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This paper develops a novel augmented filtering framework based on information weighted consensus fusion, to achieve the
simultaneous localization and tracking (SLAT) via wireless sensor networks (WSNs). By integrating augmented transition and
observation models, we formulate a dynamical system that encodes both the target moving manners and coarse sensor locations in
an augmented state. We then conduct augmented filtering based on augmented extended Kalman filters to estimate the augmented
state.We further refine our target estimate according to informationweighted consensus filteringwhich fuses the target information
obtained from neighboring sensors.The fused information is fed back as the target estimate to the augmented filter. Our framework
is computationally efficient because it only requires neighboring sensor communications. Experiments on SLAT problem validate
the effectiveness of the proposed algorithm in terms of tracking accuracy and localization precision in limited ranging conditions.

1. Introduction

Simultaneous localization and tracking (SLAT) has gained
great research interest recently. It is popular to formulate
SLAT framework using a centralized architecture, where all
the sensors transmit their measurements to a central node
that fuses the received information and computes target tra-
jectories. One typical example is the SLAT framework based
on Bayesian inference proposed in [1], in which the sensor
positions are assumed unknown and thus moment matching
is required to obtain the position information. Similarly, in
non-line-of-sight environments, cubatureKalmanfilters have
been developed for SLAT [2], with augmented state vector
constructed by concatenating a target state and a sensor
location. Traditional SLAT frameworks rely on centralized
fusion of sensor-based target state estimation, and they
suffer from heavy communication overheads and are thus
inefficient. Furthermore, the performance of a centralized
SLAT solution is significantly affected by the central sensor,
which limits the robustness of the whole sensor network.

Distributed SLAT frameworks can possibly overcome
the aforementioned problems and have attracted increasing
research interest. For one thing, they show significant poten-
tial in improving individual sensor functionalities that are
usually limited by their simple hardware implementations.
For another, they can thoroughly exploit the advantages
supported by distributed sensing [3]. One early attempt of
the distributed strategies is the decentralized data fusion
method with all-to-all sensor communications [4], where a
decentralized version of the recursive maximum likelihood
for Hidden Markov Model and belief propagation message
passing algorithms have been exploited to localize the sensor
network simultaneously with target tracking. Almost at the
same time, a distributed variational filter for SLAT has been
proposed [5], which takes the messages with both belief
propagation and bandwidth consumption into consideration.
However, these distributed frameworks rely on a specific
communication network topology and are not generally
applicable to arbitrarily connected networks. Most of them
are derived based on the belief propagation method in
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Bayesian filtering framework, which may lead to heavy
computation costs. Moreover, these methods heavily rely
on distance measurements, which, however, are not always
guaranteed in practice due to the limited sense range (LSR)
of individual sensors [6].

The difficulty of sensor localization lies in the fact that
a target may not be observed by some or all sensors in a
practical network. To overcome this limited observability,
many strategies have been proposed, such as the distributed
sensor localization framework with weighted consensus [7],
the hybrid peer-to-peer tracking architecture with Kalman
consensus filter [8], and the information weighted consensus
filter [9]. In particular, particle-based distributed message
passing algorithms for SLAT have been employed to solve
the LSR problem. Here, one representative study is the
intersensormeasurements composed of nonparametric belief
propagation with a likelihood consensus scheme [10]. How-
ever, LSR conditions are task-specific and these methods are
not applicable to a general SLAT scenario.

In order to solve the practical SLAT problem with LSR
constraints, we propose a distributed SLAT algorithm for the
networks whose sensors can cooperate by exchanging mes-
sages among neighbors. Specifically, we design a distributed
augmented consensus estimator for SLAT under LSR con-
ditions. Our framework inherits some desirable properties
from the information weighted filter (ICF) [9]. The errors in
the information held by each sensor becomehighly correlated
with each other as consensus approaches. We thus utilize the
cross-covariances of the information to estimate the optimal
weights of prior states and measurements. By employing a
general state evolution model, we are able to characterize
the coupling state for both the target and one activated
sensor and then estimate the model state through augmented
filtering based on the augmented extended Kalman filter. We
then update the target state through consensus filtering by
fusing the distributed filtering information and the weighted
consensus information.

