopic model for every individuals in the 
crowd, the simulation eÿciency significantly decreases as the crowd size increases. 
Additionally, it is still constrained by the limitation of the macroscopic model. If the adopted 
macroscopic method is not applicable for a specified crowd, the whole model will not b e a 
pplicable. Essentially, these type hybrid methods are still microscopic models.

In contrast to the aforementioned methods, we previously proposed a multi-
resolution modelling11) approach, which attempted to combine both macro-scopic and 
microscopic models. The approach of this method was to make the two models work 
iteratively: the macroscopic model governs the simulation when the crowd movement is 
stabilized; if there is an event which makes the crowd movement unstable, the simulator will 
switch to the microscopic mode and choose the microscopic model to simulate the crowd 
movement. Finally, the simulation adopted the macroscopic model once the crowd movement 
became stable again. This method is suitable for simulating crowds whose movement 
remains mostly stable. It can also avoid the limitation of the macroscopic model, because part 
of crowd, for which the macroscopic model is not applicable, can be simulated by the 
microscopic model. However, it only aims to generate a multi-resolution simulation 
result, and the global issues are not reflected i n the microscopic model.

III PROPOSED HYBRID MODEL SPECIFICATION

In order to integrate a macroscopic model into a microscopic model, the proposed 
hybrid model contains three modules: 1) a macroscopic model sim-ulating crowd 
movement subject to global and environmental scenarios; 2) a microscopic model 
simulating each pedestrian’s movement in the crowd under the direction of the simulation 
result generated by the macroscopic model; and 3) a synchronization module charging the 
convey of the simulation result from one model to the other one.

Simulation time is divided into discrete equal time intervals as simula-tion time 
step, each of which both models are executed sequentially depicted as follows:
step 1 With the initial information collecting from the result of the microscopic

model in the last time step, the macroscopic model executes at the begin-ning of current 
time step and then generates a course-grain simulation result reflecting the crowd 
movement tendency.



step 2 The synchronization module provides the functions of accessing the sim-
ulation result of the macroscopic model for the microscopic model.

step 3 The microscopic model is then triggered to execute based upon the crowd
movement tendency and density generated from step 1. The generated 
simulation result is considered as the final result of the hybrid model in the 
current time step.

step 4 The synchronization module transfers the agent’s position to crowd den-
sity as the initialization of the macroscopic model. After this, the sim-
ulation of the current time step ends and go to step 1 for the execution
of the next time step.

Detail designs of these modules are introduced in the following subsections.

3.1 Simulation Environment Specification
A typical environment for crowd evacuation includes accessible moving

areas, exit and obstacle. The whole continuous simulation environment is divided
into square cells with equal size. Both the macroscopic and microscopic models
share this specification for the model execution.

In real life, a pedestrian may not choose its moving path exactly according
to the ideal path, especially for those without familiar knowledge of the envi-
ronment. That’s why sign board always appears in complicated environment to
help pedestrians to find the desired goal efficiently. Taking into account this,
information tags are added into the simulation environment at specified cells.
These tags make an agent to know the full knowledge of the simulation environ-
ment, which implies that the agent is able to follow the shortest path generated
by the macroscopic model (introduced in the next subsection).

3.2 Macroscopic Model
A continuum model, derived from 35), is applied as the macroscopic model

for the proposed hybrid model, which considers the crowd as a whole with sym-
metric dynamic features. The model describes how crowd selects velocity (i.e.,
magnitude and direction of velocity) and how crowd moves with the selected
velocity (i.e., the density distribution). The simulation result of the model is
presented as crowd density and velocity distribution.

[ 1 ] Crowd speed selection
Assuming the magnitude of crowd velocity, i.e., the speed of crowd move-

ment, is related to the crowd density around only. A speed-density relationship
proposed in 7) is applied in the macroscopic model, as shown in Equation 1.

f(ρ) =





A, ρ ≤ ρt

A

√
ρt

ρ
, ρt < ρ ≤ ρc

A

√
ρtρc

ρm − ρc

√
ρm − ρ

ρ
, ρc < ρ ≤ ρm

(1)

where ρ represents the crowd density around the agent, and the typical values



of ρt, ρc, ρm, and A are set as 0.8m−2, 2.8m−2, 5.0m−2, and 1.4m/s respectively
in 7). Actually, the parameter A here represents the agent’s preferred speed. The
density information is collected from the result by the microscopic model through
calculating the average density for each cell in the simulating environment.

