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A Framework of Loose Travelling Companion
Discovery from Human Trajectories

Elahe Naserian, Member, IEEE , Xinheng Wang, Senior Member, IEEE , Xiaolong Xu, Member, IEEE ,
and Yuning Dong, Member, IEEE

Abstract—Through the availability of location-acquisition devices, huge volumes of spatio-temporal data recording the movement of
people is provided. Discovery of the group of people who travel together can provide valuable knowledge to a variety of critical
applications. Existing studies on this topic mainly focus on the movement of vehicles or animals with forcing the group members to stay
always connected. However, the movement of people is different; people might belong to the same main group while they contribute in
various sub-groups during their movement. In this paper, we propose a group pattern called loose travelling companion pattern (LTCP),
which allows the members of a group to contribute to various sub-groups as long as the community of members does not change
during the movement and all of the members stay connected for a few time-slots. In addition, we propose weakly continuous loose
travelling companion pattern (WCLTCP) to relax the continuous time constraint in LTCP. Finally, three algorithms have been developed
to discover the proposed group patterns: (i) straightforward approach, (ii) smart-and-fast method, (iii) and opportunistic algorithm.
Through the extensive experimental evaluation on both real and experimental datasets, the efficiency and effectiveness of the
proposed group discovery approaches are proven.

Index Terms—movement trajectory, group pattern discovery, spatio-temporal data mining

F

1 INTRODUCTION

W ITH the development of location-acquisition devices
and tracking technologies, an enormous amount of

streaming trajectory data recording the movement of people
is available. Such data enables us to discover valuable
knowledge about movement behavior of people. One of
the interesting directions in this field is the discovery of
group of people who move together because the people’s
group affiliations and their behaviors are highly correlated.
For instance, by knowing the group(s) a person belongs
to, retailers can derive common buying interests, develop
group-specific pricing models, and provide personalized
services.

Several studies have been proposed in the literature to
discover the group patterns of moving objects [1], [2], [3],
[4], such as flocks [5], [6], convoys [7], [8], swarms [9],
gathering [10], [11], and Traveling Companion [12], [13]. The
common thing among these patterns is that they all require
the group to contain the same set of individuals during its
lifetime. There exists another definition of group patterns,
which doesn’t need to put a strict requirement on members
staying connected during the group’s lifetime, like Moving
Clusters [14], [15], [16], Evolving Convoy [17], or Loose
Group Movement Pattern [18]. These group discovery meth-
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ods are mainly focused on the movement of vehicles or ani-
mals with the aim of finding the general trends. For instance,
convoy discovery (or traveling companion) can be applied
for throughput planning of trucks or carpooling of vehicles;
the discovery of common routes among commuters may be
used for scheduling of collective transport; and the moving
cluster discovery (or Loose Group Movement Pattern) can
be used for animal studies or traffic analysis, i.e., the discov-
ery of the pathways of species migration or the identification
of traffic in busy areas.

Different from previous research work, we concentrate
on human movement trajectories, particularly in the indoor
environment. The goal is to discover groups of people
to improve the provided services to them. However, the
movement of people is rather different from the movement
of animals or vehicles. People might belong to one group,
although they have different movement paths (unlike the
convoy or traveling companion). Various sub-groups may
be also formed during their lifetime. Fig.1 represents an
example of group movement of passengers waiting at the
airport before their departure (according to the observation
of movement data of passengers at Guangzhou Baiyun
International Airport). As it is shown in the figure, while
these passengers belong to the same main group, they also
contribute in different sub-groups. There are plenty of other
examples that correspond to this kind of movement pattern,
such as a group of tourists visiting a museum, or a group of
friends browsing in a shopping mall.

Discovering this kind of group relationships (sub-groups
in addition to the main group) brings the following advan-
tages: firstly, the discovery of sub-groups provides more
detailed information of the users for the authorities. Tak-
ing the airport as an example, with having access to the
profile information of the passengers (which is available
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to the airport authority), the type of the groups can be
identified. The group in Fig.1 could be a group of friends,
as the main group, which is composed of a family and
a couple, as the sub-groups. Through this classification,
airport authority can provide more accurate personalized
services. For example, the services that can be recommended
to a friends group comprised of a family might be different
if we only take the friends group into account. Secondly,
letting the members contribute in different sub-groups leads
to the discovery of complete and long-term groups. In the
previous example, one group including the main group as
well as the sub-groups will be discovered which covers
the whole movement, rather than the discovery of multiple
fragmented and partial groups.

However, designing a system capable of discovering
such group patterns has the following challenges:

• Non-strict continuity: Groups are composed of peo-
ple who travel together, but not necessarily always
together. It’s much clearer in the case of large groups,
which contain the sub-groups with independent
movements. Many state-of-the-art group discovery
methods, retrieving the groups whose members are
always connected, ignore the existence of sub-groups
[7], [8], [9].

• High Precision: In some applications, like providing
the personalized services, the wrong group discovery
has a worse effect than not discovering the group.
Contrary to the state-of-the-art methods which are
focusing on discovering more groups, our focus is
on the discovery of the correct groups.

• Incremental discovery: The groups need to be dis-
covered as soon as possible in order to provide the
real-time services. Therefore, the groups should be
reported in an incremental manner such that the dis-
covery algorithm has to output the results while pro-
cessing the trajectory data stream, simultaneously.

• Efficiency: As trajectories are generated in a format of
the data stream, we are dealing with huge amounts
of data arriving in a short period of time. Hence,
the discovery algorithm should be able to output the
groups in an efficient manner.

• Effectiveness: As the number of the groups can be
quite large, the group discovery model should be
able to output the complete and long-term groups
rather than partial and short-term ones in an effective
manner.

In this paper, we propose the notion of Loose Travelling
Companion Pattern (LTCP) framework, which is a sequence
of cluster-sets, such that the cluster-sets contain the same
objects and all of the members have to stay in the same
cluster in the predefined number of time-slots. Accordingly,
we propose three algorithms to identify LTCPs in a spatio-
temporal dataset. The first algorithm is a straightforward
method which directly follows the problem definition. The
second algorithm speeds up the process of candidate ex-
tension through a smart and fast strategy. Finally, an op-
portunistic approach is proposed for improving the new
candidate creation process. We also extend the proposed
methods to adapt to some complicated scenarios. In case
of lots of objects in a limited space, i.e., airport, there exist
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Fig. 1. A group of passengers at airport

some moments that the objects in a group may temporarily
stay in the same cluster with other groups. Taking this into
account, we propose a Weakly Continuous Loose Travelling
Companion Pattern (WCLTCP) which relaxes the consecu-
tive time constraint in the LTCP.

This paper substantially extends the conference version
[19] in the following ways: (1) proposing a smart and fast
approach to avoid the redundant checks and accelerate
the candidate extension in each time-slot; 2) identifying
the bottleneck of the problem and proposing an efficient
approach to create the new candidates from the current
clusters; 3) expanding experimental studies on performance
of the proposed methods, and also evaluating the quality of
the discovered groups.

The remainder of this paper is organized as follows. The
related work is discussed in Section II. The proposed model
is introduced in Section III. In Section IV, the algorithms for
discovering LTCP patterns are presented in detail. Section V
provides the definition of WCLTCP. The experimental study
is presented in Section VI, and Section VII concludes this
paper.

2 RELATED WORKS

The problem of pattern discovery from the spatio-temporal
trajectories has been variously formulated in the literature.
As surveyed in [20] there are four major categories of
patterns that can be identified from the trajectories. The
first one is the Trajectory Clustering, which aims to discover
a representative path by grouping the similar trajectories
into clusters [21], [22], [23], [24]. The second one is the
Frequent Sequential Pattern Mining, which tries to discover
the common sequence of locations in a similar time interval
[25], [26], [27], [28]. Periodic pattern mining is the third
category which is based on the periodic nature of activity
patterns [29], [30], [31], [32]. The fourth category, which is
the focus of our paper, aims to discover the group of objects
which move together, Group pattern mining. We distinguish
related work in this area based on whether the membership
is constant during the lifetime of the group or not.

