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Abstract

Purpose This study aims to adapt and evaluate the performance of dif-
ferent state-of-the-art deep learning object detection methods to automatically
identify Esophageal Adenocarcinoma (EAC) regions from High-DefinitionWhite
Light Endoscopy (HD-WLE) images.

Method Several state-of-the-art object detection methods using Convolu-
tion Neural Networks (CNN’s) were adapted to automatically detect abnormal
regions in the esophagus HD-WLE images, utilizing VGG’16 as the backbone
architecture for feature extraction. Those methods are Regional-based Convo-
lutional Neural Network (R-CNN), Fast R-CNN, Faster R-CNN and Single
Shot Multibox Detector (SSD). For the evaluation of the di↵erent methods,
100 images from 39 patients that have been manually annotated by five expe-
rienced clinicians as ground truth have been tested.

Results Experimental results illustrate that the SSD and Faster R-CNN
networks show promising results, the SSD outperforms other methods achiev-
ing a sensitivity of 0.96, specificity of 0.92 and f-measure of 0.94. Additionally,
the average recall rate of the Faster R-CNN in locating the EAC region accu-
rately is 0.83.

Conclusion In this paper, recent deep learning object detection methods
are adapted to detect esophageal abnormalities automatically. The evaluation
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of the methods proved its ability to locate abnormal regions in the esophagus
from endoscopic images. The automatic detection is a crucial step that may
help early detection and treatment of EAC and also can improve automatic
tumor segmentation to monitor its growth and treatment outcome.

Keywords Deep Learning · Esophageal Adenocarcinoma detection · Barrett’s
Esophagus · HD-WLE

1 Introduction

A major health problem that has been emerging is Esophageal Adenocarci-
noma (EAC) which is considered the early stage of esophageal cancer. Studies
show that esophageal cancer patients hold a 5-year survival rate of only 18.8%
[1]. The primary premalignant cause of reaching esophageal malignancy is
Barrett’s Esophagus (BE) [2,3], where the development of healthy cells in the
esophagus lining into columnar mucosa through metaplastic change leading to
EAC [4]. The early detection and treatment of EAC may help in increasing
the survival chance of the patient[5].

The process of detection is done through endoscopic examination, High-
Definition White Light Endoscopy (HD-WLE) is the primary tool used [6],
and the cell deformation stages are confirmed by taking biopsy samples from
the surface of the esophagus lining [7]. The appearance and properties of the
BE or EAC have challenges in the detection process as it can be located
randomly throughout the esophagus tube [8]. Also, the accurate detection re-
quires a physician with significant experience and they are often overlooked
during endoscopy surveillance [9]. In addition to that, patients are required
to have regular follow-ups through endoscopy examination to control the de-
velopment of abnormalities into later stages. With the increase in the number
of patients, computer-aided detection (CAD) systems have grabbed attention
more frequently. There exists an amount of research available in the literature
for automatic detection, segmentation, and classification that employs several
endoscopies such as White Light Endoscopy (WLE), Narrow Band Imaging
(NBI), Volumetric Laser Endomicroscopy (VLE), Confocal Laser Endomi-
croscopy (CLE) and Chromoendoscopy, these methods are summarized and
discussed in [10,11]. In the next section, an overview of the previous studies
on EAC detection from HD-WLE will be discussed.

Recently, Deep learning (DL) has been tremendously useful in a wide range
of di↵erent applications, such as computer vision, natural language processing,
medical imaging analysis, and much more [12]. Deep learning, specifically, Con-
volution Neural Networks (CNN’s), has become a conventional technique in
medical image analysis (detection, classification, segmentation, etc...) [13]. In
this work, we take advantage of recent development in object detection meth-
ods that utilize CNN’s to locate EAC abnormalities in esophagus endoscopic
images by employing the state-of-art CNN methods and evaluating them on
our dataset. To the best of our knowledge, no work has been addressed before
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to comprehensively assess the performance of di↵erent CNN based detection
methods for detecting tumors in esophageal endoscopic images.

The rest of the paper is organized as follows; Section 2 represents the re-
lated work of EAC detection from HD-WLE images. In section 3 the materials
and methods are discussed, where a brief description of state-of-the-art deep
learning object detection methods is presented, and the dataset used is de-
scribed, while the experimental results are demonstrated in section 4. Finally,
the evaluated results are discussed in section 5 and concluded in section 6.

