
UWL REPOSITORY

repository.uwl.ac.uk

A CUDA-based GPU engine for gprMax: open source FDTD electromagnetic

simulation software

Warren, Craig, Giannopoulos, Antonios, Gray, Alan, Giannakis, Iraklis, Patterson, Alan, Wetter, 

Laura and Hamrah, Andre (2018) A CUDA-based GPU engine for gprMax: open source FDTD 

electromagnetic simulation software. Computer Physics Communications Package, 237. pp. 208-

218. ISSN 0010-4655 

http://dx.doi.org/10.1016/j.cpc.2018.11.007

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/5755/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


A CUDA-based GPU engine for gprMax: open source

FDTD electromagnetic simulation software

Craig Warrena,∗, Antonios Giannopoulosb, Alan Grayc, Iraklis Giannakisb,
Alan Pattersond, Laura Wetterd, Andre Hamrahd

aDepartment of Mechanical & Construction Engineering, Northumbria University,
Newcastle upon Tyne NE1 8ST, UK

bSchool of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
cNVIDIA, UK
dGoogle, USA

Abstract

The Finite-Difference Time-Domain (FDTD) method is a popular numeri-
cal modelling technique in computational electromagnetics. The volumetric
nature of the FDTD technique means simulations often require extensive
computational resources (both processing time and memory). The simula-
tion of Ground Penetrating Radar (GPR) is one such challenge, where the
GPR transducer, subsurface/structure, and targets must all be included in
the model, and must all be adequately discretised. Additionally, forward sim-
ulations of GPR can necessitate hundreds of models with different geometries
(A-scans) to be executed. This is exacerbated by an order of magnitude when
solving the inverse GPR problem or when using forward models to train ma-
chine learning algorithms.

We have developed one of the first open source GPU-accelerated FDTD
solvers specifically focussed on modelling GPR. We designed optimal ker-
nels for GPU execution using NVIDIA’s CUDA framework. Our GPU solver
achieved performance throughputs of up to 1194 Mcells/s and 3405 Mcells/s
on NVIDIA Kepler and Pascal architectures, respectively. This is up to
30 times faster than the parallelised (OpenMP) CPU solver can achieve on
a commonly-used desktop CPU (Intel Core i7-4790K). We found the cost-
performance benefit of the NVIDIA GeForce-series Pascal-based GPUs –
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targeted towards the gaming market – to be especially notable, potentially
allowing many individuals to benefit from this work using commodity work-
stations. We also note that the equivalent Tesla-series P100 GPU – targeted
towards data-centre usage – demonstrates significant overall performance ad-
vantages due to its use of high-bandwidth memory. The performance benefits
of our GPU-accelerated solver were demonstrated in a GPR environment by
running a large-scale, realistic (including dispersive media, rough surface to-
pography, and detailed antenna model) simulation of a buried anti-personnel
landmine scenario.

Keywords: CUDA, Finite-Difference Time-Domain, GPR, GPGPU, GPU,
NVIDIA

NEW VERSION PROGRAM SUMMARY
Program Title: gprMax
Licensing provisions: GPLv3
Programming language: Python, Cython, CUDA

Journal reference of previous version: http://dx.doi.org/10.1016/j.cpc.

2016.08.020

Does the new version supersede the previous version?: Yes
Reasons for the new version: Performance improvements due to implementation
of CUDA-based GPU engine
Summary of revisions: A FDTD solver has been written in CUDA for execution
on NVIDIA GPUs. This is in addition to the existing FDTD solver which has
been parallelised using Cython/OpenMP for running on CPUs.