Flock pattern is one of the earliest work proposed in this
area [5]. In this pattern, the group members move together
within a constant circular region for k consecutive time-
slots. Even though several variants of this model have been
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proposed in the literature [6], [33], [34], they all have the
limitation of moving inside a circle with a predefined radius.
In [7], Jeung stepped forward and proposed a framework of
convoy pattern which allows a pattern of any shape and
extent. A convoy is defined as a group of objects which
are connected to each other for at least k consecutive time
intervals. The traveling companion proposed by Tang [12]
is essentially consistent with the convoy pattern, and the
main contribution of this work is to accelerate the pattern
discovery algorithm. While all of these patterns have some
strict requirements on the consecutive time period, a more
general pattern is proposed by Li et al [9] as Swarm. In this
pattern, objects should stay close together for at least k time
intervals, which could be non-consecutive. The definition of
the group pattern in [35] is a mixture of the flock and swarm
patterns. Group patterns are the moving objects that travel
within a fixed radius for at least k time intervals, which
could be non-consecutive. Even though the relaxation issue
has been addressed, same as swarm, size and shape of the
group has been restricted to a predefined radius, same as
the flock. This group pattern also results in the redundant
group discovery which makes the algorithm exponentially
inefficient. A similar idea is used in finding the loose com-
panion [13], which relaxes the continuous requirement in
[12] through letting the members not to be connected for a
predefined time intervals.

The major difference of the mentioned work is about the
discovery algorithm. Most of them are designed to work on
the static datasets and are not able to output the results in an
incremental manner. The convoy algorithm is one of them,
which needs to load the whole trajectory data into memory.
The discovery algorithm of the swarm patterns also needs
to load the whole dataset into memory. Accordingly, these
approaches are not applicable in a data streaming envi-
ronment. Travelling companion, on the other hand, applies
an incremental manner which is suitable for the streaming
data, similar to our approach. Despite the slight differences,
all the mentioned patterns have the same requirement that
members need to stay connected for the whole lifetime of
the group (consecutive or non-consecutive). In our proposed
pattern, however, members are able to be disconnected from
the group and have their own movement. Therefore, the
above mentioned methods are not applicable to model our
proposed group pattern. A new group pattern is required
to describe this kind of group movement, which is quite
common nowadays in large indoor commercial and service
environments.

Following illustrative examples are used to demonstrate
the limitations of previously proposed group patterns.

Example 1: Fig. 2 shows a group pattern with nine
objects {O1, O2, O3, O4, O5, O6, O7, O8, O9}. The members
belong to the same main group while they follow different
paths and form various sub-groups ({O1, O2, O3, O4, O5},
{O6, O7}, and {O8, O9}). Considering the size require-
ment of 2 (mG = 2), and duration threshold of 5 time-
slots (dG = 5), the following convoys can be discovered:
{O1, O2, O3, O4, O5}, {O6, O7}, and {O8, O9}. As it is ev-
ident, the patterns discovered by the convoy method are
the sub-groups not the main group. We call this problem
partial discovery. The reason is, in a convoy group pattern,
members need to stay connected in one cluster during the
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Fig. 2. Example of group movement
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Fig. 3. Example of random movement

whole group’s lifetime, which makes it unable to apply for
LTCP group. Swarm and loose companion follow the same
approach. The only difference is relaxing the continuous
requirement.

In another line of study, members are allowed to leave
the group and new members to join the group during
the lifetime of a group [14], [17], [18]. Kalnis proposed
the notion of a moving cluster [14], which is a sequence
of spatial clusters appearing during consecutive time-slots,
such that the portion of common objects in any two con-
secutive clusters is not below a given threshold parameter
θ. Let ct and ct+1 be clusters at times t and t + 1, respec-
tively. These clusters belong to the same moving cluster
if |ct ∩ ct+1|/ |ct ∪ ct+1| ≥ θ, where θ is a user-specified
threshold value between 0 and 1. It should be noted that a
moving cluster pattern is strongly affected by the value of θ.

Example 2: In Fig. 2, if we set θ = 0.9 (i.e., requiring
90% overlapping clusters), the overlap between c1 and
the clusters in time-slot 2 (c2, c3, and c4) is up to 55%
(between c1 and c2) and no pattern will be discovered as
a moving cluster. On the other hand, if we set θ = 0.2,
the group {O1, O2, O3, O4, O5, O6, O7, O8, O9} will be dis-



4

covered three times with different cluster sequences which
leads to the redundant discovery.

Example 3: Fig. 3 shows the random movement of 7
objects between time-slots 1 to 5. If we set θ = 0.5, the wrong
group {O2, O3, O4, O5, O6, O7} with the cluster sequence
〈c2, c4, c8, c10〉 will be discovered as a moving cluster.

Even though in this movement pattern there is no strict
requirement for the members to be always connected, it
still suffers from the following problems: 1) Moving clus-
ter doesn’t necessarily maintain the same set of members
during the lifetime of the group. As each cluster should
share enough objects only with the consecutive cluster, the
members of the last cluster could be totally different from
the first cluster, example 3. 2) There is no certain θ value
that can be used to identify the accurate LTCP groups,
either the wrong groups may be discovered, example 3, or
the real LTCPs may remain undiscovered, example 2, or
the redundant groups might be discovered. 3) There is no
lifetime constraint for this group pattern. A moving cluster
can be formed as long as two consecutive clusters have
enough overlap, even for only two consecutive time-slots.

The definition of Evolving convoy [17] is similar to the
moving cluster, which relaxes the strictness of connecting
the members all the time together. A w − convoy is de-
fined as w continuous clusters which contains the persistent
members (those who are connected at w continuous times-
tamps) and dynamic members (those who are connected
with the persistent members for at least k time intervals).
A w − convoy, then, could be connected by the subsequent
w − convoy, if they have w − 1 same timestamps and have
certain common persistent members. It should be noted that
if we setw = 2, the evolving convoy and moving cluster will
be the same.

Weakly Consistent Group Movement Pattern (WCM)
[18] is another group movement definition which has the
most similarity to our work. According to this group def-
inition, each w continuous clusters should contain at least
mC persistent members (those who are connected at w
continuous timestamps), and also each member can leave
the whole for lC time intervals. Even though WCM doesn’t
retain the members to stay in one cluster during the group’s
lifetime, there is a significant difference between a WCM
and an LTCP pattern.

Example 4: Considering Fig. 2, if we set w = 2 (size of
window) with mC = 2 (number of persistent members),
and lC = 2 (number of time intervals that a member can
leave the group), the following WCMs can be discovered:
{O1, O2, O3, O4, O5}, {O6, O7}, and {O8, O9}. As it is clear
the main group (which contains all the objects) cannot be
discovered. The reason is the time period that members are
disconnected is 3 time-slots which is more than the defined
threshold, lC . On the other hand, if we set lC = 3, the main
group will be discovered, but for 3 times.

Example 5: If we consider the same setting as
above for Fig. 3, WCM results the wrong group
{O2, O3, O4, O5, O6, O7} from a random movement. This
group is discovered while the members have never been
gathered.