2 Related Work

Di↵erent studies have been conducted in the literature that focused on the
detection of BE and EAC using several endoscopic tools. These methods are
discussed in [10,11]. In this section, we will only discuss previous methods that
address the detection of EAC abnormalities using the same HD-WLE images
dataset that we used in our evaluation.

An evaluation of di↵erent texture features extracted from HD-WLE Bar-
rett’s Esophagus images was proposed by Sestio et al. [14] and Sommen [15].
This study extracted the following features: Texture Spectrum, Histogram
of Oriented Gradients (HOG), Local Binary Pattern (LBP), Grey Level Co-
occurrence Matrix (GLCM), Fourier feature, Dominant Neighbor Structure
(DNS) and Gabor features to compare between them on the e↵ect of EAC
detection. As a preprocessing phase, the irrelevant textures tiles have been
discarded before applying the classifier. Additionally, the Principal Compo-
nent Analysis (PCA) was used for reducing the features dimension, and they
were classified using the Support Vector Machine (SVM). After testing dif-
ferent combination, this comparison concluded that the merge between Ga-
bor and Color features achieved the best results compared to other combina-
tion of extracted features achieving an overall accuracy of 96.48%. Based on
the conclusion in [14,15], Sommen et al. [9] proposed a CAD system to de-
tect and annotate EAC regions in HD-WLE. Using a Leave-One-Patient-Out
Cross-Validation (LOPO-CV) approach the experiments had an 85.7% accu-
racy compared to the annotation of the specialist with a recall of 0.95 and
precision of 0.75 using the SVM classifier on the extracted gabor and color
features. More tests were conducted in [16] with the same model on a more
substantial dataset that resulted in a sensitivity of 0.86 and a specificity of
0.87 when using SVM and 0.90 and 0.75 for the precision when classified using
the Random forest in [17].

Souza Jr. et al. [18] proposed an investigation of the feasibility of the SVM
to classify lesions in Barrett’s esophagus based on Speed-Up Robust Features
(SURF) descriptors. Two experiments were carried out by extracting the Surf
features from the full image and another from the EAC ground truth regions
annotated by experts. The results based on full images analysis showed a sensi-
tivity of 0.77 and specificity of 0.82 while the abnormal region-based approach
has a sensitivity of 0.89 and specificity of 0.95. These results were analyzed
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based on the LOPO-CV approach and SVM classifier. Later on, Souza Jr. et
al. [19] proposed an Optimum-Path Forest (OPF) classifier to identify BE and
adenocarcinoma HD-WLE images. Features were extracted from the images
using the Scale-Invariant Feature Transform (SIFT) and the SURF to design
a bag-of-visual-words (BoW) to be an input for the OPF and SVM classi-
fiers. Results showed that the OPF outperformed the SVM with sensitivity of
73.2% (SURF) - 73.5% (SIFT), specificity of 78.2% (SURF) - 80.6% (SIFT),
and accuracy of 73.8% (SURF) - 73.2% (SIFT).

Mendel et al. [20] studied the analysis of BE using CNN to classify patches
in an HD-WLE image into cancerous and non-cancerous. Regarding the exper-
iments, the image was first divided into non-overlapping 224⇥224 patches and
sampled as cancerous and non-cancerous based on a certain threshold t. Each
patch has an output probability that was compared to the value t to decided
if it is a cancerous region or not. The deep residual network (ResNet) [21] was
used as the deep learning method for feature extraction and classification from
each patch. After testing the performance of classification at seven di↵erent
values for threshold t, the best performance was achieved at t = 0.8 resulting
in a sensitivity of 0.94, specificity of 0.88 and F-measure of 0.91.

3 Materials and Methods

Traditional object detection methods usually rely on hand-crafted features
by studying the performance of extracting di↵erent features and applying a
proposed classification/search method [22]. Deep learning especially CNN’s
has proved its e�ciency in various fields such as detection, classification and
segmentation [13,23–25]. There exist various state-of-the-art object detection
methods that use deep learning. In this paper, we adopt the following methods
Regional-based Convolutional Neural Network (R-CNN), Fast R- CNN, Faster
R-CNN and Single Shot Multibox Detector (SSD) to detect EAC abnormal-
ities. Each of these methods is explained briefly in the following subsection.
Additionally, the dataset utilized in the current evaluation is described in de-
tails.