Comparing with the belief propagation schemes, our
framework has the advantage of low computation cost
because it reduces the unnecessary communication over-
heads. Furthermore, it addresses the error decoupling prob-
lem, which is usually unavoidable in the algorithms that dis-
tributively estimate sensor positions and target trajectories,
by proposing a two-stage filtering architecture.

The structure of the paper is as follows.We begin with the
specifications of the statistical model for the localization and
tracking problem in Section 2. Section 3 proposes the dis-
tributed augmented filter with consensus. Section 4 presents
numerical examples on small sized networks and validates the
proposed framework. Section 5 discusses and concludes the
paper.

2. Preliminaries

Consider one wireless sensor network consisting of a set of
𝑁 sensors. Assume that the sensor network is an undirected
graph and the communication range of the sensors deter-
mines the topology of the network. As illustrated in Figure 1,
we denote the communication range and sensing range of
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Figure 1: A typical SLAT scenario.

the sensors as 𝑟
𝑐
and 𝑟

𝑠
, respectively. For LSR, ratio 𝑟

𝑠
/𝑟
𝑐

is sufficiently smaller than 0.5 [8]. Notation 𝑑𝑖
𝑘
denotes the

measured distance between a sensor 𝑖 and the target at the
time step 𝑘. If 𝑑𝑖

𝑘
< 𝑟
𝑠
, the sensor is active; otherwise, it is in

a passive status.
We denote the state vector of a target as 𝑥𝑡

𝑘
= [𝑙
𝑡

𝑥,𝑘
, 𝑙
𝑡

𝑦,𝑘
,

V𝑡
𝑥,𝑘
, V𝑡
𝑦,𝑘
]
𝑇

∈ R4×1, where superscript 𝑡 implies that 𝑙𝑡
𝑥,𝑘

or 𝑙𝑡
𝑦,𝑘

describes a target state and subscript 𝑘 indicates the
time step. Under the distributed estimation architecture, we
give a more explicit definition of the target state as 𝑥𝑡,𝑖

𝑘
=

[𝑙
𝑡,𝑖

𝑥,𝑘
, 𝑙
𝑡,𝑖

𝑦,𝑘
, V𝑡,𝑖
𝑥,𝑘
, V𝑡,𝑖
𝑦,𝑘
]
𝑇

∈ R4×1 with respect to sensor 𝑖. Specif-
ically, for a moving target on a 2D plane, (𝑙𝑡,𝑖

𝑥,𝑘
, 𝑙
𝑡,𝑖

𝑦,𝑘
) denote

the target position and (V𝑡,𝑖
𝑥,𝑘
, V𝑡,𝑖
𝑦,𝑘
) denote the target velocities

along 𝑥-axis and 𝑦-axis, respectively. In ideal conditions,
when the distributed system achieves convergence for a long
time, we could get the relationship as

𝑥
𝑡,1

∞
= 𝑥
𝑡,2

∞
= ⋅ ⋅ ⋅ = 𝑥

𝑡,𝑖

∞
= ⋅ ⋅ ⋅ = 𝑥

𝑡

∞
. (1)

We use a linear Gaussian model to formulate the target
state transition:

𝑥
𝑡,𝑖

𝑘
= 𝜙
𝑡

𝑘−1
𝑥
𝑡,𝑖

𝑘−1
+ 𝐺
𝑡

𝑘−1
𝑤
𝑡,𝑖

𝑘−1
, (2)

where 𝑤𝑡,𝑖
𝑘−1

∈ R4×1 is zero-mean Gaussian additive noise
with variance𝑄𝑡,𝑖

𝑘−1
∈ R4×4, 𝜙𝑡

𝑘−1
∈ R4×4 is the state transition

matrix, and 𝐺𝑡
𝑘−1

∈ R4×4 is the noise distribution matrix.
In practice, every sensor maintains an individual state for
the target. These states are then fused to achieve a consensus
subject to certain optimizing rules.