The following reasons make WCM unable to to discover
the exact LTCP results: 1) Even though it allows members
to be disconnected from the group, it restricts that through

TABLE 1
Table of Notations

Notation Definition

O Moving object
Tr Trajectory
t time-slot index
ODB Set of objects
c Cluster
c.f Frequency of a cluster
Ci Set of clusters at time-slot i, slot-cluster
CDB Set of slot-clusters at all time-slots
cs Subset of Ci, cluster-set
Si Set of all subsets of Ci, subset-collection
cs.t Timestamp of a cluster-set
P Pattern
P.OG, P.lifetime Member set and lifetime of P
P.TS Cluster-set sequence of P
mG, dG Size and duration threshold
fC Frequency threshold of gathering of all members
lC Gap threshold between cluster-sets

putting the limitation on the maximum time a member can
leave the group. It makes WCM unable to discover the
groups composed of sub-groups with independent move-
ments, example 4. 2) On the other hand, this condition might
lead to discovery of wrong groups whose members have
never been gathered, example 5. This problem gets worse
with increasing the allowed time-gap lC , specially with
larger groups. 3) It generates too many redundant groups.
The reason is each candidate can be extended to more than
one in each time-slot, even with the same members, which
leads to the high redundancy of the group discovery results,
example 4. More importantly, it substantially degrades the
performance of the algorithm, because of the high space
cost (and accordingly time cost), which gets worse with
increasing the allowed time-gap. The above reasons have
been proved in the experimental study.

Same as the second category (moving cluster and WCM),
LTCP also doesn’t need the members to stay together all
the time. However, unlike the moving cluster or evolving
convoy, the membership doesn’t change during the group’s
lifetime. On the other hand, there is no limit on the period
that members can leave the group, unlike the WCM, as long
as they don’t get mixed up with the other groups and also
stay together for a certain time-slots. Through this approach,
we are able to discover the sub-groups, which group mem-
bers contribute during their movement, in addition to the
main group. Finally, all of the previous works suffer from
the limitation of considering just one cluster at each time-
slot, which makes them impractical to model this kind of
group pattern (a full exemplary discovery process of LTCP
is outlined in Table 2). Here is a summary of the major
differences of the state-of-the-art approaches and LTCP:

• First category of patterns, Convoy, Swarm, and Loose
companion, put strict requirement on the groups to
be gathered all the time, which leads to the partial
group discovery of groups.

• There is no absolute θ value for Moving cluster
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pattern that can be used to compute the exact LTCP
results, either false hits may be found, or actual
LTCPs may remain undiscovered.

• In Moving Cluster and Evolving Convoy patterns,
the membership is changing during the group’s life-
time which leads to the wrong group discovery.

• In WCM, because of putting the limitation on the
period that a member can leave the group, the actual
LTCPs may remain undiscovered.

• In WCM, as there is no constraint on staying the
whole group gathered, false groups may be found.

In a summary, none of the above approaches are able to
discover the sub-groups that group members form during
their movement, which is because of considering the single
clusters at each time-slot.

3 PROBLEM DEFINITION

Definitions of all essential concepts used throughout the
paper will be presented in this section. The list of main
notations is outlined in Table 1.

ODB = {O1, O2, ..., On} is a set of moving objects. The
trajectory Tr of a moving object O is represented as a
series of points denoted as Tr = 〈p1, p2, ..., pn〉, where pi
includes the location and timestamp attributes. We assume
t ∈ {1, ..., T} as the time interval, which T may be equal
to a day or a time-slot, i.e., one minute, depending on the
requirement of applications. The set of objects with their
trajectories at time-slot t is called a slot-dataset at t.

Clustering method is considered as a pre-processing step
and it depends on the characteristics of the data. As trajec-
tories may have different lengths and sampling rates, we
applied Longest Common Subsequence (LCSS) as a distance
measure that allows stretching sequences over time. This
measure allows objects that are close in space at different
time instants be matched if the time instants are also close
[36]. We applied hierarchical clustering, as it is compatible
with LCSS as a non-metric similarity measure [36]. Unlike
other clustering approaches, like k-means, hierarchical clus-
tering takes no input parameters. It also results the full
clustering, even clusters with small sizes, which makes it
appropriate for our goal, finding the groups even with two
members. It should be noted, while clustering method is not
fixed in our framework, those who generate overlapping
clusters are not applicable for our model.

The output of the clustering step is a database of
slot-clusters CDB = 〈C1, C2, ..., Cn〉. Each slot-cluster
Ci contains the extracted clusters at time-slot i, Ci =
〈ci,1, ci,2, ..., ci,j〉, where j is the number of clusters at
that time-slot. The number of time-slots that a cluster c
has been observed is denoted by c.f . We call the sub-
set set of clusters at time-slot i, subset-collection Si =
〈csi,1, csi,2, ..., csi,k〉, where k is the number of subsets
(except empty subset). Each subset cs is called a cluster-
set. For example, in Fig. 2, at time-slot 2, we have the
slot-cluster C2 = 〈c2, c3, c4〉 and subset-collection S2 =
〈〈c2〉, 〈c3〉, 〈c4〉, 〈c2, c3〉, 〈c2, c4〉, 〈c3, c4〉, 〈c2, c3, c4〉〉, and the
cluster-set cs2,4 = 〈c2, c3〉. For easy readability, we refer to
the timestamp of a cluster-se as cs.t.

An LTCP group is a sequence of cluster-sets at continu-
ous time-slots. We define four threshold parameters in order

to identify the LTCP groups: 1) size threshold mG which
restricts the size of the groups we are targeting, 2) duration
threshold dG which determines the minimum lifetime of
a group, 3) frequency threshold fC that determines the
minimum time-slots that a group should be gathered.

Definition 1 : According to the above mentioned pa-
rameters, we identify an object set OG along with a cluster-
set sequence TS = 〈cs1,a, cs2,a2, ..., csn,an〉 (n = t2 −
t1 + 1) at interval [t1, t2] as an LTCP group, if it satisfies
the following conditions:

1) cs1.t = t1 , csn.t = t2 , |t2 − t1| ≥ dG ;
2) |OG| ≥ mG ;
3) For any csi,ai of TS, union of its clusters should be

equal to OG : ∀ cj ∈ csi,ai ,
⋃
cj = OG ;

4) ∃ cj ∈ TS, cj = OG , and cj .f ≥ fC ;

then the pair of object set OG and cluster-set sequence
TS is defined as Loose Travelling Companion Pattern
(LTCP) in [t1, t2], P = 〈OG, TS〉. Conditions 1 and 2
guarantee that lifetime and size of the group satisfy the
duration and size threshold, respectively. Based on the
union operation among clusters in a cluster-set, a sequence
of cluster-sets is derived which meets condition 3. Condition
4 adds a constraint on the number of time-slots that all
members of an LTCP group should stay close together.
Fig. 2 shows an example of LTCP group with 9 members
{O1, O2, O3, O4, O5, O6, O7, O8, O9} in interval [1, 5] while
it satisfies the condition of fC = 2 and dG = 5.

We define an LTCP pattern such that the precise groups
are able to be discovered while considering the nature of
human movement behaviour, non-strict continuity. Accord-
ingly, condition 3 provides the group members with the free-
dom to be disconnected and have independent movements,
which enables us to discover the sub-groups and satisfies
the non-strict continuity feature. On the other hand, mem-
bers shouldn’t stay with other groups (condition 3) during
their movement and also all the group members have to
meet each other at least for a certain time-slots (condition 4)
which results the hight precision discovery. The condition
3 will also lead to more effective group discovery, resulting
the complete and long-term groups rather than partial and
short-term ones. As a result, LTCP outputs the lower num-
ber of groups compared to the state-of-the-art approaches,
however, the quality of the discovered groups (precision and
effectiveness) are remarkably higher. Experimental results in
Section VI will prove this.

4 DISCOVERY ALGORITHMS OF LTCP PATTERNS

In this section we present three algorithms for discovering
LTCPs. The first algorithm is a straightforward implemen-
tation of the problem definition. The second one, a smart
and fast discovery algorithm, improves the efficiency by
avoiding the redundant checks. The final version is an op-
portunistic algorithm which proposes an efficient candidate
creation method.