Nature of problem: Classical electrodynamics

Solution method: Finite-Difference Time-Domain (FDTD)

1. Introduction

The desire to simulate larger and more complex scientific problems has
created an ever-increasing demand for High-Performance Computing (HPC)
resources. Parallelised software codes running on HPC facilities have sig-
nificantly reduced simulation times, and enabled researchers to investigate
problems that were not previously computationally feasible. However, HPC
facilities are costly to build, maintain, and upgrade, and hence are often
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only accessible to those working in universities, big businesses, or national
research centres. Over the past decade general-purpose computing using
graphics processing units (GPGPU) has become a common method for ac-
celerating scientific software. GPGPU is attractive because a GPU has a
massively parallel architecture, typically consisting of thousands of efficient
cores designed for handling specific tasks simultaneously. In contrast, a CPU
has few cores that are designed to handle more generic sequential tasks.
Combined with the relatively low cost of GPUs, it makes GPGPU appealing
from a cost-performance perspective – from small-scale workstation setups
through to large-scale GPU-accelerated HPC facilities. In addition, the cre-
ation of programming environments such as CUDA [1], available for NVIDIA
GPUs, have made GPGPU computing more accessible to developers without
necessitating expertise in computer graphics.

In the field of computational electromagnetics (EM), the Finite-Difference
Time-Domain (FDTD) method is one of the most popular numerical tech-
niques for solving EM wave propagation problems. One such set of problems
is the simulation of Ground Penetrating Radar (GPR), where the GPR trans-
ducer, subsurface/structure, and targets must all be included in the model.
GPR antennas are typically impulse-driven and broadband, so the time-
domain nature of the FDTD method means this behaviour can be modelled
with a single simulation, i.e. separate simulations are not required for each
excitation frequency. In general the strengths of the FDTD method are that
it is fully explicit, versatile, robust, and relatively simple to implement. How-
ever, it can suffer from errors due to ’stair-case’ approximations of complex
geometrical details, and the aforementioned requirement – to discretise the
entire computational domain – can also be disadvantageous in necessitating
extensive computational resources. The building block of the FDTD method
is the Yee cell [2] in which Maxwell’s curl equations are discretised in space
and time (usually using second-order accurate derivatives). A leapfrog time-
stepping method is used to alternately update the three electric and three
magnetic field components in three-dimensional (3D) space. At each time-
step the electric and magnetic field updates are performed independently at
each point of the computational grid. This grid-based parallelism can be
mapped to multiple computational threads running in parallel. This has
led to both commercial and open source FDTD EM software being paral-
lelised for CPU solving [3, 4, 5, 6, 7, 8] and, more recently, some commercial
codes being accelerated using GPGPU. However, there are currently no open
source FDTD EM tools that are GPU-accelerated and contain the necessary
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features to simulate complex, heterogeneous GPR environments. There is
a clear need for such tools in areas of GPR research such as full-waveform
inversion [9, 10] and machine learning [11], where thousands of complex and
realistic forward models required to be executed.

We have developed a GPU-accelerated FDTD solver and integrated it into
open source EM simulation software that is specifically focussed on modelling
GPR. In Section 2 we explain the design of the GPU kernels and optimisa-
tions that have been employed. Section 3 presents performance comparisons,
using simple models, between the existing parallelised CPU solver and our
new GPU solver, on a selection of NVIDIA GPUs. In Section 4 we demon-
strate the performance of the GPU-accelerated solver with a more represen-
tative, realistic GPR simulation, as well as with a large-scale GPR simulation
of buried anti-personnel landmines. Finally, Section 5 gives our conclusions.

2. Kernel design

A GPU-accelerated FDTD solver has been developed as an integral com-
ponent of gprMax1 which is open source software that simulates electromag-
netic wave propagation, using the FDTD method, for numerical modelling
of GPR. gprMax is one of the most widely used simulation tools in the GPR
community, and has been successfully used for a diverse range of applica-
tions in academia and industry [12, 13, 14, 15, 16, 17]. It has recently been
completely re-written [18] in Python with the CPU solver component writ-
ten in Cython2 and parallelised using OpenMP. This recent work [18] also
introduced a unique combination of advanced features for simulating GPR
including: modelling of dispersive media using multi-pole Debye, Drude or
Lorenz expressions [19]; soil modelling using a semi-empirical formulation for
dielectric properties and fractals for geometric characteristics [20]; diagonally
anisotropic materials; rough surface generation; an unsplit implementation
of higher order perfectly matched layers (PMLs) using a recursive integration
approach [21]; and the ability to embed complex transducers [22] and targets.