[ 2 ] Determination of crowd moving direction
Here we assume that a crowd prefers to arrive at the destination as fast

as possible, which implies that the crowd selects a shortest path to move along.
A scalar field, called position field, is used to generate the shortest path. The
value of each element in the position filed, φ(x, y), records a value for each cell
in the simulation environment, where (x, y) is the coordinate of the cell location.
The value means the travelling time from current location to an exit along the
shortest path. The value is assigned to 0 and positive infinity for cells in part
of an exit and obstacle, respectively. Values for the other cells are assigned as
positive values, which are determined during the model execution. The value
change of the position field along a detected shortest path should be the fastest
amongst all the possible paths, which can be formalised as Equation 2:

~d(x, y)//−∇φ(x, y) (2)

where // indicates the directions of the two vectors are parallel, and vecd(x, y)
represents the movement direction at Point(x, y). In other words, the direction
of crowd movement always follows the opposite direction of the gradient of the
position field. With this relationship, the time for crowd movement per unit
distance can then be presented as

t(x, y) = |∇φ(x, y)| (3)

where t(x, y) is the time per unit distance at location (x, y) calculated by 1/v(x, y).
Here, density is not considered, which is an issue of the microscopic model.
Hence, v(x, y) can be any positive value. By solving the partial differential
equation, the values of position field of all cells are determined. The numerical
solution to this equation follows the method proposed in 36).

[ 3 ] Generation of crowd movement
The continuum model assumes that crowd movement is governed by the

following conservative equation, which is a typical Navier-Strokes equation:

∂ρ(x, y, t)/∂t +∇ · (v(x, y, t)ρ(x, y, t)) = 0 (4)

where v(x, y, t) and ρ(x, y, t) is the velocity vector and crowd density at Point(x, y)
for simulation time t, respectively. With this formula, the distribution of crowd
density at simulation time t+1 can be obtained with the information of velocity
and density distribution at simulation time t. The magnitude and direction of
velocity are determined by Equations 1 and 3. By using numerical method pro-
posed in 35), the crowd density distribution in each simulation time step is then
generated.



3.3 Microscopic Model
We propose a CA-based model to simulate how an agent moves in a simu-

lation environment with the emphasis on how an agent selects cell, being aware
of the impact from crowd movement. Each agent holds a property set defined
in Equation 5

S = {x, y, H, vx, vy, ρ

sight, θ, wdir, wpos, wρ}
(5)

where x and y represent the agent’s current position; H reflects the agent’s
current healthy status; vx and vy holds current magnitudes of the agent’s velocity
along x and y coordinates, respectively; ρ represents the density at the current
cell including point (x, y); sight means the agent’s maximum distance of eye
sight, and θ means half of the maximum angle the agent can see from its current
position (shown in Fig. 1); the following three parameters are weight factors
reflecting how the agent’s behaviour is affected by external factors from either
crowd or environment issues, i.e., wdir (crowd movement), wpos (position) and
wρ (density).

Fig. 1 Description for an Agent’s Eye Sight

We first propose the transition rules for the CA-based model . An integra-
tion of these rules are proposed to determine each agent’s position and velocity
during each simulation time step.

[ 1 ] Transition rules
The agent’s movement depends not only on its own desire, but also on

crowd movement. We propose the following transition rules for the CA-based
microscopic model to reflect how the agent selects cell based upon the simulation
result of the macroscopic model with the issues of position field, density distri-
bution, and crowd movement. In order to evaluate candidate cells, we introduce
cell attraction for each rule to quantify the evaluation metric.