4.1 Straightforward Approach
Firstly, we introduce the straightforward approach to dis-
cover the LTCPs which directly follows the problem defini-
tion. This algorithm is described in detail by pseudocode in
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Algorithm 1 : Straightforward Approach
Input: TrDB ,mG, dG, fC
Output: all closed LTCPs

1: V := ∅; //set of current LTCP candidates
2: for each time slot t do
3: Vnext := ∅; //new set of LTCP candidates
4: cluster ODB(t) as C
5: for each candidate P ∈ V do
6: P.extended := false;
7: temp := ∅;
8: for each cluster c ∈ C do
9: if c is a subset of P.OG:

10: add c to temp;
11: if temp.OG = P.OG:
12: P.extended := true;
13: Pnext := 〈P.OG, P.TS o temp〉;
14: add Pnext to Vnext;

15: if P.extended = true:
16: if P is a valid LTCP
17: P.valid = True;
18: else if P.valid = true and P is closed:
19: output P as a closed LTCP;

20: generate closed subset-collection (C, Vnext,mG)
as S;

21: for each cluster-set cs at S do
22: Pnext := 〈cs.OG, 〈cs〉〉; //initialize a new

candidate
23: add Pnext to Vnext;

24: V := Vnext

Algorithm 1. Algorithm 1 is composed of three parts: clus-
tering (Line 4), the extension of current candidates (Lines
5-19), and new candidate creation (Lines 20-23). In the first
part, we apply a hierarchical clustering on sub-trajectories
of objects in the current time-slot and extract the clusters.
The details of this part are eliminated since it is not the
affirmation of our problem.

In the second part, this algorithm refines the candidates
according to the discovered clusters (Lines 5-19). Consider-
ing the current candidate P , for each cluster c, if its members
are a subset of the candidate’s members, it will be added
to a temporary list, temp (Lines 7-10). After reviewing all
the current clusters, if the temporary list and the current
candidate have the same members, Pnext will be derived
from P (Lines 11-14). Once candidate P is extended in the
current time-slot, it will be checked whether it is a valid
LTCP or not according to the conditions in Definition 1
(Lines 15-17), which means lifetime of the candidate will
be checked considering the duration threshold, and the
number of times that all members are gathered will be
checked according to the frequency threshold. Otherwise,
it will be checked if it is a closed LTCP. If there does not
exist any LTCP in the candidate list, which is a sup-pattern
of P , then P is recognized as a closed LTCP (Lines 18-19).

Definition 2 : Considering two LTCPs of P =
〈OG, TS〉 and P ′ = 〈O′G, TS′〉, if OG ⊆ O′G and all cluster-

sets in TS is subsets of cluster-sets in TS′, P is a sub-pattern
of P ′, and P ′ is a sup-pattern of P . An LTCP is said to be a
closed pattern, if it has no sup-patterns.

The new candidate creation is the final step of LTCP
discovery algorithm (Lines 20-23). In this part, the subset-
collection, S, would be extracted from the current clusters.
Only closed subsets, according to the candidate set Vnext,
which satisfy the size requirement mG, would be added to
the new candidate list (Line 23). For a subset csi, if there
does not exist a candidate Pj such that csi.OG = Pj .OG,
then csi is a closed-subset.

Considering all of the combinations of new clusters as
possible candidates would cause the exponential complexity
to the algorithm. In order to reduce the computation time
and space of this step, we put a threshold for the maximum
size of the groups according to the application. In the case
of the airport application, we consider the maximum group
size of 17. We also just allow the passengers who belong to
the same flight create a group.

Example 6: Table 2 shows the running process of the
LTCP discovery algorithm. It is clear that the member-
ship is unchanged during the lifetime of the group (OG =
{O1 −O9}); however members are contributing in different
sub-groups (clusters). As all members stay close together in
two time-slots (t = 1 and 5), the fourth condition is also
satisfied for fC = 2. It is worth pointing out that the thresh-
old parameters could vary according to the applications. For
example, for airport case, as we are interested in discovering
even groups of two, we set mG = 2.

4.2 Smart-and-Fast Approach
The computational overhead of the straightforward ap-
proach could be high because of two major time-consuming
operations: finding the qualified cluster-set which matches
with the candidate, and also creation of the new candidates.
In this subsection, we try to improve the efficiency of the
first time-consuming operation, where the second problem
will be resolved in next subsection by a proposed oppor-
tunistic approach. In each time-slot, every pair of candidate
and cluster is checked to see if the cluster is a subset of
the candidate. However, most of these subset checkings are
unnecessary.

Lemma 1: let P be a candidate and c be a cluster in the
current time-slot. If c ∩ P.OG 6= ∅, P is extendable if and
only if c ⊆ P.OG.

Proof: According to definition 1, a candidate is extend-
able if a cluster-set comprising all of its objects, and just its

TABLE 2
Illustration of LTCP discovery

time cluster-set candidates

1 C1 P1 = 〈 OG, 〈〈C1〉〉 〉
2 C2,C3,C4 P2 = 〈 OG, 〈〈C1〉, 〈C2, C3, C4〉〉 〉
3 C5,C6,C7 P3 = 〈 OG, 〈〈C1〉,〈C2, C3, C4〉,〈C5, C6, C7〉〉 〉
4 C8,C9,C10 P4 = 〈 OG, 〈〈C1〉,〈C2, C3, C4〉,〈C5, C6, C7〉,

〈C8, C9, C10〉〉 〉
5 C11 P5 = 〈 OG, 〈〈C1〉,〈C2, C3, C4〉,〈C5, C6, C7〉,

〈C8, C9, C10〉,〈C11〉〉 〉
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Algorithm 2 : Smart-and-Fast Approach
Input: TrDB ,mG, dG, fC
Output: all closed LTCPs

1: V := ∅; //set of current LTCP candidates
2: for each time slot t do
3: Vnext := ∅; //new set of LTCP candidates
4: cluster ODB(t) as C
5: for each candidate P ∈ V do
6: P.extended := false;
7: temp := ∅;

∗ ∗ ∗
8: while true:
9: retrive a random object o of P ;

10: extract cluster c which contains the object o;
11: if intersection of c and P.OG is not null:
12: if c is a subset of P.OG:
13: add c to temp;
14: else:
15: break;
16: if temp.OG = P.OG:
17: P.extended := true;
18: Pnext := 〈P.OG, P.TS o temp〉;
19: add Pnext to Vnext;
20: break;

∗ ∗ ∗
21: if P.extended = true:
22: if P is a valid LTCP
23: P.valid = True;
24: else if P.valid = true and P is closed:
25: output P as a closed LTCP;

26: generate closed subset-collection (C, Vnext,mG)
as S;

27: for each cluster-set cs at S do
28: Pnext := 〈cs.OG, 〈cs〉〉; //initialize a new

candidate
29: add Pnext to Vnext;

30: V := Vnext

objects, can be discovered. In other words, other objects are
not allowed to stand in the same cluster as the candidate’s
object.

Through Lemma 1 the process of finding a cluster-
set for a candidate will stop earlier if the other objects
stand in the same cluster as the candidate’s object (Line
15). This is because of the fact that the candidate’s objects
should remain unchanged during its lifetime. Therefore, a
candidate cannot be extended to more than one candidate
during the next time-slot. Accordingly, there is no need to
do more comparisons when the temporary list matches with
the candidate (Line 20).