3.1 Object Detection CNN based Methods

3.1.1 Regional-based Convolutional Neural Network (R-CNN):

Girshick et al. [26] first proposed a regional-based convolutional neural net-
work (R-CNN) as a leading framework for general object detection method
using deep learning. The R-CNN method is composed of three main steps as
shown in figure 1. First, the input image is scanned to generate over 2000
region proposals that might contain objects based on a selective search al-
gorithm [27]. The goal of the selective search algorithm is to provide several
candidate regions that belong to an object. It starts by generating an ini-
tial sub-segmentation to find a small set of independent class objects. Then it
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Fig. 1: General architecture of the R-CNN. The selective search algorithm is
firstly applied to find abnormal candidate regions. The SVM is then used to
classify the class based on the feature map from the CNN applied to candidate
regions, and the linear regression is used to adjust the bounding box location.

keeps repeating combining the similar regions into larger ones using the greedy
algorithm to find the most similar ones. Finally, it outputs candidate regions
called proposals that contain objects. After that, a CNN is run over each of the
proposal to extract features from this region. Finally, the extracted features
from the previous step are fed into an SVM classifier to classify this region into
a suspected object and a Linear regressor is used to refine the bounding box
if the object exists. The method merged between the original region proposal
methods with CNNs, but it was considered slow for real-time processing and
computationally expensive in the training process.

3.1.2 Fast R-CNN:

To overcome the R-CNN drawbacks, Girshick proposed the Fast R-CNN [28]
through two main modifications. Firstly, the CNN feature extraction is per-
formed over the image itself rather than over the proposed regions. Therefore,
the generated region proposals are based on the last feature map from the net-
work, and the CNN is only trained once on the full image. Secondly, the SVM
classifier is replaced with a single softmax layer that outputs a class probability
instead of running multiple SVMs for various object classes. Additionally, an
ROI pooling layer is added to the last convolutional layer to unify the feature
vector size before applying the softmax classification. The performance of the
Fast R-CNN was improved regarding the speed compared to the R-CNN, but
the executed selective search algorithm still caused a considerable overhead.
The architecture of the Fast R-CNN is illustrated in figure 2.
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Fig. 2: General architecture of the Fast R-CNN. The CNN is applied to the
input image to extract the feature map and the selective search algorithm is
performed to find abnormal candidate regions. The ROI is applied after that
to unify the feature vector size for classification using Softmax classifier.

3.1.3 Faster R-CNN:

Ren et al. [29], suggested combining a proposed Region Proposal Network
(RPN) instead of the selective search into the Fast R-CNN leading to a more
real-time method called Faster R-CNN. The proposed RPN generates region
proposals for each location using the last feature map produced from the CNN
based on anchor boxes. The anchor boxes are detections boxes that have di↵er-
ent sizes and ratios that are compared to the ground-truth during the training
process. For each location in the feature map, there are K di↵erent anchor
boxes centered around it as shown in figure 3. The total number of anchor
boxes per image is (K ⇥ W ⇥ H) where the W and H are the sizes of the
last feature map. During training, each generated anchor box is compared to
the ground truth object location. Boxes that overlap the ground truth with
an Intersection over Union (IoU) based on a certain threshold is considered
as an object (no class specified). The IoU is calculated as follows:

IoU =
Agt \Ap

Agt [Ap
(1)

Where, Agt is the area of the ground truth bounding box while Ap is the
predicted bounding box from the regression layer. The selected anchor boxes
are passed on as region proposals from RPN stage with a classification score for
each box and four coordinates that represent the location of this object. Some
region proposals highly overlap each other therefore non-maximum suppression
(NMS) is used to prune the redundant regions leading to a reduced number
of region proposals. Later on, the selected region proposals are fed into the
next phase as in Fast R-CNN. The ROI pooling divides the input feature
map from candidate anchor boxes into a fixed number of almost equal regions.
Maxpooling is applied to these regions; consequently, the output from the
phase is always fixed size regardless of the input size. One of the main benefits
of the Faster R-CNN is that the convolutional layer between two networks
(RPN and Fast R-CNN) are shared as shown in figure 4 rather than learning
two separate networks.
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Fig. 3: An example of di↵erent anchor boxes with di↵erent sizes and ratios for
a specific location in the RPN stage.