Rule 1: Agent movement by position field. Ideally, an agent fol-
lows the moving direction generated by Equation 2, if it is fully aware of the
information of the simulation environment. Otherwise, the agent observes the
movement of crowd around and makes a similar decision for the selections of
goal and moving path. In order to simulate such behaviour, we define a position



attraction to depict how the agent is directed by the position field, defined in
Equation 6.

Pk =
φmax − φk

φmax − φmin
(6)

where k is the indicator for the neighbouring cell of the agent currently standing;
Pk represents the position attraction from the cell k; φmax represents the maxi-
mum value of φ amongst all cells inside the agent’s eyesight (with the exception
of infinity of φ); φmin is the minimum value of φ inside the agent’s eyesight; φk

is the value of φ at cell k. The agent prefers to move towards the neighbouring
cell with a higher value of Pk calculated by this formula. Once the agent catches
sight of a information tag thus to have the full knowledge of environment infor-
mation, it will take the shortest path generated by the macroscopic model. In
this case, 1 is assigned to position attraction of the neighbouring cell along the
shortest path, and 0 to the other neighbouring cells.

Rule 2: Agent movement by density distribution. The agent may
make a detour when encountering a dense area. We introduce a cell attraction
Denk to reflect such a behaviour, defined in Equation 7.

Denk =
ρmax(t + 1)− ρk(t + 1)

ρmax(t + 1)− ρmin(t + 1)
(7)

where t and t+1 represents the current and next simulation time steps; ρmax(t+
1) and ρmin(t + 1) is the maximum and minimum densities inside the agent’s
eyesight; and ρk(t + 1) is the density at cell k. The macroscopic model provides
the density information.

Rule 3: Agent movement by crowd movement When a pedestrian
moves into a high density area, her/his movement mainly constrained by the
crowd movement, which is a typical phenomenon described by social comparison
theory.13) Another cell attraction is proposed to simulate this behaviour, defined
in Equation 8.

Pdirk
=

Sdir(k)∑m
i=1 Sdir(i)

(8)

where pdirk
is the attraction of the neighbouring cell k; dir(k) defines the di-

rection from the current cell pointing to cell k; Sdir(k) represents the number of
cells in the agent’s eyesight where the crowd moves along the direction dir(k);
m∑

i=1

Sdir(i) counts up the number of cells along all the m directions. The neigh-

bouring cells may be occupied by obstacles, which leads to the decrease of num-
ber of crowd moving direction. Hence, the maximum value of m is 8. The
crowd moving direction can be calculated by the velocity distribution from the
macroscopic model.

[ 2 ] Generation of agent movement
In order to integrate the transition rules defined in Equations 6, 7 and 8,

and to evaluate the candidate cells, we propose the integrated cell attraction to



evaluate all candidate cells, defined in Equation 9.

Vk = wposk
Pposk

+ wρk
Denk + wdirk

Pdirk
(9)

where Vk means the value of the cell attraction of cell k. Here, three weight
factors are introduced, i.e., wposk

, wρk
and wdirk

, representing the impact of
position, density and crowd movement on agent movement, respectively. The
three weight factors holds the constrains defined in Equation 10, i.e., the sum of
them equals to 1.

wposk
+ wρk

+ wdirk
= 1 (10)

The agent always prefers to move towards the neighbouring cell with the
largest value of the cell attraction, Vk. Since a cell can hold only one agent in
the CA model, agents may competes for the same cell during the simulation.
The competition rule is defined in Equation 11, and the agent with the largest
value of competitioni wins the competition and moves into the cell in the next
time step.

competitioni =
Hi

costi
(11)

where i discriminates agent i, Hi is its health degree, and costi describes the
cost of the agent i moving from the current to the targeted cell. Hi reflects the
agent’s characteristic of age and strength. An adult holds a higher value of Hi

than a child and the elderly. The cost of movement costi is set as follows: 1 is
assigned if the current and targeted cell share an edge, and 1.414 if the two cells
only share a vertex. Once an agent fails to select its preferred cell, it competes
for another neighboured cell with a smallest deviation.