Every candidate shares objects only with a few number
of clusters, so most of the clusters don’t have objects in
common with the candidate. Therefore, we search for the
clusters which contain the candidate’s objects instead of
checking the candidate with all of the clusters. We select a
random object of candidate P and search for it in all clusters
of C (Lines 9-10). If the retrieved cluster satisfies Lemma 1,

t = 1 t = 2

P1 = ? O1-O5, ?? C1?? ?,1 timeslot       
P2 = ? O6-O7, ??C2?? ?,1 timeslot 
P3 = ? O8-O9, ??C3?? ?,1 timeslot
P4 = ? O1-O7, ?? C1, C2?? ?,          
1 timeslot       
P5 = ? O1-O5,O8-O9, ??C2?? ?,
1 timeslot 
P6 = ? O6-O9, ??C2,C3?? ?,
1 timeslot 
 P7 = ? O1-O9, ??C1,C2,C3?? ?,
1 timeslot

P7 = ? O1-O9, ??C1,C2,C3?, ?C4?? ?, 
2 timeslots

C1 o1

o3

o5

o4 

o2

C2
o6

o7C3
o8
o9

C4
o1

o2
o3 o4 

o5o6
o7

o8
o9

Fig. 4. Candidate creation problem

it will be added to the temporary list, otherwise, we go to
the next candidate. We repeat this process with choosing
another candidate’s object, which is not observed yet, until
the temporary list contains all of the candidate’s objects or
Lemma 1 is not satisfied.

Considering Lemma 1 and efficient search of clusters,
we propose a smart-and-fast algorithm. Algorithm 1 is then
modified and a new algorithm is presented in Algorithm 2.
The modified part is marked with * in Algorithm 2. In order
to implement an efficient search of an object in the clusters
of C , we generate a hash table which contains all objects
in the time-slot and their corresponding clusters. It leads to
finding the object in constant time, on average.

4.3 Opportunistic Approach

Although the efficiency of the LTCP discovery algorithm is
improved through the smart-and-fast approach, the system
still suffers from the computational overhead of candidate
creation step in both time and space. In each time-slot, all
of the combinations of new clusters are considered as new
candidates, which leads to the exponential complexity of
the algorithm. In the straightforward algorithm we tried to
reduce this complexity through putting the threshold on
the size of the valid candidates, and also consider only
the passengers who belong to the same flight as the pos-
sible groups. However, this is not a generally applicable
approach. In this sub-section, we introduce an efficient
candidate creation approach which decreases the number
of generated candidates substantially.

According to definition 1, in order to recognize a candi-
date as an LTCP, all of the members have to stay in the same
cluster for predefined time-slots, fC . Therefore, most of the
candidates generated in the new candidate creation step
cannot be qualified as an LTCP. Fig. 4 shows two consecutive



8

P1 = ? O1-O5, ?? C1?? ?,1 timeslot       
P2 = ? O6-O7, ??C2?? ?,1 timeslot 
P3 = ? O8-O9, ??C3?? ?,1 timeslot

P4= ? O1-O9, ??C4?? ?, 1 timeslot

t = 1 t = 2
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Fig. 5. Opportunistic candidate creation

time-slots of a group of objects. Assuming the size threshold
of 2, during the first time-slot, 7 candidates are identified (P1

– P7), of which just one of them (P7) can be extended in the
second time-slot.

In the opportunistic approach, we start to identify a
group as an LTCP candidate from the first time that all of
the members stay in one cluster. Therefore, we ignore the
combination of clusters as new candidates, which substan-
tially decrease the candidate set size and time complexity,
respectively.

Fig. 5 shows an opportunistic candidate creation in two
time-slots. In each time-slot, only single clusters which
satisfy the size requirement are added to the candidate list.
Therefore, group of OG ={O1 − O9} cannot be qualified as
an LTCP candidate until the second time-slot which all of its
members stay in one cluster.

Lemma 2: If a group could be discovered by the straight-
forward approach, the opportunistic approach is also able to
find it.

Proof: As all the members of an LTCP group should stay
together for at least fC time-slots, postponing the group
identification to the first gathering won’t lead to the non-
recognition of the group.

However, as this approach starts tracking a group from
the first gathering of all members, it might loose part of
the group’s lifetime. Considering the example in Fig. 4,
although the candidate P4 is the union of three candidates
in the previous time-slot, the opportunistic approach can-
not identify that. To moderate this problem, we perform
a simple backward checking to see if there is a match
between the new candidate and the nonextended candidates
in the previous time-slot. Through the backward checking,
three candidates in time-slot 1 would be added to the
candidate P4: 〈 O1 − O9, 〈〈C1, C2, C3〉, 〈C4〉〉〉. Even with
applying backward operation, the opportunistic approach
might loose part of the lifetime of the group. However, as
groups tend to meet at the early times, according to the
observation on real data, this won’t affect much on the
quality of discovered groups.

Benefiting form Lemma 2 and the backward checking,
we propose an opportunistic algorithm, Algorithm 3. Due

Algorithm 3 : Opportunistic Approach
Input: TrDB ,mG, dG, fC
Output: all closed LTCPs

1: V := ∅; //set of current LTCP candidates
2: for each time slot t do

// Candidate creation step
3: P ′′ := ∅;
4: for each cluster c ∈ C do

if size(c) ≥ mG and c is closed:
5: Pnext := 〈c.OG, 〈c〉〉; //initialize a new

candidate
6: add Pnext to P

′′;

7: V ′′ := candidates in V which are not extended;
8: for each candidate P ′ ∈ P ′′ do
9: temp := ∅;

10: for each candidate P ∈ V ′′ do
11: if P.OG is a subset of P ′.OG:
12: add P to temp;
13: if temp.OG = P ′.OG:
14: Pnext := 〈P ′.OG, temp o P

′.TS〉;
15: add Pnext to Vnext;

16: V := Vnext

to the space limitation, we just mention the modified parts
of the algorithm. When adding the new clusters to the
candidate set, the algorithm checks if the cluster meets the
size requirement and also if there is already a candidate
containing the same objects (Lines 3-6). During the back-
ward process, it checks if there is a match between the newly
created candidates and the previous ones which couldn’t be
extended during the current time-slot (Lines 7-15). We can
perform the same improvement as the one in smart-and-fast
approach to reduce the redundant checking in the backward
operation.

Proposition 1: Let n1 be the size of the object set and n2
be the total size of the candidate set V . The time complexity
of opportunistic candidate creation is up to O(n1 ∗n2+n1).

Proof: Suppose there are average m1 clusters and m2

candidates, with the average size of s1 and s2 for a cluster
and a candidate. In the first part, the algorithm needs
to check every cluster and the time cost is O(m1). The
backward operation has to check every pair of new can-
didate and the current candidate, which is not extended.
In the worst case, which none of the current candidates
are extended, and all of the clusters are added to the
new candidate list, the backward step carries out m1 ∗ m2

comparisons, which every one takes s1 ∗ s2 time. Since
m1 ∗ s1 = n1,m2 ∗ s2 = n2, the time complexity of
backward step is O(n1 ∗n2) and the total time complexity is
O(m1+n1∗n2). Asm1 ≤ n1, the upper bound of complexity
of opportunistic candidate creation is O(n1 + n1 ∗ n2).

5 WEAKLY CONTINUOUS LOOSE TRAVELLING
COMPANION PATTERN

In cases with lots of objects in a limited space, i.e., airport, it
might that the objects in a group stay in the same cluster
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Fig. 6. Example of movement pattern

with other groups for a few time-slots. Strict continuous
time constraint in LTCP will prevent the discovery of such
group patterns.

Example 7: Fig. 6 shows the movement pattern of two
groups of P1 = {O1 − O9} and P2 = {O10 − O11}. In
time-slot 3, two members of P1 stay in a same cluster with
P2. If we set the lifetime threshold dG = 4, the system is
not able to discover any patterns, because of the strict time
constraint in LTCP. In the case of assuming dG = 2, groups
of {O1 − O9} and {O10 − O11} are discovered two times
with fragmented lifetimes.

Therefore, the rigid continuous time constraints may
lead to no discovery of a group or fragmented discovery
of a group. For more effective discovery, we propose a
Weakly Continuous Loose Travelling Companion Pattern
(WCLTCP), which is the extension of LTCP. The difference
between WCLTCP and LTCP is the possibility of a time-gap
between the cluster-sets.