Fig. 4: General architecture of the Faster R-CNN. The CNN is applied to
the input image to extract the feature map that is later used by both the RPN
and the ROI pooling layers (Feature map is shared between both). The RPN
outputs the classification score and bounding box location of the candidate
region proposals that are passed on to the next stage. The ROI layer unifies
the feature vector size of the candidate region proposal that is classified using
softmax.
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3.1.4 Single Shot Multibox Detector (SSD):

Liu et al. [30] presented a Single Shot Multibox Detector (SSD). SSD is con-
sidered a faster deep learning object detection method compared to previously
discussed methods as it generates the predicting bounding box and classifies
the object within it in a single operation while processing the image. During
the training process, the SSD takes the image and the ground-truth as inputs.
Following that, the image is passed through a series of convolutional layers
that are combined throughout the network as shown in figure 5. The SSD
generates a list of bounding boxes for each location using priors (i.e., same
as anchors in Faster R-CNN) and then adjusts it to be close to the ground
truth location as much as possible. Although the number of generated boxes
from SSD is considered a huge number compared to the other methods it does
not guarantee to have an object inside it. An NMS is applied to minimize the
number of boxes by grouping the highly overlapping regions and choosing the
box with the highest confidence.

Additionally, negative samples are kept with a ratio of 3:1 compared to
positive samples in order to apply Hard-Negative Mining. The hard-negative
mining helps the network to better learn the incorrect detection leading to
more accurate results. The backbone CNN network used in the Faster R-CNN
and the SSD is the VGG’16 [31] after discarding the fully connected layer and
using its feature map. One of the main reasons for using the VGG’16 is that
it has a very high performance towards image classification problems.

Fig. 5: General architecture of the SSD [30]. The SSD is a single unified
network for both testing and inference.

In this paper, we evaluate the performance of the described deep learn-
ing object detection methods using the VGG’16 as the backbone network to
identify the EAC abnormalities in the HD-WLE images automatically.

3.2 Dataset

A dataset composed of 100 HD-WLE images of lower esophagus provided by
the Endoscopic Vision Challenge MICCAI 2015 [32] and [9] is used in the
evaluation. The 100 images were divided into 50 images with non-cancerous
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regions (fig. 6a) and another 50 with EAC (fig. 6b). The images were gathered
from 39 patients, among those patients, 22 patients diagnosed with esophageal
adenocarcinoma and 17 patients with non-cancerous Barrett’s. The di↵erent
number of images were captured from each patient resulting in a varied num-
ber from one to eight image per patient. Lesions found in the abnormal images
have been annotated by five leading experts in the field to obtain golden stan-
dards as shown in fig. 6c. Due to the di↵erences in manual segmentation from
one expert to another, we used the largest intersection area between the an-
notations from all the experts during the training and testing phase.

(a) Non-Cancer Patient (b) Cancerous Patient (c) Annotation by experts

Fig. 6: Examples of the HD-WLE images from the provided dataset showing
(a) Non-Cancerous Barrett’s patient, (b) EAC patient and (c) annotation from
five di↵erent experts.

4 Experiments

In this section, we first give details about the implementation setup for the
CNN methods. Then, the measures used in the evaluation process are de-
scribed. Finally, we evaluate the performance of the detection methods on our
dataset.

4.1 Experimental Setup

Due to the limited publicly available dataset, we performed an addition data
augmentation to the training data by flipping along the axial plane and rota-
tion in di↵erent angles with 90, 180 and 270 degrees.

For implementation, we adopt the Keras library [33] based on Python to
train and test the di↵erent deep learning object detection models on a single
Nvidia 1080Ti GPU. The VGG’16 was employed as the backbone CNN net-
work for the four discussed models, which has been trained from scratch on
the dataset after augmentation. Each model was trained for 5000 iterations
with the learning rate set to 0.0001. Additionally, the images were used with
its original size (1600⇥1200) for the following networks R-CNN, Fast R-CNN,
and Faster R-CNN. While the SSD, the images were rescaled to 300⇥300.
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During the training process, the anchor boxes sizes and ratios for the RPN
stage in the Faster R-CNN were set to the default setting as proposed in [29].
Where there exist K=9 anchors at each location with three scales (1282, 2562,
and 5122 pixels) and three aspect ratio (1:1, 1:2, and 2:1). Furthermore, Fur-
thermore, the anchor boxes are compared with the ground-truth to generate
the RPN proposals, the region with an IoU (equation (1)) greater the 0.7 is
considered as a proposal. On the other hand, the SSD uses multiple feature
maps to predict the target location and calculate a confidence score. In the
evaluation, the features are extracted at convolution layers 4 and 7. Also, the
NMS was set to 0.7 for bounding box selection.