The cell selection determines the agent’s moving direction. Its speed is
figured out according to the density-speed relationship defined in Equation 1. If
an agent cannot select a cell to move, it will reduce its speed to move to the edge
of the current cell. On the other hand, if the agent’s speed is not fast enough to
arrive at the selected cell, it should remain at the current cell. In both scenarios,
the agent’s position will still be updated according to the selected velocity.

3.4 Synchronization between Models
The simulation results of the two models are reused for one another, which

raises two issues for the synchronization mechanism between models. One issue
is how to convey the simulation result to the microscopic model; the other is
how to initialize the macroscopic model with the results of the CA-based model.

For the first issue, a synchronization module provides read-only methods
for the microscopic model to access position field, density distribution and ve-
locity distribution. Each of them is stored in one (position field and density
distribution) or two (velocity distribution) 2-dimensional array(s). Since both
models share the environment discretization, the value of each element in those
arrays can be directly used as corresponding information for a specified cell.

As for the latter issue, the synchronization module needs to convert the
agent position from the result of the microscopic model to crowd density as the



initial value of the parameter ρ(x, y) in Equation 4. The determination of crowd density 
for a specified cell follows the steps below:

1. Count the number of agents, number, in the cells which are inside the 
eyesight of an imaginary agent locating at the centre of the specified cell.

2. Calculate the area size of cells in the agent’s eyesight.
3. The crowd density at the specified cell is then calculated as number/size.

IV CASE STUDY

In this section, several cases are studied by using the proposed hybrid 
evacuation model to simulate crowd evacuation scenarios. The section starts with a 
simple scenario first, w here a  c ommon p henomenon o f c rowd movement is found. The 
function of density attraction is also evaluated in this section. After this, an indoor 
scenario is conducted and the simulation results show how an agent moves around the 
environment governed by the hybrid model.

Without additional description, the environment is divided into cells by the size of 
0.4 × 0.4m, and simulation time step is set as 0.5s. As for the value assignment of weight 
factors defined i n E quation 9 , t here a re t wo s ets of assignments. If there are no 
information tagging inside the agent’s eyesight, the weight factor of position should be 
dominant amongst the three factors. Regarding this, the value is set as 0.7, and wdirk and 
wρk is set as 0.2 and 0.1, respectively. On the other hand, if there is no guide tag in the 
agent’s eyesight, the crowd movement should be dominant (the value is set as 0.7), and 
wρk and wposk is set as 0.2 and 0.1, respectively. As for the agent eyesight, θ is set as π/4 
and sight as 8m.

4.1 Scenario I
The simulation environment is specified as follows (illustrated in Fig 2a): 1) the 

environment size is set to 6.4 × 6.4m; 2) the initial number of agents is 64; 3) the 
environment is surrounded with obstacles (colored with blue); and 4) only one exit is in 
the environment locating at the right side of the environment (colored with red). The 
environment specification a ims t o s imulate t he real scenario with a narrow moving 
space and few exit.

All agents desire to evacuate as soon as possible via the only exit. How-ever, 
the exit occupies only one cell, which means at most one agent can access the exit in 
each simulation time step. Hence, it can be expected that the density around the exit 
will be very high, which is observed in the simulation result shown in Fig 2b. 
Furthermore, the shape of agent positions near the exit is a approximate semicircle. 
Similar shape can also be found in the literature.2) This phenomenon is compatible with 
the empirical observations, and comparable to intermittent clogging found in granular 
flows through funnels or hoppers.37, 38)

Based on this scenario, a further experiment is conducted with another desired 
speed. Previously, the desired speed of agent is set as 1.4m/s for the parameter A in 
Equation 1. Another value of A is set as 2.5m/s. The time for evacuation 
simulation is compared with both desired speeds. The simulation



(a) Simulation Time Step=0 (b) Simulation Time Step=30

Fig. 2 Simulation Results of Scenario I: Scenario of Narrow Space for
Evacuation

Fig. 3 Comparison of Agent Number with Different Desired Speed
(Scenario I)

results is shown in Fig. 3. It can be observed that the evacuation time for
the desired speed setting as 2.5m/s is around 22.2% slower than that setting
as 1.4m/s. The simulation results show another empirical observation called
faster-is-slower, which is also observed in 2).