Definition 3 : Considering the sequence of cluster-sets
TS = 〈cs1,a1, cs2,a2, ..., csn,an〉 and time-gap threshold lC ,
the following condition should be satisfied in a WCLTCP
group: csi+1.t − csi.t ≤ lC (∀ i, 1 ≤ i < n).

The main procedure of WCLTCP discovery is the same
as the approaches proposed in the previous sections. Only
the candidate extension step needs a minor modification.
Unlike LTCP, when a candidate cannot be extended, it won’t
be immediately removed from the candidate set. The system
waits to see if the candidate can be extended during a time
period of lC . The general framework of WCLTCP discovery
is not affected by such minor changes. As the other steps
of the straight forward algorithm, smart-and-fast method,
and the opportunistic approach are the same for WCLTCP
discovery, we ignore the details here.

6 EXPERIMENTAL STUDY

In this section, we conduct a series of experiments to evalu-
ate the proposed algorithms.
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Fig. 7. Distribution of number of flights in a day

6.1 Experimental Setup
Dataset : In order to evaluate the proposed approaches,
we use both real and esperimental datasets. The real
dataset, D1, contains trajectories generated by passengers
at Guangzhou Baiyun International Airport. As passengers
almost spend no more than one day at the airport, we
consider a period of a day for collecting trajectories (15
December 2015). Distribution of flight numbers in a day has
been shown in Fig. 7. This dataset is comprised of more than
6000 objects, passengers who used the smart trolley during
that day, with more than 2 million data records.

In order to collect the location of passengers, we benefit
from the new technology, Charlie, which provides the
greater accuracy than the previous location tracking method
at the airport, Radio Frequency Identification/Infrared
Identification (RFID/IRID) network. Supplemental infor-
mation is provided in Acknowledgement. The movement
data of Charlie is reported every 10 seconds in the form of
〈FlightNo,MacAddress, Coordinate, T ime,Age,Gender〉.
The first four fields are considered to discover the groups
of passengers. It should be noted that through the field of
MacAddress, we can distinguish Charlies. The remaining
fields could be applied to extract more information, like
identifying the type of discovered groups, which is out of
the scope of this paper.

To be able to evaluate the accuracy of the proposed
approaches, we conducted an experiment to obtain the
ground truth. The experiment took place in Guangzhou
Baiyun Airport with 20 participants who used Charlie to
browse the airport and report their location. During the
experiment, participants were divided into four groups of
2, 4, 6, and 8. Each group followed the predefined routes
which were chosen such that the members would split and
merge several times. The selected groups spent between
1 to 2 hours browsing the airport. In order to obtain a
complete dataset comprising groups with different lengths
and lifetime, we also generate a few number of groups
according to the real data received from the experiment.
The resulted dataset, D2, is comprised of 14 groups with
different size of 2 to 14 and lifetime between 1 to 6 hours
which contains more than 100 thousand location points.

Baselines : We compare proposed loose travelling com-
panion pattern (LTCP) discovery approaches (StraightFor-
ward (SF), Smart-and-Fast (SM) and Opportunistic (OP))
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Fig. 8. Efficiency: (a) time, (b) space

and Weakly Continuous Loose Travelling Companion pat-
tern discovery approach (WT) with the four state-of-the-
art baselines: 1) the traveling companion pattern (TC) [12]
which captures the groups whose members are close to-
gether for certain consecutive time intervals, 2) the loose
companion pattern (LC) [13] which is the same as traveling
companion pattern with the difference that the gatherings of
the whole group can be non-strictly continuous, for certain
time intervals, 3) the moving cluster (MC) [14] which allows
members to leave the group and new members to join the
group at any time, as long as the portion of common mem-
bers in any two consecutive clusters is not below a given
threshold parameter θ. It should be noted that we apply the
duration threshold for this pattern, however, in the original
version of this algorithm, there is no constraint on the
duration, and 4) Weakly consistent group movement pattern
(WCM) [18] that allows members to leave the group for a
specified time intervals, as long as for each w − continuous
clusters there should be at least mC common members.

It should be noted that TC and LC are implemented
based on the Smart-and-Closed algorithm in [12]. We imple-
mented WCLTCP algorithm according to the opportunistic
approach.

Parameter setting : In this paper, we set the parameters
according to the observations on the datasets. It should be
noted that all of the parameters can vary according to the
specific goals. Here, we assume time-slot of 1 minute, and
the default setting for both datasets are: dG = 20, mG = 2,
fC = 10, lC = 10. For discovery of MC patterns, we set
θ = 0.5 and for the WCM patterns, we consider w = 10 and
mC = 2.

Environment : The experiments are conducted on a
PC with CPU 1.6 GHz Intel Core i5 and 4.00 GB RAM.
The system rans MAC OS X with version 10.11.3. All the
algorithms used in these experiments are implemented in
Python.

6.2 Efficiency
In this subsection we evaluate the efficiency of the algo-
rithms based on the dataset D1. The clustering phase is the
same for all the algorithms, and their runtime costs are omit-
ted for better comparison on the pattern discovery strategy.
It should be noted that the parameters of dG and fC only
have impact on the number of patterns we can discover, and
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Fig. 9. Efficiency: (a) time, (b) space, vs mG

have no effect on the performance (time and space costs) of
the algorithms. This is due to the algorithms sequentially
passing the time-slots. Therefore, we don’t investigate these
parameters in our experiments.

We first evaluate the algorithm’s time and space costs
with the default settings. The size of candidate set (number
of objects) is used to measure the space cost. As we can
see from Fig. 8, the straightforward approach (SF) has led
to a very high time and space cost, which comes from the
inefficient candidate extension and candidate creation pro-
cesses. Through the smart-and-fast approach (SM) we could
save more than 50% of the time cost, and the opportunistic
approach (OP) significantly improves the performance of
LTCP discovery, by upgrading the candidate creation step.
Compared to the LTCP (OP algorithm), WCLTCP (WT)
results in higher space and time costs, as it allows a time-
gap between the cluster-sets. Consequently, the candidates
won’t be removed immediately from the candidate list,
which results in the higher space cost, and accordingly
higher time cost.

Travelling companion (TC) reveals the lower cost, in
both time and space, compared to the other methods. The
reason is that the candidates will be immediately removed
from the candidate list, if they are not extended in the
current time-slot. On the other hand, LC allows the whole
group not to be gathered for a specified time period. Ac-
cordingly, even if the candidate is not extended, it will be
kept in the candidate list for a specified time period, which
leads to the higher space (or time) cost. The reason behind
the low efficiency of the WCM is the redundant candidate
extension. In this approach, each candidate can be extended
to more than one in each time-slot, and as the members
can leave the group for a certain period, multiple copy of
the same candidate will be generated. Example 4 represents
this problem. It should be noted even though MC shows
better performance than our approach, it is strongly affected
by the value of θ, such that a small decrease in it (e.g.,
changing it from θ = 0.5 to θ = 0.4) will substantially
degrades the performance. This problem has been explained
in Section II. Compared to the above baselines, both of
the proposed approaches (OP and WT), representing the
acceptable performance, significantly better than LC and
WCM and close to TC and MC.

In the next step, we evaluate the influence of size thresh-
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Fig. 10. Efficiency: (a) time, (b) space, vs lC

old mG on the performance of different approaches, Fig.
9. As mG increases, the time and space costs of all the
algorithms turn to decline. This is generally because the
fewer number of clusters (or cluster-sets) can be qualified
as the valid candidates. In addition, with increasing the
size threshold, the smart cluster-set matching mechanism
performs more effective which leads to the lower time
cost in two approaches of SM and OP. With increasing the
group size threshold, LC shows an abrupt reduction in both
running time and the candidate size. The reason is that LC
(and also TC) focuses on groups whose members are always
together which results in the smaller groups. Therefore,
increasing mG will substantially decrease the size of the
candidate set, which subsequently reduces the time cost.

