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Abstract 
 

An increasing body of evidence suggests that, in comparison to the general 

population, patients with severe mental illnesses such as schizophrenia or 

bipolar disorder have worse physical health and a far shorter life expectancy, 

due primarily to co-morbid chronic diseases.  

 

The standardised mortality ratio for all forms of mental disorder is at least 1.5 

and varies with the type and severity of the disorder.  Whilst data on the 

prevalence of chronic diseases in primary care is available nationally, there is 

a lack of health intelligence on medical co-morbidities associated with chronic 

mental illnesses. 

 

The aim of this PhD was to develop and validate epidemiological models for 

predicting expected prevalence of two major chronic medical conditions 

namely, coronary heart disease (CHD) and chronic obstructive pulmonary 

disease (COPD), on  general practice data for people with concurrent serious 

mental illness (SMI) group.  

 

The study probed the national epidemiological synthetic estimation of the two 

physical disorders to determine their prevalence within a local primary care 

setting and their co-existence within the serious mentally ill (SMI) group 

identified through the Quality Framework dataset (QOF) within GP practices 

and their localities. The expected prevalence was compared with recorded 

cases. 



 
 

Methods 

The national model used multinomial regression to arrive at odds ratios based 

on a basket of variables including age, sex, ethnicity, rurality and smoking 

status. This study examines the possibility of using a similar multi-nomial 

logistic regression model in conjunction with other locally sensitive data to 

map the expected risk at very small area level (GP practice level) in order to 

derive the expected prevalence of the two medical conditions at local levels.  

 

The model takes into account local variations with adjustments made to obtain 

a more accurate estimation. These were applied to the local SMI datasets 

(QOF data) to establish co-morbidity levels. Validation was carried out using 

external data, including population-based epidemiological data and case-

finding initiatives. The co-morbidity estimation of SMI with each and both 

conditions was derived using Bayesian methodology. 

 

Results 

Risk factors, odds of disease and expected prevalence of CHD and COPD 

were consistent with external data sources and supported trends from HsFE. 

Higher prevalence rates were associated with population deprivation, poorer 

quality and supply of primary health care services and poorer access to them. 

For both medical conditions they were under reported at local levels. The ratio 

of recorded to expected prevalence were significantly different (p < 0.001). 

 



 
 

 

Medical co-morbidity prevalence associated with SMI was 2.5 fold greater 

than the general population. Case findings showed strong evidence of 

difference between expected and actual prevalence of the two diseases in the 

localities (p < 0.001).  

 

Conclusion 

The physical health of patients with severe mental illnesses is too often 

neglected, thus contributing to a compounded health disparity. The 

reintegration of psychiatry and medicine, with the ultimate goal of providing 

optimal services to this vulnerable patient population, represents the most 

important challenge for psychiatry today, requiring urgent and comprehensive 

action from health care commissioners.  

 

The model predicts more accurately individual local cases in a given area, 

which a national model cannot because of the low size of population. By 

aggregating the local units of GP practices within an area and expressing the 

result as the relative probability of predicting number of cases is very practical 

for local commissioning as it enables better planning.     

Epidemiological prevalence models based with local datasets and national 

data sources such as NHS Comparators, data from Public Health 

Observatories and a number of national reports could be invaluable for health 

care planners. Early experience suggests that they are useful for guiding 



 
 

case-finding at practice level and improving and regulating the quality of 

primary health care. Comparisons with external data, in particular prevalence 

of disease detected by general practices, suggest that model predictions may 

be useful tools to help Health Commissioners. 

 

Local practice-level analyses indicate a trend of undiagnosed disease 

prevalence together with the unreliability of QOF datasets suggest a 

fundamental problem of local health intelligence and subsequently a flaw in 

health commissioning and planning. A more effective method of achieving 

more accurate prediction for co-morbidity in the SMI population and  

undiagnosed medical conditions  at local levels is for a more collaborative 

approach to validate and compare modelling methods using a framework that 

is more sensitive to local information. National leadership is needed to further 

develop and implement disease models. It is likely that prevalence models will 

prove to be most useful for identifying undiagnosed diseases with a slow and 

insidious onset, such as CHD, and COPD among the mentally ill. Such early 

detection will contribute to addressing the health inequalities. 
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1 

 

1. Introduction 

 

1.1 Background 

The health needs of a population are derived from knowledge gained from the 

prevalence of diseases, i.e. the numbers of people suffering from different 

types of illnesses. However, looking only at the numbers of patients currently 

being treated for a disease does not show the true prevalence and its impact 

on the population’s health. At any given time there are many people who have 

a disease but are unaware because they have not yet been diagnosed. 

 

A robust and well-designed disease prevalence model can help health 

commissioners to assess the true needs of their community, calculate the 

level of services needed and invest in the appropriate level of resources for 

prevention, early detection, treatment and care. Prevalence models provide 

estimates of underlying prevalence derived from population statistics and 

scientific research on the risk factors for specific disease.  