As previously stated one of the reasons the FDTD method is attractive
to parallelise is because at each time-step the electric and magnetic field
updates can be performed independently at each point of the computational

1http://www.gprmax.com
2http://www.cython.org
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grid. A standard FDTD update equation (omitting the source term) for the
electric field component in the x-direction (Ex) is given by (1) [23].
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where Ca and Cb are the coefficients related to the material properties, Hy

and Hz are the magnetic field components in the y- and z-directions, the
superscript n denotes the time-step, and the subscripts (i, j, k) denote the
3D spatial location. It is evident from (1) that updating Ex is a fully explicit
operation, i.e. it depends only on quantities stored in memory from previous
time-steps.

GPUs offer performance advantages over traditional CPUs because they
have significantly higher computational floating point performance (through
many lightweight cores) coupled with a relatively high bandwidth memory
system. The roofline model [24] can be used to determine which of these
aspects is the limiting factor, given the ratio of operations to bytes loaded,
for any given algorithm. In (1) a total of six field components (electric or
magnetic) are either loaded or stored, corresponding to 24 or 48 bytes of data
in single or double precision. Seven floating point operations are performed
so the ratio is 0.3 (single precision) or 0.15 (double precision), which is much
less than the equivalent ratio offered by the hardware (called the “ridge
point” in the roofline model terminology). This tells us that the code will
not be sensitive to floating point capability, and that the available memory
bandwidth will dictate the performance of our algorithm.

Listing 1 shows an example of one of our kernels for updating the elec-
tric field for non-dispersive materials. There are several important design
decisions and optimisations that we have made with the kernel:

• We use one-dimensional (1D) indexing for defining the number of blocks
in a grid, and the number of threads in a block. We want to make cer-
tain we achieve memory coalescing by ensuring that consecutive threads
access consecutive memory locations. This is demonstrated in Listing 1
as k is the fastest moving thread index, and consecutive ks correspond
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to consecutive elements of Ex. We are aware of other implementations
for domain-decomposition using two-dimensional planes or fully 3D in-
dexing [25, 26, 27]. However, we found 1D indexing offered simpler
implementation, similar performance, and more flexibility in terms of
different domain sizes that might be encountered.

• We define macros within all the GPU kernels to convert from traditional
3D subscripts (i, j, k) to linear indices that are required to access ar-
rays in GPU memory. The macros are principally used to maintain
readability, i.e. both CPU and GPU codes closely resemble the tradi-
tional presentation of the FDTD algorithm. If linear indices had been
used directly the kernel would be much less readable and would differ
from the CPU solver which uses traditional 3D subscripts to access 3D
arrays. This design choice takes on further significance for the more
complex kernels, such as those used to update the electric and mag-
netic field components for materials with multi-pole Debye, Lorenz, or
Drude dispersion, or those used to update the PML.

• We make use of the constant memory (64KB), available through CUDA,
on NVIDIA GPUs. Constant memory is cached, so normally costs only
a read from cache which is much faster than a read from global mem-
ory. Electric and magnetic material coefficients, i.e. Ca and Cb from
(1), for materials in a model are stored in constant memory.

• We mark pointers to arrays which will be read-only with the const and
restrict qualifiers. This increases the likely-hood that the compiler
will detect the read-only condition, and can therefore make use of the
texture cache – a special on-chip resource designed to allow efficient
read-only access from global memory.

• Finally, we include the functions to update all the electric field com-
ponents, Ex, Ey, and Ez

3, in a single kernel, to benefit from kernel
caching.