We also investigate the effect of lC on the performance
of the three approaches WCLTCP, LC, and WCM, Fig. 10. In
WCLTCP, lC is the allowed time-gap between the cluster-
sets, in LC approach, it determines the time interval that
the whole group can not be gathered, and in WCM, it
determines the time interval that each member can leave
the group. During the previous experiments, we set lC = 10.
For this step, we change it from 0 to 30. For lC = 0, WCLTCP
is equal to LTCP (OP), and LC and WCM are the same
as TC. As lC increases, space cost of all algorithms rises
rapidly. This is because the candidates can stay longer in the
candidate list. Consequently, the system needs more time to
process the larger candidate list. However, WCM and LC
show a stronger increase than WCLTCP. The reason is each
candidate can be extended to more than one candidate in
each time-slot, and when it comes with the high value of lC ,
it leads to the substantial increase in the size of the candidate
list. According to Fig. 10, increasing lC has a greater impact
on WCM than LC. This is because of the different definition
of lC in WCM and LC. In LC, lC is defined as the time
intervals that the whole group is allowed not be gathered,
while in WCM it determines the number of time intervals
that each member can leave the group.

6.3 Effectiveness
In this section, we evaluate the quality of the discovered
groups. We conduct our experiments regarding the lifetime
and the size of the discovered groups and also the precision
of different approaches. The first two experiments are con-
ducted on the first dataset, D1, and the last one is on the
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Fig. 11. Effectiveness: (a) lifetime, (b) group size

second dataset, D2. As three proposed approaches for LTCP
discovery result the same groups, we just mention LTCP in
this part of the experiments.

Lifetime we compare the proposed algorithms and the
baselines according to the lifetime of the discovered groups,
as it is shown in Fig. 11 (a). The period which groups spend
together is divided into 5 categories: (1- less than one hour),
(2- one hour to tow hours), (3- two hours to three hours), (4-
three hours to four hours), and (5- more than four hours).

As the figure indicates, all of the TC patterns last less
than one hour. This is because of putting the strict time
continuous requirement which forces the members to stay
always connected. Similarly, the groups discovered by MC
approach are short-term, they last less than two hours. As
it mentioned in Section II, in an MC pattern the portion
of common objects in any two consecutive clusters should
not be lower than a given threshold, θ. As the lifetime of
group increases, the probability of being split into smaller
sub-groups also increases. When a group is split into several
smaller sub-groups, the overlap between two consecutive
clusters decreases. That’s the reason why MC approach
cannot track the long-term groups. This problem has been
explained in Section II. It should be noted that it is strongly
affected by the value of θ, such that the lower values lead
to the longer term groups. However, at the same time, it
significantly degrades the algorithm’s performance.

In contrast with TC, LC approach is able to discover the
long-term groups, which is because of relaxing the contin-
uous time constraint in LC. However, the reason behind
the high number of discovered groups is the partial group
discovery of this approach, which will be proved in the next
subsection. WCM results in the highest number of groups
with different lifetimes. The reason is the loose definition of
WCM which results in the wrong and high redundant group
discovery. This problem is clearly explained in Section II.
Precision results in the next subsection will prove this.

LTCP and WCLTCP, on the other hand, represent the
acceptable ability in finding groups with different lifetimes.
By the way, as LTCP puts the strict requirement on the
continuous cluster-sets, it might discover a single group
several times with fragmented lifetimes. This is the reason
why LTCP discovers more groups than WCLTCP in some
cases. On the other hand, as WCLTCP allows a time-gap
between cluster-sets, it is able to find more long-term groups
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Fig. 12. Precision: accuracy, overload and redundancy of different
approaches

than the LTCP.
Groupsize For a better comparison, we consider the

size of discovered groups as another measure. We define
6 categories for the size of the groups at airport, (1- groups
of two), (2- groups of three), (3- groups of four and five),
(4- groups of six and seven), (5- groups of eight to ten), (6-
groups with more than ten members). Fig. 11 (b) reveals the
experiment on the size of the discovered groups in different
algorithms.

In total, LC discovers more groups than TC. The reason is
the relaxing time constraint in LC leads more candidates be
qualified as the group. However, except for the first category
(groups of two) which LC detects a greater number, TC
and LC algorithms give the same results. It shows that the
relaxed time constraint in LC does not make it find more
large groups than TC. According to Fig. 11 (b), MC method
almost can’t discover the groups with size 2. The reason
is unlike the TC and LC approaches, which the group is
the result of the intersection of the (continuous or with an
allowed time-gap) clusters, an MC group is the result of the
union of the continuous clusters which satisfy the overlap
threshold. This leads to the discovery of large groups. More
information can be found in Section II. Contrary to the
other approaches, WCM reveals an increasing trend in the
discovery of groups with the larger size. It means that this
approach discovers more large groups than the small or
average groups, which is not consistent with the realistic
observations (there is more small and average group in
the airport than the large groups). The reason is the loose
definition of this approach allows the temporary members
to join the group. In addition, WCM results in the redundant
group discovery which gets worse when it comes to the
larger groups, as it is discussed in Section II.

Unlike the baselines which show the decreasing trend
(TC and LC) or increasing trend (WCM), LTCP and WLTCP
display the consistent trend regarding different group sizes,
which is consistent with the realistic observations. In some
cases, LTCP discovers more groups than WCLTCP and in
other cases, WCLTCP outperforms it. The reason is ex-
plained before, as WCLTCP allows a time-gap between
the cluster-sets, it might discover a group that cannot be
discovered by the LTCP. On the other hand, LTCP might
discover a group several times with fragmented lifetimes,

which can be discovered just once with longer lifetime by
the WCLTCP.

Precision We consider the information of the groups in
dataset D2 as the ground truth, which the output of the dif-
ferent approaches will be compared with that. The following
criteria will be used to evaluate the precision of the different
methods,Accuracy,Overload, andRedundancy. We define
the criterion of Accuracy as the proportion of the correct
discoveries over the ground truth. We also measure the
proportion of the wrong discoveries over the retrieved re-
sults. Unlike the previous studies which just focused on the
incorrect discoveries, here we also measure the redundancy
of the algorithms. Considering only the incorrect results as
the wrong discoveries measures the Overload criterion. By
taking both of the incorrect and redundant discoveries as
the wrong results, we measure the Redundancy.

Fig. 12 plots the precision of different approaches, ac-
cording to the default setting. As the figure indicates, TC,
LC, LTCP, WCLTCP, WCM, and MC have achieved the accu-
racy of 23%, 25%, 100%, 100%, 75%, and 62%, respectively.
The overload and redundancy of the algorithms are 97%,
98%, 18%, 27%, 90%, 95% and 99%, 99%, 48%, 44%, 99%,
99%, respectively. As the figure shows, both of our proposed
approaches, LTCP and WCLTCP, gain the same accuracy.
However, LTCP discovers more redundant groups, which is
because of the fragmented discovery of a single group. On
the other hand, as WCLTCP allows the time-gap between
the cluster-sets, it leads to more false positive results, which
leads to the higher overload. Because of the relaxed time
constraint in LC, it achieves better accuracy than the TC
approach. However, both of the TC and LC show the high
overload and redundancy in their discoveries. WCM and
MC both represent the acceptable ability in discovering the
ground truth groups (accuracy), as they do not put the strict
continuous time constraint, staying members all the time
together. However, these approaches also result in the high
number of wrong discoveries (overload and redundancy).
The reason is the loose definition of group in these ap-
proaches which makes them incapable of discovering the
precise groups.