4.2 Evaluation Measures

To assess the performance of the CNN object detection methods in detecting
the tumor regions we employ the Average Recall Rate (ARR) and Average
Precision Rate (APR) [34], to measure the accuracy of the detected bounding-
box in comparison to the ground-truth region in the cancerous images. Also,
sensitivity (SE), specificity (SP) and the f-Measure (FM) are measured over
all the test images (non-cancerous and cancerous) as follows:

ARR =
1

N

NX

I=1

B
g
I \B

p
I

B
g
I

(2)

APR =
1

N

NX

I=1

B
g
I \B

p
I

B
p
I

(3)

SE =
TP

TP + FN
(4)

SP =
TN

TN + FP
(5)

FM =
2.TP

2.TP + FP + FN
(6)

where N is the total number of images, theBg is the ground-truth bounding
box area of the tumor region while B

p is the area of predicted bounding-
box proposed by the detection method. Taking into consideration the (x,y)
coordinates as the location of the upper left corner of both boxes to compute
the intersection. All measures have been assessed in reference to the cancerous
patients, TP (True Positive) the number of cancerous images that had correct
prediction,TN (True Negative) the number of non-cancerous images that had
correct prediction, FN (False Negative) number of cancerous images that had
no prediction and FP (False Positive) number of non-cancerous images that
had regions predicted as cancerous.
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4.3 Results

The four deep learning object detection approaches discussed in section 3.1
have been carried on the available dataset after augmentation. The five mea-
sures defined in equation 2-6 were used to evaluate detection performances.
First, the ARR and APR were used to evaluate the bounding box accuracy.
A higher APR demonstrates that a more significant region is overlapping be-
tween the predicted region and the ground-truth, and a higher ARR shows
that the tumor region generated by the detection method excludes more non-
cancerous areas. Moreover, the sensitivity, specificity, and f-measure rates were
measured, where the number of the missed region in a cancerous patient (no
detection) and any false prediction in normal patient images a↵ected the re-
sults. Additionally, if the IoU value between the generated bounding box and
the ground truth is less than 0.5 then the produced bounding box is considered
to be a false prediction (non-cancerous). Furthermore, the time for the detec-
tion processes for each method was measured in seconds during the testing
phase.

The experiments have been carried out using three types of validation. Ex-
periment 1: from the 39 patients, 60% were used for training (21 patients
(12 cancerous, 9 non-cancerous barrett’s)), 20% for validation (9 patients (5
cancerous, 4 non-cancerous barrett’s)) and 20% for testing (9 patients (5 can-
cerous, 4 non-cancerous barrett’s)). The experiments were carried twice to
verify the results using more cases by changing the patients dataset between
the validation and testing sets in the second experiment. Therefore, the re-
sults presented in table 1 are based on a total of 18 patients (10 cancerous and
8 non-cancerous barrett’s) that are entirely di↵erent from the dataset used
for training the model. Experiment 2: The dataset was evaluated based on
5-fold-cross-validation (5-fold-CV), where the dataset is divided into 5 folds
randomly (Each fold will hold 7⇠8 patients). The results of the second ex-
periment are shown in table 2. Experiment 3: Leave-One-Patient-Out cross-
validation (LOPO-CV) is applied to compare the four detection methods. Ta-
ble 3 demonstrates the results from LOPO-CV experiment in addition to a
comparison with two of state-of-art (Mendel et al. [20] and Sommen et al.
[16]) methods that use the same dataset. The results of the three experiments
will be discussed further in the following section.