 

Whilst there has been progress in determining population (large scale) 

prevalence trends, there has been a relative shortage of research on local 

area (small area estimation (SAE) prevalence estimation modeling. An 

intrinsic problem is the lack of population-based data on key metrics, such as 

risk factor and disease prevalence at primary care and local authority (LA) 

level which has resulted in a total reliance on national datasets such as the 

Health Survey for England (HSfE). 
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This issue is highlighted in Securing Good Health for the Whole Population, 

Wanless (2008), which noted that…” the information collected nationally is 

often poor and there is no regular mechanism by which a PCT or LA can 

gather reliable information on its own population”. It proposes that in order to 

“improve understanding of prevalence of disease and to enable proactive 

management of personal risk factors, much greater use needs to be made of 

primary care data systems”. Assessing the potential population benefit of a 

health intervention requires consideration of many elements including disease 

prevalence and population characteristics, effectiveness and cost (Department 

of Health 2007). 

 

The challenge is already being taken up by “Informing Healthier Choices”, the 

Department of Health’s (DH) public health information and intelligence 

strategy, (Department of Health 2007),  which states that prevalence models 

will need to be generated for the common health problems which 

commissioners need to address. These will allow the current situation in an 

area or population group to be evaluated against an expected level of need. 

 

Local area modelling using statistical models to link national surveys outcome 

variables, such as disease indicators, to local area predictors, regional 

demographic and socioeconomic variables, are needed so that prevalence 

rates for small areas can be predicted. According to the Department of Health 

(2007) and Druss et al (2001) social indicator variables such as age, 

race/ethnicity, gender, education, income, family structure and employment 

status are commonly used to define high-risk sub-populations for targeting 
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health promotion and disease prevention. Relating health status, behaviour 

and disease  

prevalence statistics for small areas like counties to these demographic and 

socioeconomic predictors provides a direct calibration of the indicators to the 

outcomes of interest. SAE methods are applied to cases where the number of 

area-specific sample observations is not large enough to produce reliable 

direct estimates (Druss 2001). 

 

One area which has not been addressed to-date is the modelling of the 

prevalence estimate for concurrent co-morbidity and in particular for those 

linked with mental illness. The co-existence of more than one chronic 

condition (co-morbidity) is a generally recognised feature of older people. It is 

estimated that for those over 65 this could range between 60-90%. What is 

not well known is the extent of multi-morbidity among the mentally ill and in 

particular those with chronic problems.  According to a morbidity survey by 

Osborne et al (2010), more than 68 percent of adults with a mental disorder 

had at least one medical condition. Co-morbidity is associated with elevated 

symptom burden, functional impairment, decreased length and quality of life 

and increased costs. According to Phelan et al (2001) the pathway causing 

co-morbidity is complex and bi-directional. Medical disorders may lead to 

mental disorders and mental conditions may place a person at risk for certain 

medical disorders. However, mental and medical disorders may share 

common risk factors (Phelan et al 2001; Harris & Barraclough 1998).  
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This study covers the research needed to address two main issues at the 

heart which face the commissioning process. The first is the need for an 

approach that enables a more sensitive prevalence estimation of chronic 

disease within small areas.  The second is to develop a framework to estimate 

the presence of these illnesses within the serious mentally ill (SMI). The two 

problems are intrinsically linked. It is anticipated that this approach will enable 

local primary care commissioners to improve their local health intelligence, 

through better data management, which will enable more accurate local 

estimations.  

 

The study focuses on two medical conditions, namely chronic obstructive 

disorders (COPD) and coronary heart disease (CHD) to make this case. 

 

1.2 Aims and Objectives 

 

Aims 

There have been many studies that have researched the various 

epidemiological aspects of common conditions such as diabetes, HIV, CVD 

and others. To date no prevalence models have been developed for medical 

morbidities that co-occur with mental illnesses in small areas such as locality-

based services. 

Population prevalence is a method used to estimate and forecast the number 

of people in the population with a particular condition and monitor how that 

might change over time. This approach to population estimates allow us to: 

 Describe the pattern of disease in a population,  
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 Estimate the number and pattern of undiagnosed cases,  

 Plan and deliver services in a rational way, 

 Monitor performance. 

The effectiveness of a prevalence model lies within its validity to provide 

robustness, reliability over time and fitness of purpose. The initial proposal 

contained the two broad aims of developing methods for prevalence 

estimation, of both disease and risk factors and their concurrent association 

with chronic mental illnesses. The research aim therefore proposed to gather 

and assess the fitness of general practice (GP) data, for the purpose of the 

prevalence estimation and to develop new methodologies, to adjust primary 

care data for sources of bias and to factor in estimates from mental health 

data to support healthcare commissioning.  

 

Research Questions 

 How should the prevalence of medical co-morbidity of chronic diseases in SMI 

be estimated? 

 How valid are the prevalence estimate models? 

 How do different chronic disease prevalence estimation methods compare in 

terms of their validity? 