We also study the influence of changing the time thresh-
old dG, from 10 to 50 time-slots, on the precision of dif-
ferent approaches, Fig. 13. Since all the groups last for at
least 60 time-slots in D2, it won’t affect the ground truth.
With increasing the dG, the accuracy of all the approaches
decreases. However, LTCP and WCLTCP are still able to
discover the high proportion of the right patterns. As it is
clear in the figure, accuracy of WCLTCP begins to decrease
(in dG = 40) after the LTCP (in dG = 30), which is because
of the relaxed time constraint in WCLTCP. The redundancy
and overload of the LTCP and WCLTCP also decrease
which is mostly because of the lower number of fragmented
groups.

On the other hand, LC and TC approaches show the
abrupt collapse in accuracy upon increasing the duration
threshold, and there is almost no change in redundancy
and overload. As we discussed in the two previous sub-
sections, LC and TC approaches discover the high number
of long-term small groups (the partial discoveries) and
short-term large groups. Accordingly, with increasing the
time threshold, redundancy and overload of these two
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Fig. 13. Precision: (a) accuracy, (b) redundancy, (c) overload, vs dG

approaches remain unchanged. At the same time, higher
time threshold makes them unable to discover the large
groups, which leads to the reduction in the accuracy. WCM
and MC algorithms also experience a reduction in accuracy,
but slower than two other baselines which is because of
the non-strict requirement on staying the group members
together all the time. On the other side, the overload of these
two approaches is increasing, which reveal that the most of
the discovered long-term groups by these approaches are
wrong. In the end, dG = 50, the accuracy of LTCP, WCLTCP,
TC, LC, WCM, and MC falls to 81%, 87.5%, 0%, 12.5%, 37%,
and 31%, respectively.

Finally, we perform the experiments with changing the
value of the time-gap threshold lC on the precision of the
WCLTCP, WCM, and LC algorithms (the ones who apply
this parameter in their model), Fig. 14. In the previous
experiments, we consider the default setting. In this part,
in order to better illustrate the effects of variation of the lC ,
we set dG = 50 and tune lC from 0 to 30. As shown in
Fig. 14, the accuracy of WCLTCP increases with increasing
the lC . It is able to discover all the ground truth groups at
dG = 50. The overload of WCLTCP also increases from 16%
to 19%, since more groups can be qualified and therefore
the number of false-positive results increases. However, the
redundancy decreases from 39% to 22%, which is because
of the lower number of fragmented discoveries. The LC
approach also shows the increase in accuracy result, but it
stops at 25%. As the number of wrong discoveries in LC
(incorrect or redundant) is too high, increasing the time-gap
has no effect on the redundancy and overload. WCM expe-
riences the same result as LC, which reaches the accuracy
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Fig. 14. Precision: (a) accuracy, (b) redundancy, (c) overload, vs lC

of 33% at lC = 30. The overload and redundancy of WCM
also change as the LC. It should be noted that since database
D2 contains groups even with 2 members, increasing the
size threshold mG leads to losing part of the ground truth.
Hence, we omit the precision experiment on this parameter.

As a conclusion, we suggest using the WCLTCP over
LTCP in real applications. Even though the WCLTCP results
in the higher time and space costs, it achieves the higher
accuracy and lower redundant discovery, while keeping
the overload at an acceptable level. As the accuracy of
the discovered groups by our proposed approaches are not
very affected by increasing the duration threshold, it is
suggested to set the time threshold relatively high to reduce
the incorrect and redundant discoveries. About the time-gap
parameter, lC , we should take this into account that while
increasing it improves the accuracy, it leads to the higher
overload and more importantly, it degrades the performance
(time and space costs) of the algorithms.

6.4 Discussion on Parameter Settings

In the previous section, we conducted various experiments
to evaluate the proposed group discovery patterns. As it
becomes clear, the parameters value plays an important
role in the performance of the algorithms (time and space
costs) as well as the quality of the results (precision). Our
model is built on four parameters: size threshold (mG),
duration threshold (dG), frequency threshold (fC ), and time-
gap threshold (lC ). The first two parameters are common
among all the pattern discovery approaches, except moving
cluster which doesn’t apply the duration threshold. The
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time-gap threshold has been used in WCLTCP, WCM and
LC approaches with different applications.

mG: The value of this parameter is adjusted according
to the size of the groups we are searching for, i.e., small
groups or big groups. It should be noted that performance
of the discovery algorithms is affected by this parameter,
such that with increasing the mG, space cost and time cost
would decrease.

dG: Choosing the proper value for this parameter de-
pends on the application for which groups have been
discovered. For example, in a domestic airport passengers
spend less time than international airport. Accordingly, the
time threshold for the first one should be set with lower
values than the latter one. Therefore, it depends on the time
that groups are supposed to spend together. The value of
dG also depends on the type of the groups we are searching
for. For instance, if we want to discover only the long-term
groups, dG has to be set with higher values. The value of
this parameter has no effect on the performance (time and
space costs) of the algorithms. This is because the algorithms
sequentially passing the time-slots. However, setting dG
with too low values increases the chance of false discoveries,
on the other hand, setting it with too high values causes the
groups remain undiscovered.

lC : Different approaches applied this parameter on their
model with various ways. In our model, WCLTCP, uses
lC to relax the continuous time constraint in LTCP, third
constraint, to let a time-gap between the cluster-sets. The
value of this parameter also depends on the application
for which groups have been discovered. For instance, for
busy hours in an airport, lC can be set with higher values,
as the possibility that members of a group get temporarily
involved with other groups increases. However, increasing
the lC , at the same time, degrades the performance of the
algorithm by increasing the time and space costs. On the
other hand, higher value of lC increases the accuracy and
also increases the chance of false discovery (overload).

fC : Different from the first category of work, convoy
or traveling companion, our approach provides members
with freedom to have their own independent movements.
On the other hand, unlike the second category of work
whose groups might never be totally gathered, we put a
constraint on the minimum time-slots that a group has to be
gathered, fC . This parameter is set taking the value of dG
into account, such that it cannot be higher than dG. Setting
fC with too low values brings it closer to the first category of
work which causes the main groups remain undiscovered,
while setting it with too high values brings it closer to the
second category of work which leads to the false hits.

It should be noted that the previous pattern discovery
approaches all have their own specific parameters. For
example, evolving convoy applies a window, w, over the
continuous clusters (w − convoy), and also puts a threshold
on the number of common members, mC , between two
continuous w − convoys. In weakly consistent movement
pattern also there are parameters of w, and mC which re-
stricts the minimum number of common members between
each w continuous clusters. Moving cluster also puts a
constraint on the overlap between two continuous clusters,
θ.

Fig. 15. Smart trolley used for passenger location tracking at airport

7 CONCLUSION

In this study, we investigate the problem of discovering
the groups of people who travel together from their move-
ment trajectories. Different from earlier proposed patterns,
such as convoy, swarm or moving cluster, which aim to
identify the general trends from trajectories of animals or
vehicles, we aim to identify the precise groups from the
movement trajectories of people. The movement of people is
rather different from the animal’s movement (or vehicles),
people might belong to the same main group while they
have different movements and contribute in different sub-
groups. Accordingly, we introduce a novel group pattern,
loose travelling companion pattern, which makes us able to
identify the sub-groups in addition to the main group that
members contribute. Since the cost of discovering process
with the straightforward algorithm could be high because of
two major time-consuming operations, we propose smart-
and-fast and opportunistic algorithms which improve the
candidate extension and candidate creation steps, respec-
tively. The proposed method also is extended to weakly
continuous loose travelling companion pattern for more
complex scenarios. At last, we evaluate the efficiency and
effectiveness of our proposals by conducting the extensive
experiments based on the real datasets of passengers mov-
ing at the airport. While the proposed approach has shown
a good performance, its effectiveness substantially outper-
forms the baselines in terms of the accuracy, overload, and
redundancy. It should be noted that the superiority of our
approach becomes more evident when the groups are larger
and last longer. As a result, the proposed group pattern
is more consistent with the real-life movement pattern of
people and can benefit the authorities in understanding the
people’s behavior and their needs, according to the group(s)
that they contribute.
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