We denote the coordinate of sensor 𝑖 as 𝑥𝑠,𝑖
𝑘
= [𝑙
𝑠,𝑖

𝑥,𝑘
, 𝑙
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𝑦,𝑘
]
𝑇

∈

R2×1, where superscript 𝑠 means that 𝑙𝑠,𝑖
𝑥,𝑘

or 𝑙𝑠,𝑖
𝑦,𝑘

denotes
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a sensor state. As the sensors are randomly deployed, self-
localization is required for each sensor. In this context, the
state transition for sensor 𝑖 is formulated using a static model:

𝑥
𝑠,𝑖

𝑘
= 𝑥
𝑠,𝑖

𝑘−1
+ 𝑤
𝑠,𝑖

𝑘−1
, (3)

where 𝑤𝑠,𝑖
𝑘−1

∈ R2×1 is zero-mean white Gaussian noise with
covariance matrix𝑄𝑠,𝑖

𝑘−1
∈ R2×2, which is used to describe the

uncertainty of sensor localization.

3. Augmented Filtering Based on Information
Weighted Consensus Fusion

This section proposes an augmented filtering framework
based on information weighted consensus fusion, for the
purpose of target tracking and sensor localization. We first
introduce the augmented transition and measurement mod-
els and then describe how to exploit augmented filtering
to update the coupling information of the target state and
sensor localization of each node. We establish the framework
by developing an information weighted consensus filtering
scheme which exploits online consensus fusion of local
neighboring information to refine the target states. As an
integrated framework, each augmented filter is specific to
a separate sensor subsystem and gets feedback from the
local information weighted consensus filter. Such structure
enables the elimination of coupling errors for localization and
tracking and thus improves the system accuracy.

3.1. Augmented Models. In this subsection, we introduce the
basic augmented model used in our framework. Specifically,
the distance between a target state described in (2) and the
sensor location of 𝑖 described in (3) is given as follows:

𝑑
𝑖

𝑘
= √(𝑙

𝑡,𝑖

𝑥,𝑘
− 𝑙
𝑠,𝑖

𝑥,𝑘
)
2

+ (𝑙
𝑡,𝑖

𝑦,𝑘
− 𝑙
𝑠,𝑖

𝑦,𝑘
)

2

. (4)

For a sensor networkwith LSR, sensor 𝑖 can sense a target only
if it falls within its sensing range at time step 𝑘, that is, 𝑑𝑖

𝑘
≤ 𝑟
𝑠
.

The group of these sensors 𝑉
𝑎
= {𝑖 | 𝑖 ∈ 𝑉 and 𝑑𝑖

𝑘
≤ 𝑟
𝑠
} is

referred to as the active nodes subset. The remaining sensors
form the passive sensor subset𝑉

𝑝
, which does not obtain any

meaningful measurement of the target because it is beyond
their sensing ranges.

We can integrate the position information of a target and
a sensor into one augmented vector 𝑥𝑖

𝑘
= [(𝑥
𝑡,𝑖

𝑘
)
𝑇

, (𝑥
𝑠,𝑖

𝑘
)
𝑇

]
𝑇

∈

R6×1. Similarly, we define the following parameters of an
augmented system, 𝜙

𝑘−1
= diag{𝜙𝑡

𝑘−1
, 𝐼
2×2
}, 𝑤𝑖
𝑘−1
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𝑡,𝑖
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)
𝑇,

(𝑤
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)
𝑇

]
𝑇, 𝑄𝑖
𝑘−1

= [(𝑄
𝑡,𝑖

𝑘−1
)
𝑇

, (𝑄
𝑠,𝑖

𝑘−1
)
𝑇

]
𝑇, and 𝐺

𝑘−1
=

diag{𝐺𝑡
𝑘−1
, 𝐼
2×2
}. Then the augmented state transition is for-

mulated as follows:

𝑥
𝑖

𝑘
= 𝜙
𝑘−1
𝑥
𝑖

𝑘−1
+ 𝐺
𝑘−1
𝑤
𝑖

𝑘−1
. (5)

We assume the measurement model as a linear Gaussian
model over a set of range measurements under measurement
noise.Therefore, the measured receiving power by sensor 𝑖 at
time stamp 𝑘, 𝑧𝑖

𝑘
, can be denoted as follows:

𝑧
𝑖

𝑘
= 𝑇
𝑝
− 10𝜂 log

10
(𝑑
𝑖

𝑘
) + V𝑖
𝑘
, (6)

where 𝑇
𝑝
and 𝜂 denote the transmission power and the path

loss exponent, respectively. They are determined subject to
the radio environment and the antenna characteristics [11].
V𝑖
𝑘
is the measurement noise with covariance 𝑅𝑖.
Following the relations in (4)–(6), we obtain

ℎ (𝑥
𝑖

𝑘
) = 𝑇
𝑝
− 10𝜂 log

10

√(𝑙
𝑡,𝑖

𝑥,𝑘
− 𝑙
𝑠,𝑖

𝑥,𝑘
)
2

+ (𝑙
𝑡,𝑖

𝑦,𝑘
− 𝑙
𝑠,𝑖

𝑦,𝑘
)

2

. (7)

Based on (7), measurement (6) is converted to

𝑧
𝑖

𝑘
= ℎ (𝑥

𝑖

𝑘
) + V𝑖
𝑘
. (8)

The aim of our study is to develop a distributed consensus
estimator for the system characterized by (5) and (8), which
are introduced in the following subsections.

3.2. PreliminaryAugmented Filtering. In order to estimate the
states of a sensor and the target in a fully decentralized man-
ner, an extendedKalman filter based estimator for augmented
state (EKFAug) is applied. This procedure is referred to as
augmented filtering where the estimator receives feedback
from the information weighted consensus filter.

In this scenario, we assume that the one-step estimate
of the augmented state 𝑥𝑖

𝑘−1
and the error covariance 𝑃̂𝑖

𝑘−1

is updated with information weighted consensus filtering for
sensor 𝑖 at time step 𝑘 − 1. We adopt a linear approximation
of observation model (8) for sensor 𝑖, which uses Taylor
expansion on the argument of the predicted mean 𝑥

𝑖

𝑘−1
as

follows:
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𝑖
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𝑖

𝑘
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where
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]
]
]
]
]
]
]
]
]
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]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

.

(10)

A single forward operation of the EKFAug on sensor 𝑖 at
the current time step is as follows.
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Step 1. Prediction is as follows:

𝑥
𝑖

𝑘
= 𝜙
𝑘
𝑥
𝑘−1
, (11)

𝑃
𝑖

𝑘
= 𝜙
𝑘
𝑃̂
𝑖

𝑘−1
𝜙
𝑘

𝑇

+ 𝐺
𝑘
𝑄
𝑖

𝑘−1
𝐺
𝑘

𝑇

. (12)

Step 2. Estimation is as follows:

𝐾
𝑖

𝑘
= 𝑃
𝑖

𝑘
𝐻
𝑇

(𝐻𝑃
𝑖

𝑘
𝐻
𝑇

+ 𝑅
𝑖

𝑘
)

−1

, (13)

𝑥
𝑖

𝑘
= 𝑥
𝑖

𝑘
+ 𝐾
𝑖

𝑘
(𝑧
𝑖

𝑘
− ℎ (𝑥

𝑖

𝑘
)) , (14)

𝑃̂
𝑖

𝑘
= 𝑃
𝑖

𝑘
− 𝐾
𝑖

𝑘
𝐻𝑃
𝑖

𝑘
, (15)

where 𝐻𝑖
𝑘
is the Jacobian transformation of function ℎ(𝑥𝑖

𝑘
),

which calculates the derivative for each variable of the pre-
dicted nonlinear observation of the augmented state.𝑃𝑖

𝑘
is the

predicted covariance of the filter and 𝑅𝑖
𝑘
is the measurement

noise. For the active and passive scenarios, it is formulated
separately as follows:

𝐻
𝑖

𝑘
=

{{

{{

{

𝜕ℎ

𝜕𝑥
𝑖

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝑖

𝑘

𝑖 ∈ 𝑉
𝑎

0 𝑖 ∈ 𝑉
𝑝
.