Furthermore, the bounding box results from each method has been pro-
vided on some sample images shown in Fig. 7 and compared to the ground-
truth bounding box. The figure shows di↵erent samples of the true and false
positives detection. An example from one non-cancerous image that had false
prediction by the R-CNN and Fast R-CNN method is shown in figure 7(c) and
another one by the R-CNN is shown in figure 7(l). Moreover, figure 7(j) illus-
trates the detection of Faster R-CNN and SSD only as the other two methods
failed to find an EAC region. The rest of the figures demonstrate the per-
formance of the four models in detecting the abnormal regions in minor and
complex tumors.
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Table 1: Average Recall Rate (ARR), Average Precision Rate (APR), Sensi-
tivity (SE) and Specificity (SP) and F-Measure (FM) for the state-of-the-art
object detection deep learning methods on the EAC dataset based on 60%
training and 40% testing.

Method APR ARR SE SP FM Time (sec)

R-CNN 0.43 0.41 0.47 0.41 0.44 13.38⇠37.81
Fast R-CNN 0.66 0.37 0.53 0.57 0.55 0.65⇠2.1
Faster R-CNN 0.50 0.78 0.72 0.83 0.83 0.3⇠0.45
SSD 0.69 0.81 0.93 0.93 0.93 0.1⇠0.2

Table 2: Average Recall Rate (ARR), Average Precision Rate (APR), Sensi-
tivity (SE) and Specificity (SP) and F-Measure (FM) for the state-of-the-art
object detection deep learning methods on the EAC dataset based on 5-fold-

CV.

Method APR ARR SE SP FM

R-CNN 0.48 0.41 0.50 0.40 0.48
Fast R-CNN 0.62 0.43 0.64 0.64 0.64
Faster R-CNN 0.68 0.83 0.78 0.80 0.79
SSD 0.70 0.79 0.90 0.88 0.88

Table 3: Average Recall Rate (ARR), Average Precision Rate (APR), Sensi-
tivity (SE) and Specificity (SP) and F-Measure (FM) for the state-of-the-art
object detection deep learning methods on the EAC dataset based on LOPO-

CV.

Method SE SP FM

R-CNN 0.60 0.56 0.59
Fast R-CNN 0.64 0.60 0.63
Faster R-CNN 0.88 0.86 0.87
SSD 0.96 0.92 0.94
Mendel et al. [20] 0.94 0.88 0.91
Sommen et al. [16] 0.86 0.87 0.87

5 Discussion

CAD has been acting as an essential tool in clinical practice and research by
providing a second opinion to the clinician. With the evolving of the use of
deep learning methods in implementing CAD methods in various fields, there
has been a tremendous improvement in accuracy. Multiple CAD systems have
been proposed in the literature that mainly relied on hand-crafted features
to detect EAC abnormalities in endoscopic images. Only one method that
used the deep learning to classify the patches inside image into cancerous and
non-cancerous [20].
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(a) Cancerous groundtruth (b) Cancerous groundtruth (c) Normal groundtruth

(d) Cancerous Prediction (e) Cancerous Prediction (f) False prediction

(g) Cancerous groundtruth (h) Cancerous groundtruth (i) Normal groundtruth

(j) Cancerous Prediction (k) Cancerous Prediction (l) False prediction

Fig. 7: Bounding-box ground truth based on experts annotation and the output
from the R-CNN, Fast R-CNN, Faster R-CNN and SSD when using 5-fold-CV
from di↵erent patients showing correct prediction in (d,e,j&k) with di↵erent
scores and a false prediction on a non-cancerous patient in (f&l).

The APR and ARR are used to measure the performance of the detection
methods by evaluating the output bounding box in cancerous images only.
They both measure the overlapping region between the predicted bounding
box and ground truth. As shown in Table 1, the APR results for the Fast
R-CNN and the SSD achieved 0.66 and 0.69 respectively. Additionally, the
APR results from table 2 show that the Faster R-CNN achieved 0.68 while
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the SSD achieved 0.70. From both tables, the SSD proved the ability to detect
a greater abnormal region that overlapped with the ground-truth generated by
experts compared to the other three CNN methods. Moreover, the ARR from
these two tables, the Faster R-CNN and SSD outperform the Fast R-CNN
and R-CNN with results of 0.78 and 0.81 from table 1 and 0.83 and 0.79 from
table 2. The results indicate that the SSD and Faster R-CNN were able to
detect fewer false positive regions (non-cancerous areas) inside the generated
bounding box for the abnormal area.