Through the found phenomena from the simulation results, the proposed
hybrid model is proved to be holding the capability of simulating crowd evacu-
ation.

4.2 Scenario II: Evaluation for Density Attraction
In this subsection, a scenario is designed to evaluate how density attrac-



(a) Simulation Time Step=0 (b) Simulation Time Step=20

(c) Simulation Time Step=40 (d) Simulation Time Step=60

Fig. 4 Scenario II: Evaluation for Density Attraction

tion works in the model. The simulation is specified as follows: the environment
contains two exits located at the left and top of the environment, with envi-
ronment size of 6 × 6m; and 63 agents are initially in the environment, mainly
locating at the bottom of the environment, as shown in Fig. 4a.

Without density attraction, agents at bottom-right should choose the exit
at the left side due to shorter distance to exit. As the density attraction works,
some agents choose another exit to avoid the high density area, which can be ob-
served from the simulation results illustrated in Fig. 4b- 4d, which is compatible
to empirical phenomenon in real life.

4.3 Scenario III: Evaluation for Information Tagging
The function of information tagging is evaluated through a scenario de-

fined in Fig. 5. Initially, there are 60 agents in the environment and two exits



Fig. 5 Initial Status for Evaluation of Information Tagging

located at the top and bottom of the boundary of the environment (with red
color). Information tags are labelled with yellow color, which helps an agent to
be aware of the nearest exit immediately once it comes into the agent’s eyesight.
The environment is bounded with obstacles, and there are also several obstacles
inside the environment.

Two experiments are conducted based on the scenario with and without
information tagging, respectively. Fig. 6 shows the number of agents in the en-
vironment during the simulation process. At the beginning of the simulation
(before simulation time step 103), agent numbers in the two experiments are the
same and kept unchanged, which indicates that there is no agent leaving the
environment. As simulation time elapses, the number of agent in environment
of the two experiments become different. Experiments with information tagging
always holds a smaller agent number than that without information tagging.
This indicates that agents without information tagging need more time to evac-
uate due to moving along a longer path; by contrast, agents with the help of

Fig. 6 Simulation Results for Hybrid Model with and without Infor-
mation Tagging



information tagging is able to find the desired path towards an exit immediately
once they catch sight of cells tagged with guiding information. That’s why the
simulation with information tagging completes the simulation earlier than the
other one. Another reason is that unfamiliar agents follow the crowd movement
which shorten the evacuation time for the whole crowd. The simulation time
costed by the experiment with information tagging around 22.6% faster than the
one without information tagging.

4.4 Scenario IV: An Indoor Scenario for Crowd Evacuation
An indoor scenario is designed to validate how a crowd/agent is governed

by the proposed hybrid model to evacuate from the environment. The environ-
ment size is set as 120×80m, surrounded by obstacles (colored with blue). There
are 4 exits (colored with red) allocated at each boundary. The other obstacles
inside the environment are also labelled with blue color, and cells with yellow
color represent information tags. This specification derives from a supermarket
layout.

Initially, there are 1000 agents uniformly distributed around the environ-
ment (shown in Fig. 9a). The initial position field and density distribution by the
macroscopic model are shown in Fig. 7a and 8a, respectively. The position field
determines how the crowd chooses a path towards an exit to evacuate from the
current location. Fig. 7a illustrates that cells with highest value of position field
is located at the center of the environment due to the distance to any exit. It
can also be found that some cells are with negative value of position field, which
means these cells are inside obstacle (as a substitution for the original positive
infinity). Fig. 7b shows the information collected from the result of the macro-
scopic model, depicting the contour of the position field around the environment
and the opposite direction of gradient of position field. It indicates the moving
direction of crowd at any specified location towards an selected exit. Fig. 8a rep-
resents the density distribution around the defined environment, and negative

(a) Position Field Distribution of Scenario
IV by Macroscopic Model

(b) Position Field Description of Scenario
IV: Contour and Opposite Direction to its
Gradient

Fig. 7 Position Field Distribution and Crowd Movement Direction



values also represent cells in obstacles. Actually, the position field is static and
does not change during the simulation once the environment is assigned. The
crowd density distribution is dynamic reflecting how the crowd moves governed
by the macroscopic model.