(16)

3.3. Fusion Based Refinement. The EKFAug discussed in the
previous subsection is specific to one individual sensor. The
estimate of an augmented state based on (14) and (15) is only
concerned with the individual sensor and does not explore
information exchange between neighboring sensors. In order
to characterize local neighboring information, we fuse their
estimates by developing a distributed information filter with
weighted consensus fusion and feed such information to
the previous extended Kalman estimator. We refer to the
overall framework as EKFAug-ICF,which stands for extended
Kalman filter based estimator for augmented state with
information weighted consensus fusion.

Given the condition that the sensor state prediction 𝑥𝑠,𝑖
𝑘
is

available from the EKFAug, Taylor expansion of (8) is used to
approximate observation of sensor 𝑖. Based on state 𝑥𝑡,𝑖

𝑘
of the

information weighted consensus filter, we have
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𝑡,𝑖

𝑦,𝑘−1
)

[(𝑙
𝑡,𝑖

𝑥,𝑘−1
− 𝑙̂
𝑠,𝑖

𝑥,𝑘
)

2

+ (𝑙
𝑡,𝑖

𝑦,𝑘−1
− 𝑙̂
𝑠,𝑖

𝑦,𝑘
)

2

]

0

0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

.

(18)

Note that observationmodel (17) is different from (9) in terms
of augmented filtering. In (17) only the target states are used
to approximate ℎ(⋅); in (9), both the target states and sensor
locations are used.

Let 𝑁
𝑖
denote the set of neighboring sensors of sensor 𝑖.

Each sensor in 𝑁
𝑖
has a direct communication channel to

sensor 𝑖. Neighboring sensors can communicate with each
other either directly or through the central node in such a
way that information is allowed to be passed between them.
In the SLAT scenario, messages can be exchanged between a
sensor 𝑖 and all of its neighbors in 𝑁

𝑖
. Given 𝑥𝑡,𝑖

𝑘
and 𝑃𝑡,𝑖

𝑘
of

sensor 𝑖, the consensus fusion is conducted as follows.

Step 1. Prepare data for fusion:

𝑏
𝑡,𝑖

0,𝑘
=
1

𝑁
𝑃
𝑡,𝑖

𝑘
𝑥
𝑡,𝑖

𝑘
+ (𝐻
𝑡,𝑖

𝑘
)
𝑇

(𝑅
𝑖

𝑘
)
−1

(𝑧
𝑖

𝑘
− 𝑦
𝑡,𝑖

𝑘
) ,

𝐵
𝑡,𝑖

0,𝑘
=
1

𝑁
𝑃
𝑡,𝑖

𝑘
+ (𝐻
𝑡,𝑖

𝑘
)
𝑇

(𝑅
𝑖

𝑘
)
−1

𝐻
𝑡,𝑖

𝑘
,

(19)

where 𝐻
𝑡,𝑖

𝑘
= (𝜕ℎ/𝜕𝑥

𝑡,𝑖

𝑘
)|
𝑥
𝑡,𝑖

𝑘

and 𝑦
𝑡,𝑖

𝑘
= ℎ(𝑥

𝑡,𝑖

𝑘
, 𝑘) −

(𝜕ℎ/𝜕𝑥
𝑡,𝑖

𝑘
)|
𝑥
𝑡,𝑖

𝑘

𝑥
𝑡,𝑖

𝑘
.