Additionally, the sensitivity, specificity, and f-measure are measured for the
three experimental validation methods. Results in table 1 are based only on 18
patients (10 cancerous and 8 non-cancerous barrett’s) as described previously
in section 4.3. The SSD outperforms among the compared methods with a
result of 0.93 for the three measures. The high sensitivity of the SSD result
from this table indicates that it had a good performance in detecting EAC
regions from the cancerous images and less false bounding boxes in the non-
cancerous barrett’s images. The Faster R-CNN followed by with results of 0.72
for the sensitivity and 0.83 for both the specificity and f-measure.

From table 2 based on 5-fold-CV. The SSD surpass the other three methods
with a sensitivity of 0.90, both specificity and f-measure of 0.88. The results
demonstrate that the SSD had a high performance in generating bounding
boxes that located in abnormal regions throughout the testing dataset and
less false ones. For the Faster R-CNN as shown in table 2, the results of the
sensitivity were 0.78 and 0.80 for the specificity, and 0.79 for the f-measure
demonstrating an acceptable performance.

As a further study, a comparison of the results with other state-of-the-art
models provided by Mendel et al. [20] and Sommen et al. [16] is illustrated in
table 3. For a fair evaluation, we employ the same validation method LOPO-

CV. Firstly, the sensitivity was evaluated, and the SSD achieved the highest
performance among the four deep learning methods and surpassed the results
of [20] by 2% and [16] by 10%. Also, the Faster R-CNN outperformed against
[16] by 2%. Additionally, the specificity of the SSD achieved 92% indicating the
improvement of less false positives regions. While, the Faster R-CNN achieved
0.86 that is considered comparable with results of [20] and [16].

As observed in table 2 and 3, the R-CNN and the Fast R-CNN have the
lowest performance. The reason behind this is that both methods rely on se-
lective search algorithm to generate a region of interest. As explained in the
earlier section, selective search algorithm uses the greedy algorithm to search
for a location for object localization. The greedy algorithm has limitations in
finding the optimal solution. Additionally, the grouping process is done based
on the color space di↵erence and similarity metrics. While for our dataset, it
is di�cult to di↵erentiate between non-cancerous barrett’s regions and EAC
solely based on color as they both have a darker color than normal regions
which might lead to more false positives. On the other hand, the use of anchor
boxes and priors in the Faster R-CNN and the SSD help improve the per-
formance of generating more candidate regions of interest. Furthermore, the
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results of table 3, in general, are more improved than that in tables 2 as the
LOPO-CV allows more dataset to be trained than the 5-fold-CV.

The di↵erences in sensitivity and specificity between the four object de-
tection methods were statistically evaluated using the paired T-test at a con-
fidence level of 95%. The results of the two-tailed p-value of the two best
performers (SSD & Faster R-CNN), when compared with the other two meth-
ods, are illustrated in table 4. As shown, the di↵erence between the sensitivity
and specificity of the SSD and Faster R-CNN were found to be significantly
di↵erent when they were compared to the R-CNN and Fast R-CNN using the
T-test. Additionally, the T-test was also employed to determine if there are
any statistical di↵erences in the sensitivity and specificity, obtained using the
two validation methods (i.e., 5-fold-CV and LOPO-CV). The p-value of the
sensitivity and specificity for each deep learning object detection method was
as follows R-CNN (0.0235,0.0068 ), Fast R-CNN (0.3222, 0.1594 ), Faster R-
CNN (0.0238 ,0.0832 ) and SSD (0.0832, 0.1594 ). Our analysis based on these
p-values suggests that the two validations for the R-CNN and Faster R-CNN
show a significant di↵erence. On the other hand, the di↵erence in results for
the SSD and the fast R-CNN is not statistically significant.

Table 4: The p-value calculate using the paiered T-test to measure the dif-
ference of sensitivity and specificity results between the four deep learning
methods.