3For the sake of brevity only the function for updating the Ex component is shown.
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// Macros for converting subscripts to linear index:

#define INDEX2D_MAT(m, n) (m)*(£NY_MATCOEFFS)+(n)

#define INDEX3D_FIELDS(i, j, k)

(i)*(£NY_FIELDS)*(£NZ_FIELDS)+(j)*(£NZ_FIELDS)+(k)↪→

#define INDEX4D_ID(p, i, j, k)

(p)*(£NX_ID)*(£NY_ID)*(£NZ_ID)+(i)*(£NY_ID)*(£NZ_ID)+(j)*(£NZ_ID)+(k)↪→

// Material coefficients (read-only) in constant memory (64KB)

__device__ __constant__ $REAL updatecoeffsE[$N_updatecoeffsE];

__global__ void update_e(int NX, int NY, int NZ, const unsigned int*

__restrict__ ID, $REAL *Ex, $REAL *Ey, $REAL *Ez, const $REAL*

__restrict__ Hx, const $REAL* __restrict__ Hy, const $REAL*

__restrict__ Hz) {

↪→

↪→

↪→

// Obtain the linear index corresponding to the current thread

int idx = blockIdx.x * blockDim.x + threadIdx.x;

// Convert the linear index to subscripts for 3D field arrays

int i = idx / ($NY_FIELDS * $NZ_FIELDS);

int j = (idx % ($NY_FIELDS * $NZ_FIELDS)) / $NZ_FIELDS;

int k = (idx % ($NY_FIELDS * $NZ_FIELDS)) % $NZ_FIELDS;

// Convert the linear index to subscripts for 4D material ID array

int i_ID = (idx % ($NX_ID * $NY_ID * $NZ_ID)) / ($NY_ID * $NZ_ID);

int j_ID = ((idx % ($NX_ID * $NY_ID * $NZ_ID)) % ($NY_ID * $NZ_ID)) /

$NZ_ID;↪→

int k_ID = ((idx % ($NX_ID * $NY_ID * $NZ_ID)) % ($NY_ID * $NZ_ID)) %

$NZ_ID;↪→

// Ex component

if ((NY != 1 || NZ != 1) && i >= 0 && i < NX && j > 0 && j < NY && k >

0 && k < NZ) {↪→

int materialEx = ID[INDEX4D_ID(0,i_ID,j_ID,k_ID)];

Ex[INDEX3D_FIELDS(i,j,k)] =

updatecoeffsE[INDEX2D_MAT(materialEx,0)] *

Ex[INDEX3D_FIELDS(i,j,k)] +

updatecoeffsE[INDEX2D_MAT(materialEx,2)] *

(Hz[INDEX3D_FIELDS(i,j,k)] - Hz[INDEX3D_FIELDS(i,j-1,k)]) -

updatecoeffsE[INDEX2D_MAT(materialEx,3)] *

(Hy[INDEX3D_FIELDS(i,j,k)] - Hy[INDEX3D_FIELDS(i,j,k-1)]);

↪→

↪→

↪→

↪→

↪→

↪→

}

}

Listing 1: Kernel for electric field updates of non-dispersive materials7



GPU Application Architecture Cores
Base Clock

(MHz)

Global
Memory

(GB)

GeForce GTX 1080 Ti Gaming Pascal 3584 1480 11
TITAN X Gaming Pascal 3584 1417 12
Tesla K40c Data centre Kepler 2880 745 12
Tesla K80 Data centre Kepler 2×2496 560 2×12
Tesla P100 Data centre Pascal 3584 1328 16