Step 2. Perform information weighted consensus fusion on
𝑏
𝑡,𝑖

0,𝑘
and 𝐵𝑡,𝑖

0,𝑘
separately. At every iteration 𝑚, each sensor 𝑖

broadcasts 𝑏𝑡,𝑖
𝑚−1,𝑘

and 𝐵𝑡,𝑖
𝑚−1,𝑘

to all its neighbors 𝑗 ∈ 𝑁
𝑖
and

receives 𝑏𝑡,𝑗
𝑚−1,𝑘

and 𝐵𝑡,𝑗
𝑚−1,𝑘

from them. These are used to fuse
and generate the information vectors and matrices of the
current step:

𝑏
𝑡,𝑖

𝑚,𝑘
= 𝑏
𝑡,𝑖

𝑚−1,𝑘
+ 𝜀∑

𝑗∈𝑁𝑖

(𝑏
𝑡,𝑗

𝑚−1,𝑘
− 𝑏
𝑡,𝑖

𝑚−1,𝑘
) ,

𝐵
𝑡,𝑖

𝑚,𝑘
= 𝐵
𝑡,𝑖

𝑚−1,𝑘
+ 𝜀∑

𝑗∈𝑁𝑖

(𝐵
𝑡,𝑗

𝑚−1,𝑘
− 𝐵
𝑡,𝑖

𝑚−1,𝑘
) .

(20)

For all passive sensors, that is, for all 𝑗 ∈ 𝑉
𝑝
, 𝐻𝑡,𝑗
𝑘

= 0,
because no such information can be obtained. Therefore,
their information vector and matrix are defined as zero, that
is, for all 𝑗 ∈ 𝑉

𝑝
, 𝑢
𝑡,𝑗

𝑘
= 0 and 𝑈

𝑡,𝑗

𝑘
= 0. In contrast to

the all-to-all communication strategies such as the Bayesian
filtering framework [5], our broadcasting procedure just
exchanges neighboring information with a small amount of
communication workloads and thus suffers comparatively
lower computational overheads.

Step 3. After𝑀 iterations, compute state estimate and infor-
mation matrix:

𝑥
𝑡,𝑖

𝑘
= (𝐵
𝑡,𝑖

𝑀,𝑘
)
−1

𝑏
𝑡,𝑖

𝑀,𝑘
, (21)

𝑃̂
𝑡,𝑖

𝑘
= (𝑁𝐵

𝑡,𝑖

𝑀,𝑘
)
−1

. (22)

Here a combined estimate 𝑥𝑡,𝑖
𝑘
with covariance 𝑃̂𝑡,𝑖

𝑘
is derived

for uncorrelated estimation errors. We then feed the target
state 𝑥𝑡,𝑖

𝑘
in (21) and 𝑃̂𝑡,𝑖

𝑘
in (22) as 𝑥𝑖

𝑘
= [(𝑥
𝑡,𝑖

𝑘
)
𝑇

, (𝑥
𝑠,𝑖

𝑘
)
𝑇

]
𝑇 and

error covariance 𝑃̂𝑖
𝑘
= diag{𝑃̂𝑡,𝑖

𝑘
, 𝑃̂
𝑠,𝑖

𝑘
} back to the augmented

filter described in Section 3.2.
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Input: 𝑥𝑖
0
, 𝑃̂𝑖
0

Output: 𝑥𝑡,𝑖
𝑘
, 𝑥𝑠,𝑖
𝑘

for 𝑘 = 1, 2, . . ., do
for 𝑖 = 1, 2, . . ., do

while sensor is activated do
Generate measurement according to (8);
Modify sensor localization with target tracking in augmented filter according to (11)–(16);
Compute initial information matrix and vector according to (19);
Perform average consensus;
for 𝑘 = 1, 2, . . . ,𝑀 do
(a) Send 𝑏𝑡,𝑖

0,𝑘
and 𝑏𝑡,𝑖
0,𝑘

to all neighbors 𝑗 ∈ 𝑁
𝑖
;