Sensitivity Specificity

Method R-CNN Fast R-CNN R-CNN Fast R-CNN

Faster R-CNN 0.0049 0.1279 0.0001 0.0443
SSD 0.0012 0.0882 0.0001 0.0036

Moreover, the detection time during testing was measured in seconds for
each method as shown in table 1. The time started with a range of 13.38
⇠ 37.81 seconds when using the R-CNN and then decreased while using a
more updated method. The R-CNN requires a significant amount of time as
it generates around 2000 region proposal for each location and then used to
extract features from them using CNN. This leads to a repetition of almost
2000 times to extract features from one image. The detection time drops to 0.65
⇠ 2.1 seconds when using the Fast R-CNN, as the selective search is applied to
the extracted features after applying the CNN to the input image. The Faster
R-CNN was faster after sharing the weights and feature map between the RPN
and ROI pooling layer resulting in a range of 0.3 ⇠ 0.5 seconds to generate
detection bounding boxes. The SSD surpassed against the other methods in
predicting region in most of the cancerous images with only 0.1 ⇠ 0.2 seconds.
The reason for this is that the SSD can localize the object and classify it in a
single forward pass network. We believe that with a more powerful hardware
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(i.e. Nvidia Titan, Nvidia Tesla V100), the detection speed would be further
increased.

In addition to providing the quantitative evaluation we also randomly
choose some qualitative results of the deep learning object detection methods
for di↵erent cases as shown in figure 7. For example, figure 7 (e) demonstrates
that the di↵erent methods can detect some di�cult instances in which the
abnormality is located in a small region and is visually similar to other areas
inside the same image. Also, cases such as figure 7(d) and (k) where the abnor-
mal areas are present in most of the images. The SSD and Faster R-CNN show
the ability to detect most of the EAC area compared to the ground-truth. Fur-
thermore, figure 7 (f) and (l) list some false positive regions detected by the
R-CNN and Fast R-CNN. The non-cancerous barrett’s from normal patients
have a di↵erence in color in some areas as shown in figure 7(c) and (i) which
makes the detection challenging. The accuracy of these bounding box is dis-
cussed earlier using the ARR and APR values compared to the ground-truth
and illustrated in Fig. 7.

The esophagus has a special internal structure that makes it challenging
to di↵erentiate between normal and abnormal regions. Also, the abnormalities
inside the esophagus are particularly challenging due to its di↵erent sizes,
location, and shape. There exist variations in the size and the location in the
generated bounding boxes from the four models, where each box might include
non-cancerous regions. Table 5 calculated the average error presented by each
model in capturing non-cancerous regions inside the bounding box. As shown,
the R-CNN and Fast R-CNN presented higher error percentage compared to
the other two models. This indicates the bounding box generated by these two
methods included a high ratio of non-cancerous regions. On the other hand,
the Faster R-CNN and SSD provided a lower error rate for containing non-
cancerous areas, therefore they were able to provide better bounding boxes
localized around the cancerous regions.

Table 5: Average error presented by each model in capturing non-cancerous
regions inside the produced bounding boxes in the EAC images.

R-CNN Fast R-CNN Faster R-CNN SSD

Avergare Error 0.388 0.328 0.211 0.197

6 Conclusion

In this paper, we adapted the state-of-the-art deep learning object detection
methods to automatically identify the EAC abnormalities from HD-WLE im-
ages. Throughout the evaluation experiments; the SSD has proved to be the
leading performance regarding the di↵erent evaluation measures, with an out-
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standing result of 0.90 for the sensitivity, 0.88 for the specificity and 0.88 for
the f-measure when evaluated based on 5-fold-CV.

Also, the average precision and recall rates are of 0.70 and 0.79 for the
SSD and, 0.68 and 0.83 for the Faster R-CNN in locating abnormal regions
compared to the expert’s annotation. The current study is a step forward to
use deep learning object detection methods to find abnormalities in esophageal
endoscopy still image. We mainly focused on detection by using the bounding
boxes to allocate abnormal regions. Additionally, experiments based on LOPO-
CV have been carried out and compared with other state-of-the-art methods.
The SSD and Faster R-CNN were able to surpass among the results.

Moreover, figures have been presented to illustrate the generated bounding
box by each method. There are some errors introduced by the bounding boxes
by the di↵erent models that need to be improved. The CNN network used
for feature extraction can be modified/replaced with adjustments in network
parameters to improve the final detection performance.

Further work will be held to improve the performance of automatic EAC
detection using the most e�cient methods in current evaluation ( i.e., SSD
and Faster R-CNN) and will include more patients data to assess the proposed
modified methods further.
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