Table 1: NVIDIA GPU general specifications

3. Performance analysis

The host machine used to carry out performance comparisons between
the CPU and GPU-accelerated solvers was a SuperMicro SYS-7048GR-TR
with 2 x Intel Xeon E5-2640 v4 2.40 GHz processors, 256GB RAM, and
CentOS Linux (7.2.1511) operating system. We tested five different NVIDIA
GPUs, the specifications of which are given in Table 1. The GPUs feature
a mixture of current generation NVIDIA architecture (Pascal) and previous
generation (Kepler). The GPUs are also targeted at different applications,
with the GeForce GTX 1080 Ti and TITAN X being principally aimed at the
computer gaming market, whilst the Tesla K40c, Tesla K80, and Tesla P100
intended to be used in HPC or data centre environments. Before testing
our own kernels we ran the BabelStream benchmark [28] to investigate the
maximum achievable memory bandwidth for each GPU. Table 2 presents
the results of the BabelStream benchmark alongside the theoretical peak
memory bandwidth for each GPU. Table 2 shows that reaching between 66%
and 75% theoretical peak memory bandwidth is the maximum performance
that we can expect to achieve, with the Pascal generation of GPUs capable
of achieving closer to their theoretical peak memory bandwidth than the
previous Kepler-based GPUs.

We carried out initial performance testing of the GPU-accelerated solver
using models with cubic domains of side length ranging from 100 to 400, or
450 cells. For each of the model sizes the entire domain was filled with free-
space, the spatial resolution was ∆x = ∆y = ∆z = 1 mm, and the temporal
resolution was ∆t = 1.926 ps (i.e. at the Courant, Friedrichs and Lewy
limit). A Hertzian dipole was used as a (soft/additive) source, and excited

8



GPU

Theoretical Peak
Memory

Bandwidth
(GB/s)

BabelStream
Memory

Bandwidth
(GB/s)

Percentage
Theoretical

Peak

GeForce GTX 1080 Ti 484 360 74%
TITAN X 480 360 75%
Tesla K40c 288 191 66%
Tesla K80 2×240 160 66%
Tesla P100 732 519 71%

Table 2: NVIDIA GPU memory bandwidth (FP32)

with a waveform of the shape of the first derivative of a Gaussian. The centre
frequency of this waveform was 900 MHz. The time histories of the electric
and magnetic field components were stored from a single observation point
close to the source. Although these initial models are unrepresentative of a
typical GPR simulation, they provide a valuable baseline for evaluating the
performance of the CPU and GPU-accelerated solvers.

Before evaluating the GPU-accelerated solver an overview of the perfor-
mance of the CPU solver is presented in Figures 1 and 2. Figure 1 shows
speed-up factors for different sizes of test model using different numbers of
OpenMP threads – from a single thread up to the total number of physical
CPU cores available on the host machine (2 × 10 = 20 threads), i.e. strong
scaling. For smaller simulations (<≈3 million cells or 1443 model), on this
host machine, using more than 10 threads has no impact, or is even detri-
mental, to performance. This is likely because the computational overhead of
creating and destroying the additional threads is greater than the time saved
by having more threads doing work. The speed-up trend converges as the
number of cells increase, and is almost identical for the 3003 and 4003 mod-
els. At this point the work done by each thread has exceeded the overhead
of creating and destroying the thread. The overall speed-up trend decreases
beyond 4-8 threads, and falls to around 50% with 20 threads. We would
only expect to see ideal speed-up if our algorithm was compute (or cache)
bound. Our algorithm is bound by memory bandwidth which is a shared
resource across threads. Although adding more threads allows a higher per-
centage of this to be used, it is not a linear correlation due to the nature
of the hardware. Also depending on where the data is allocated on memory
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Figure 1: Strong scaling CPU solver performance (speed-up compared to a single
thread). Different cubic sizes of model domain compared with different numbers
of OpenMP threads. CPU: 2 x Intel Xeon E5-2640 v4 2.40 GHz

in relation to where it is accessed, there may also be non-uniform memory
access (NUMA) effects. This behaviour is further evidenced by Figure 2,
which shows execution times when the model size is increased in proportion
to the number of threads, i.e. weak scaling. In this test ideal scaling is when
the execution time stays constant when larger models with more threads are
computed.
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Figure 2: Weak scaling CPU solver performance (execution time compared to a
single thread). Size of model domain is increased in proportion to number of
OpenMP threads. CPU: 2 x Intel Xeon E5-2640 v4 2.40 GHz

A more useful benchmark of performance is to measure the throughput
of the solver, typically given by (2).