(b) Receive 𝑏𝑡,𝑖
0,𝑘

and 𝑏𝑡,𝑖
0,𝑘

from all neighbors 𝑗 ∈ 𝑁
𝑖
;

(c) Update these values according to (20);
Compute fused target-state 𝑥𝑡,𝑖

𝑘
and 𝑃̂𝑡,𝑖

𝑘
according to (21)-(22);

Update 𝑥𝑖
𝑘
, 𝑃̂𝑖
𝑘
with fused target-state 𝑥𝑡,𝑖

𝑘
and 𝑃̂𝑡,𝑖

𝑘
.

return 𝑥
𝑡,𝑖

𝑘
, 𝑥𝑠,𝑖
𝑘

Algorithm 1: Augmented filtering based on information weighted consensus fusion.

Our framework is suitable for the practical applications
which are limited by LSR conditions.The feedback scheme in
(21) and (22) enables our framework to have the advantages
of fault tolerance and scalability, which are validated in the
experimental evaluation.

3.4. Framework Structure and Algorithm. Sections 3.2 and
3.3 have presented the two main filtering procedures of the
proposed distributed estimation framework of each sensor.
The overall diagram of our proposed framework is illustrated
in Figure 2. Estimate 𝑥𝑖

𝑘
and covariance 𝑃𝑖

𝑘
denoted in (11)

and (12), respectively, are obtained from the augmented filters
and fed to the informationweighted consensus filters; outputs
𝑥
𝑡,𝑖

𝑘
, 𝑃̂
𝑡,𝑖

𝑘
of the weighted consensus filters denoted in (21) and

(22) are fed back to the augmented filters as inputs. This
closed-loop procedure addresses the coupling problem that
normally exists in distributed SLAT and is able to correct
the accumulated cross-correlated errors of sensor localization
and target tracking.

The pseudo code of the proposed two-stage SLAT algo-
rithm is summarized in Algorithm 1.

4. Simulation

In this section, we evaluate the performance of the proposed
EKFAug-ICF algorithm using simulation experiments and
compare it with the centralized matrix weighted fusion
approach [12, 13], denoted as EKFAug-MWF. We simulate
a wireless sensor network comprising a moving target and
a total of 𝑁 = 9 sensors in Matlab, which are uniformly
deployed with their locations kept unchanged in the exper-
iments. Each of them has a set of wireless transceiver.

We commence by demonstrating how to solve the sensor
self-localisation and target tracking problemusing our frame-
work. Dynamical model (2) is used to compute the target
state. The process covariance is set to diag{10, 10, 1, 1}. Initial
prior state 𝑥𝑡,𝑖

0
and prior covariance 𝑃̂𝑡,𝑖

0
are set by using the

same method for each sensor. For example, 𝑃̂𝑡,𝑖
0

is given by

Sensor 1 EKFAug 1 ICF 1

Sensor i EKFAug i ICF i

Sensor N EKFAug N ICF N

Sensor j EKFAug j ICF j

· · ·

· · ·

· · ·

· · ·

...
...

...

...
...

...

...
...

...

xik, P
i

k x̂t,i
k
, P̂

t,i

k

Figure 2: Structure of the augmented filtering framework. In the
figure, EKFAug denotes the extended Kalman filter based estimator
for augmented state 𝑛, 𝑛 = 1, . . . , 𝑖, . . . , 𝑗, . . . , 𝑁, 𝑁 is the total
number of sensors, ICF denotes the information weighted filter 𝑛,
𝑥
𝑖

𝑘
,𝑃𝑖
𝑘
denote the predicted state and covariance of augmented filters

(11)-(12), and 𝑥𝑡,𝑖
𝑘
, 𝑃̂𝑡,𝑖
𝑘

denote estimated state and covariance (21)-
(22).

a diagonal matrix diag{100, 100, 10, 10}, and 𝑥𝑡,𝑖
0
is generated

by adding zero-mean Gaussian noise with covariance 𝑃̂𝑡,𝑖
0

to
the ground truth state. State transition matrix 𝜙 is

𝜙 =

[
[
[
[
[

[

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

]
]
]
]
]