Fig. 8b - 8f show the crowd density distributions at simulation time steps
30, 60, 90, 150 and 240 by the macroscopic model, respectively. Fig. 9b - 9f

(a) Simulation Time Step=0 (b) Simulation Time Step=30

(c) Simulation Time Step=60 (d) Simulation Time Step=90

(e) Simulation Time Step=150 (f) Simulation Time Step=240

Fig. 8 Density Distribution for Scenario IV at Different Simulation
Time Step Governed by Macroscopic Model



(a) Simulation Time Step=0 (b) Simulation Time Step=30

(c) Simulation Time Step=60 (d) Simulation Time Step=90

(e) Simulation Time Step=150 (f) Simulation Time Step=240

Fig. 9 Simulation Results of Scenario IV: Crowd Evacuation in an
Indoor Environment

illustrate the simulation results at simulation time steps 30, 60, 90, 150 and
240, respectively. As simulation time step elapse, crowd densities around the
exits becomes higher gradually. This means most of agents have arrived at
the areas around the exit. However, the capacity of exit for an agent moving
through is fixed, agents need to wait or decrease its speed for moving through.
At simulation time step 240, the density around exits becomes lower (shown in
Fig. 9f), this is due to the decrease of the agent number inside the environment.

4.5 Scenario V: Evaluation for Agent in Different Types
An crowd can contain several types of agents. In this section, the simu-



lation evaluates how different types of agents move in the environment defined
in Scenario IV. Initially, there are three types of agents, i.e., adult, child and
the elderly, all with the number of 250, uniformly distributed around the envi-
ronment. The snapshot for the initial status is shown in Fig. 10. The value of
H used in Equation 11 is set as 1, 0.8 and 0.6 for adult, child and the elderly,
respectively. As for the desired speed defined in Equation 1, the value of A is
set as 1.4, 1.1 and 0.84m/s for adult, child and the elderly, respectively.

The number of agents left in the environment over simulation steps is
shown in Fig. 11. From the simulation result, it can be observed that the agent
with the type of adult moves at the fastest speed and the number of them
drops to 0 first amongst the three agent types, whereas the agent with the type
of the elderly moves at the slowest speed. On the other hand, it can also be
found the curve representing for the adult number drops more sharply than the
other two types, which indicates that adults can move quick and swiftly in the

Fig. 10 Initial Status of Scenario V

Fig. 11 Comparisons in Agent Number in Environment for Different
Agent Types



environment when they compete for the same cell with the other two types. The reason 
falls in the following two aspects. Agents with the type of adult hold the highest 
competition factor H (defined in Equation 11), so that they have a highest privilege to 
move into the selected cell. It is also due to the fact that the adult holds a highest desired 
speed, and moves faster than the other two types. Hence, agents with the type of adult 
will first complete the evacuation process.

V MODEL EVALUATION

In this section, the proposed model is evaluated through the model ex-ecution 
performance and comparison analysis with existing typical microscopic and macroscopic 
models.

5.1 Performance Evaluation
We apply the scenario defined in Section 4.4 to evaluate the performance of the 

simulation model. Three experiments are conducted, with initial agent number of 1000, 
800 and 600 respectively, uniformly distributed around the environment. The 
simulation platform is a desktop configured with Intel i5 CPU, 4GB memory, and 1TB 
disk.

The simulation cost over simulation time step is reported in Fig. 12. In the 
performance point of view, the simulation process can be roughly divided into three 
stages: it starts with a lower cost, then increases to a peak, and it drops gradually to 0 
when approaching the end of simulation. This is due to different agent location 
distributions around the environment in different stages. At the beginning of the 
simulation, agents are distributed uniformly and there is no areas with very high density. 
So agents can move around the environment freely. As simulation time elapses and agents 
moving towards their selected exits, the density of some areas become higher. Such higher 
density indicates that the agent needs to observe and analyze more agents’ movement 
in its eyesight to calculate Equation 8. This is why the time for each simulation time step 
increases

Fig. 12 Simulation Performance Comparison with Different Crowd



in the second stage. As agent leaves the environment and the number of agents
decreases, the time for each simulation time step decreases. This is obvious due
to the decrease of the number of model executions. When the simulation time
drops to 0, it means the evacuation process has completed.