P =
NX ·NY ·NZ ·NT

T · 1 × 106
, (2)

where P is the throughput in millions of cells per second; NX, NY , and NZ
are the number of cells in domain in the x, y, and z directions; NT is the
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Figure 3: CPU solver performance throughput on different CPUs

number of time-steps in the simulation; and T is the runtime of the simulation
in seconds. Figure 3 shows comparisons of performance throughput for the
CPU solver on different CPUs: 1× Core i7-4790K CPU (4 GHz, 4 cores),
2× Xeon E5520 (2.26 GHz, 8 cores), and 2× Xeon E5-2640 v4 (2.4 GHz,
20 cores). It is intended to provide an indicative guide to the performance
of the CPU solver on three different Intel CPUs from typical desktop and
server machines.

Figures 4 and 5 show comparisons of performance throughput for both the
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GPU
FP32

performance
(TFLOPS)

FP64
performance
(TFLOPS)

GeForce GTX 1080 Ti 11.3 0.35
TITAN X 11 0.34
Tesla K40c 4.29 1.43
Tesla K80 8.74 2.91
Tesla P100 10.6 5.3

Table 3: NVIDIA GPU floating point (FP) performance

CPU solver (using 2× Xeon E5-2640 v4 (2.4 GHz, 20 cores)) and the GPU-
accelerated solver on the five different NVIDIA GPU cards. The Kepler-
based Tesla K40c and Tesla K80 exhibit similar performance to one another,
and the Pascal-based TITAN X and GeForce GTX 1080 Ti also have similar
performance to one another in all the tests. This is expected given these
cards have similar memory bandwidth. The TITAN X and GeForce GTX
1080 Ti performance is approximately twice the throughput of the Kepler
cards. The Tesla P100 has the highest memory bandwidth, and also has the
highest performance throughput. The performance throughput for all the
GPUs begins to plateau for models sizes of 3003 and larger, which is because
the arrays that the kernels are operating on become large enough to saturate
the memory bandwidth.

We investigated both single and double precision performance, as for
many GPR simulations single precision output provides sufficient accuracy.
Table 3 shows that the Tesla-series cards have peak double precision perfor-
mance that is half of their peak single precision performance. The TITAN
X and GeForce GTX 1080 Ti are designed for single precision performance,
so their double precision performance is worse than half of the single preci-
sion performance. However, as previously explained the performance of our
GPU kernels is governed by memory bandwidth rather than floating point
performance. Figures 4 and 5 show that the performance of the Tesla-series
GPUs as well as the TITAN X and GeForce GTX 1080 Ti GPUs halves
when comparing double to single precision. This reduction in performance
happens because twice the amount of data is being loaded/stored for the
double precision results, so the time doubles because the memory bandwidth
is fixed.

13
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Figure 4: CPU solver and GPU-accelerated solver performance throughput (FP32)

Finally, we used the NVIDIA CUDA profiler (nvprof) to measure the ac-
tual read/write throughput of our kernels. Summing the average read/write
bandwidth for the kernel that updates the electric field gave 320 GB/s, com-
pared to 360 GB/s from the BabelStream benchmark given in Table 2. The
kernel that updates the magnetic field gave a similar result. This shows that
our kernels are performing in a state that is close to the optimum that can
be achieved.
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Figure 5: CPU solver and GPU-accelerated solver performance throughput (FP64)

4. GPR Example Simulations

Following the initial performance assessment of the GPU-accelerated solver
with simple models, we carried out further testing with more realistic, rep-
resentative models for GPR. Both of the presented example simulations use
some of the advanced features of gprMax such as: modelling dispersive media
(for which GPU kernels have been written) using multi-pole Debye expres-
sions; soil modelling using a semi-empirical formulation for dielectric proper-
ties, and fractals for geometric characteristics; rough surface generation; and
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CPU/GPU Name
A-scan runtime

[s]
Performance

[Mcells/s]

2 x Intel(R) Xeon(R) E5-2640 v4 922 127
GeForce GTX 1080 Ti 161 726
TITAN X 162 721
Tesla K40c 374 312
Tesla K80 389 300
Tesla P100 129 906

Table 4: Buried utilities model: A-scan runtimes and performance throughput on
different NVIDIA GPUs

the ability to embed complex transducers.