]

. (23)

For each sensor, the ranging field is considered to be a
circle with a radius of 200 units. A sensor can detect a target
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Figure 3: Results of the distributed SLAT tracking experiment.

only if the ground truth position of the target is within its
range field. In this case, a measurement is generated using
nonlinear observation model (8) with noise covariance 𝑅

𝑖
=

10𝐼
2
, where 𝑇

𝑝
= 100 and 𝜂 = 2.5 [2]. We assume that the

sensors are connected using a peer-to-peer topology and the
consensus iteration number is set as 𝑀 = 3 [14], that is,
𝐶
1
↔ 𝐶
2
↔ 𝐶
3
↔ 𝐶
4
↔ 𝐶
5
↔ 𝐶
6
↔ 𝐶
7
↔ 𝐶
8
↔ 𝐶
9
.

An example of the tracking simulation experiment is
demonstrated in Figure 3. The experiment results show that
EKFAug-ICF performs better than EKFAug-MWF. This is
because the estimation fusion with distributed consensus
often achieves better error tolerance and robustness than that
of the traditional state fusion approach.

We further investigate the performance of the two
approaches through 200 independent trials. The simulation
environment is the same with Figure 3. The root mean
squared error (RMSE) of 𝑥𝑡

𝑘
for the two approaches is shown

in Figure 4. The RMSE at time 𝑘 is computed in terms of
√∑
𝑖∈𝑉

∑
200

𝑛
‖𝑥
𝑡

𝑘
− 𝑥
𝑡,𝑖

𝑘,𝑛
‖2, where 𝑥𝑡,𝑖

𝑘,𝑛
denotes the estimated

target state at time step 𝑘 obtained from the 𝑛th run.
We observe that in EKFAug-MWF case the RMSE keeps
increasing as step increases, and the EKFAug-ICF achieves
convergence with better performance.

As target tracking updates online, the positions of sensors,
which are prelocalized coarsely beforehand, are modified
simultaneously. The ground truth and the estimated sensor
locations of EKFAug-ICF and EKFAug-MWF are illustrated
in Figure 5, which shows that the precision of sensor localiza-
tion with EKFAug-ICF is greater than that of EKFAug-MWF.

Figure 6 shows the estimated errors sensor positions
using the two approaches, where EKFAug-ICF provides
almost identical position estimations to the ground truth.
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Figure 4: The average error of target estimation.
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Figure 5: The ground truth and estimated sensor positions.

Both EKFAug algorithms work well in SLAT and ICF per-
forms better. It can be seen that the proposed algorithm is able
to accurately locate sensors within a wireless sensor network.

5. Discussion and Conclusion

EKFAug-ICF and EKFAug-MWF are two types of estimation
methods for SLAT, where the first one is in a distributed
manner while the second one is in a centralized manner.
Theoretically, these two methods should have similar perfor-
mance in terms of computational complexity and executing
time. EKFAug-ICFmay, however, encounter more difficulties
in practice, especially when there exists time delay or packet
loss in the communications among sensors. The proposed
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Figure 6: The average error of sensor position estimation.

system is mainly targeting a typical indoor environment,
where the settings are similar to those from [2] and the
network setup is the samewith [14].The effect of 𝜂 in different
scenarios, such as outdoor, will be considered in the future
research.

This paper proposes a filtering architecture based on
extended Kalman filtering for characterizing the correlation
of target tracking and sensor localization with augmented
states. Specifically, we have described how to refine aug-
mented filtering through the fusing information obtained
from neighboring sensors based on the weighted informa-
tion consensus filtering strategy. Our new scheme not only
improves the performance of estimation through the fusion
and feedback strategy but also reduces the computational
overheads in sensor communication via the neighborhood
confinement. The experiment results have shown that our
novel framework exhibits robustness in the LSR situations.
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