For the three experiments, the maximum time for simulating each agent
is similar, which is around 0.17ms. This indicates that the increase in agent
number will not result in a sharp performance drop. It also indicates that the
proposed model has a good scalability for simulating crowd evacuation process.

5.2 Comparisons with Existing Work
The proposed hybrid model integrates a macroscopic model into a micro-

scopic model, which directs agents to follow the crowd movement pattern as well
as reflecting individual behaviour. In this subsection, we make an comparison
analysis with other typical crowd simulation models.

Helbing’s social force model2) is a typical microscopic model for crowd
simulation. As shown in Fig. 3, the simulation result of the proposed model is
similar to the result by using Helbing’s model. However, it aims at modelling
pedestrian’s behaviour and movement by social force, which makes it hard to
reflect the global movement pattern of the crowd. As for our model, the mi-
croscopic model can access the crowd information, like position field, density
distribution and velocity, from the simulation result of the macroscopic model.
With them, crowd movement pattern can be easily reflected in the microscopic
model, which reflects in the following aspects:
a Fig. 4 shows how an agent can avoid a high density area;
b Agents unfamiliar with the simulation environment can follow the crowd

movement to complete the simulation result, shown in Fig. 6.
The model proposed in the literature35) is a typical continuum model, from

which the macroscopic model in our hybrid model is derived. However, it can
only provide simulation results to illustrate the density and velocity distribution
over simulation time step. Our model also generates such results to describe the
crowd movement as reported in Figs. 7 and 8. In addition, our proposed model
can reflect individual diversity. For example, agents familiar and unfamiliar
with the environment specification are described by the information tagging due
to a complete CA-based model introduced in the hybrid model. In addition,
the model can simulate different types of pedestrians, i.e., adult, child and the
elderly.

As a by-product, the proposed model has the ability to provide different
Level-of-Detail (LOD) simulation results. This is because the hybrid model
consists of two complete models with different simulating granularity. The model
provides a fine-grain simulation result with the executions of the macroscopic
and microscopic models, sequentially. On the other hand, the model can also
switch off the execution of the microscopic model, which results in a course-grain
simulation result from the macroscopic model.

Finally, the model provides a good scalability of crowd size due to the
efficient performance of model execution, as indicated in Fig. 12. The main



reason of this is due to the eÿcient performance of execution of the macroscopic model, which is 
independent on the crowd size of resolving the Equations 3 and 4. It is well known that 
the cost of microscopic model increases sharply with the crowd size. With the macroscopic 
result, the CA-based microscopic model is not necessary to build a complicated path 
planning module, which causes the microscopic model relatively simple and thus to obtain an 
eÿcient model execution performance.

VI CONCLUSIONS

This paper proposes a hybrid model to simulate human crowd in dynamic environments. 
The macroscopic model simulates crowd movement tendency. For the microscopic model, it 
directs how an agent selects its movement direction and speed, under the constraints by 
macroscopic model. The two models share and exchange simulation results, so that they can 
reflect t he c urrent s tate of environment and crowd movement. Case study is also conducted 
for the pro-posed model, and the simulation results indicate that the proposed hybrid model can 
reflect the characteristic o f human and crowd movement, with eÿcient and scalable simulation 
performance.

In the future, some external and individual factors could be further added into the model, 
such as fire a nd e motion. I n o rder t o i mprove t he simulation eÿciency, parallel and 
distributed simulation techniques can also be applied to the simulation. The execution of the 
macroscopic model may be processed by GPGPU, and the microscopic model may be executed 
by either GPGPU or high performance cluster. In this case, synchronization and load balancing 
should be further considered.
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