4.1. Buried utilities model

The first example model represents a common environment for which
GPR is used in Civil Engineering, which is detecting and locating buried
pipes and utilities. Figure 6 shows the FDTD mesh of the model which
contains: a GPR antenna model, similar to a Geophysical Survey Systems,
Inc. (GSSI) 1.5 GHz (Model 5100) antenna; a heterogeneous, dispersive
soil with a rough surface; a 100 mm diameter metal pipe with centre at
x = 0.25 m, z = 0.31 m; a 300 mm diameter high-density polyethylene
(HDPE) pipe with centre at x = 0.6 m, z = 0.2 m; and 2× 50 mm diameter
metal cables with centres at x = 0.9 m, z = 0.51 m and x = 1.05 m,
z = 0.51 m. The model domain size was 600× 100× 500 cells, the spatial
resolution was ∆x = ∆y = ∆z = 2 mm, and a temporal resolution of ∆t =
3.852 ps (i.e. at the Courant, Freidrichs and Lewy limit) was used. Firstly,
a single model (A-scan) was used to benchmark the performance of each of
the different NVIDIA GPUs, with the results shown in Table 4. The pattern
of performance between the different GPUs is the same as found for the
simple models. However, the absolute values of throughput are three times
less than those for the equivalent size of simple model (3003), e.g. TITAN X
3003 model - 2288 Mcells/s, TITAN X buried utilities model - 721 Mcells/s.
This reduction in throughput is due to the additional operations (loads and
stores) in the more complex kernels, which are required to simulate the soil
which has materials with dispersive, i.e. frequency dependant, properties.
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Figure 6: FDTD mesh of a typical GPR environment for detecting and locating
buried pipes and cables

Figure 7 shows the results of the complete simulation, which is a B-scan
composed of 91 A-scans with an inline spacing of 10 mm4. The interpretation
of the B-scan is not the subject of this paper, but typical hyperbolic responses
from the cylindrical targets can be observed, including responses from the top
and bottom surface of the air-filled HDPE pipe. The B-scan was simulated
utilising the MPI task farm functionality of gprMax, which allows models (A-
scans in this case) to be task farmed as MPI tasks using either the CPU or
GPU-accelerated solver. For the B-scan model the host machine was fitted
with 2× GeForce GTX 1080 Ti GPUs and 2× TITAN X GPUs, and the
MPI task farm functionality was used to run 4 A-scans at once in parallel,
i.e. one on each of the GPUs. The B-scan simulation (91 A-scans) required

4The only processing of the B-scan data was to apply a quadratic gain function to
enhance the target responses in the lossy soil.
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Figure 7: B-scan data from a typical GPR environment containing buried pipes
and cables

at total of 1 hour 17 minutes and 56 seconds to run on the GPUs. This would
have required 23 hours and 20 minutes to run on host with the parallelised
(OpenMP) CPU solver.

4.2. Anti-personnel landmine model

To further illustrate the significance of our GPU-accelerated solver for
GPR modelling, we present an example of a large-scale GPR simulation
of buried anti-personnel landmines. This model was conceived for two pur-
poses: firstly, to provide realistic training data for our research into a machine
learning framework for the automated detection, location, and identification
of landmines using GPR; and secondly, to provide a numerical dataset for
GPR researchers to test their GPR imaging, inversion, and processing algo-
rithms. This latter concept has been well-established in seismic modelling
with the Marmousi model [29], however, to out knowledge no such detailed
and realistic 3D model exists for GPR. The model is a near-surface example
of a fictional but realistic landmine detection scenario – an extremely chal-
lenging environment in which GPR is often utilised. The key parameters
for the simulation are given in Table 5, and an overview of the geometry of
the model is presented in Figure 8. The simulation contains: anti-personnel
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Parameter Value

Domain size (x,y,z) 1.5 × 1.2 × 0.328 m
Spatial resolution (x,y,z) 0.002 × 0.002 × 0.002 m
Temporal resolution 3.852 × 10−12s
Time window 8 × 10−9s
A-scan sampling interval 0.010 m
A-scans per B-scan 121
B-scan spacing 0.025 m
Number of B-scans (x,y) 37 × 37
Surface roughness (about mean height) ±0.010 m

Table 5: Key parameters for buried landmine model

landmine models – 2× PMN and 1× PMA-1; a heterogeneous soil with a
rough surface; a GPR antenna model; a false metal target; and several rocks.

The simulation required a total of 121×37×2 = 8954 models (A-scans) to
image the entire space. An example of one of the B-scans from the simulation
is given in Figure 9. We carried out the simulations on Tesla P100 GPUs
on NVIDIA DGX-1 systems that were part of the Joint Academic Data
science Endeavour (JADE) computing facility funded by the Engineering
and Physical Sciences Research Council (EPSRC). We were able to use 11
nodes of JADE, where each node contained 8 Tesla P100 GPUs. Each model
required 96 s runtime, and therefore the total time to complete the simulation
(8954 models) was 2 hours and 44 minutes. This level of performance for
such large-scale, realistic GPR simulations would simply not be attainable
without the GPU-accelerated solver. It is a significant advancement for areas
of GPR research like full-waveform inversion and machine learning, where
many thousands of forward models are required.

5. Conclusion

We have developed a GPU-accelerated FDTD solver using NVIDIA’s
CUDA framework, and integrated it into open source EM simulation soft-
ware for modelling GPR. We benchmarked our GPU solver on a range of
Kepler- and Pascal-based NVIDIA GPUs, as well as compared performance
to the parallelised (OpenMP) CPU solver on a range of desktop and server
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Figure 8: FDTD mesh of a complex GPR environment for detecting and locat-
ing buried anti-personnel landmines. The model contains: buried anti-personnel
landmines – 2× PMN (blue) and 1× PMA-1 (green); a heterogeneous soil with a
rough surface (not shown); a GPR antenna model (red); a false metal target (light
grey cylinder); and several rocks (dark grey).

specification Intel CPUs. Simple models that contained non-dispersive ma-
terials and a Hertzian dipole source achieved performance throughputs of
up to 1194 Mcells/s and 3405 Mcells/s on Kepler and Pascal architectures,
respectively. This is up to 30 times faster than the OpenMP CPU solver can
achieve on a commonly-used desktop CPU (Intel Core i7-4790K). We found
the performance of our GPU kernels was largely dependant on the memory
bandwidth of the GPU, with the Tesla P100, which had the largest peak
theoretical memory bandwidth of the cards we tested (732 GB/s), exhibiting
the best performance.

We found the cost-performance benefit of the Pascal-based GPUs that
were targeted towards the gaming market, i.e. TITAN X and GeForce
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Figure 9: B-scan data from a GPR environment containing buried anti-personnel
landmines, a heterogeneous soil with a rough surface, a GPR antenna model, a
false metal target, and rocks.

GTX 1080 Ti, to be especially notable, potentially allowing many individ-
uals to benefit from this work using commodity workstations. Additionally
the equivalent Telsa series P100 GPU (targeted towards data-centre usage)
demonstrated significant overall performance advantages due to its use of
high bandwidth memory. These benefits can be further enhanced when com-
bined with our MPI task farm that enables several GPUs to be used in
parallel. We expect performance benefits of our GPU solver to rapidly ad-
vance GPR research in areas such as full-waveform inversion and machine
learning, where typically many thousands of forward simulations require to
be executed.
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