 What is the best available methodology, given the requirements for 

prevalence models for co-morbidity? 
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Objectives 

The objectives of the study were to: 

 Develop a methodology for local prevalence estimation and modelling of 

chronic disorders for people with SMI, initially by extending logistic regression 

modelling to examine predictors of chronic obstructive pulmonary disease 

(COPD), coronary heart disease (CHD), stroke and hypertension using the 

HSfE datasets, 

 Developing an adjustment ratio to calculate the prevalence of SMI in the 

estimated prevalence of the chronic diseases i.e. SMI as a subset of main 

data sets,  

 Determine new prevalence estimates and future projections at PCT and GP 

level and support their use by PCTs (now Clinical Commissioning Groups 

(CCG)), practices and other agencies, 

 Explore the use of risk factor prevalence to model future disease prevalence 

in relation to those people with serious mental illness, 

 Undertake a validation of one or more disease prevalence models, through 

testing case-finding strategies at practice level, involving data from a West 

London primary care services, 

 Explore the links between registered and estimated disease prevalence and 

primary and secondary healthcare utilisation, with the aim of developing 

specific utilisation ratios which can be used to project future healthcare 

capacity requirements. 
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1.3 Outputs / benefits 

In the first instance, a methodology paper will be published on the physical 

disease prevalence model for the mentally ill. Later publications will include 

validation studies and case-finding strategy results. 

Subsequent publications will explore the links between disease prevalence, 

health determinants and healthcare factors, ideally through practice-level 

analyses. Current person-based ONS survey data is available via the UK Data 

Archive. It was not clear at the outset whether the same level of access by 

researchers to person-based data would be permitted for other sources 

e.g. HES, but this would be an ideal eventual data linkage. The data and its 

implications for health policy will be presented to local health care 

commissioners and the wider network. 

 

1.4 Study framework 

The study was conducted over a number of phases: 

Phase one (Chapter 1)  

A study of the literature was undertaken to review  two  areas namely: 

 Serious Mental Illness, its definitions (clinical and operational) and how 

services are commissioned and managed within community,  

 Explore the concept of “prevalence modelling” and its application in public 

health epidemiology. 
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Phase two  (Chapter 2) 

Mental health needs assessment 

A mental health needs assessment was undertaken to provide local 

information required for the modelling exercise, both from a broader 

community and local mental health delivery perspective. The exercise also 

assessed the fitness for purpose of general practice (GP) data for the 

prevalence estimation. 

 

Phase three – Chapter 3 

Definition of the methodological framework for study.  

It is anticipated that a more sensitive prevalence estimation that was sensitive 

to variations and develop a “method” for a public health-driven primary care 

mental health delivery service. 

 

Phase four (Chapter 4/5) 

Development and validation of the synthetic prevalence estimate model using  

two chronic (medical) disorders as exemplars. 

Using national datasets, the prevalence estimates of two chronic diseases 

were validated and then applied to local settings. Local health intelligence and 

information were linked to broader health determinants as explored in the 

needs assessment.  

A rough prevalence estimate of the level of serious mentally ill (SMI) health 

based on existing Quality Outcome Framework datasets (QOF) was used as 

the baseline. 
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Phase five – Technique for estimating co-morbidity 

Development of an adjustment factor for the prevalence estimate models 

The rationale was to use an extrapolation (from national prevalence 

estimates) to determine relative co-morbidity in the SMI groups. The approach 

used Bayesian methodology to extract local estimates from existing datasets 

for co-morbidity estimation.  

Stage six (Chapter 6) 

Discussion and recommendations 

The study was reviewed with considerations to its merit, 

weaknesses, usefulness and application it has in public health 

practice. 

 

 

Ethics 

As the PhD involved secondary data analysis the study did not conform to 

research governance criteria requirements and therefore did not require an 

ethical opinion. 
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2. Review of the literature 

2.1. Serious mental illness and medical co-morbidity 

Serious Mental Illness (SMI), although widely considered a severe long term  

condition, has been marked over time by a difficulty to formerly define. Even in 

2013 there is still no nationally recognised definition in the UK. Traditionally, 

definitions have comprised of three elements - a medical condition of the 

brain; with significant functional impairment; over a significant period of time. 

This definition became summarised by ‘the three Ds’, diagnosis, disability and 

duration. Goldman et al. formalised this definition in 1981, explicitly stating 

relevant diagnoses, the level of disability and required duration of illness. Later 

in the 1980s, McLean and Leibowitz (1989) continued the three Ds approach, 

adding emphasis of patients’ continued and regular contact with health 

services.  

 

The next advances in the UK came in the 1990’s. In 1995, the Department of 

Health continued the above theme, adding two further areas to be considered 

when diagnosing SMI. They included the safety of the patient and/or others 

and a requirement for community as well as medical support (Department of 

Health 1995). In 1999, the UK’s National Service Framework (NSF) for Mental 

Health reverted to a broader definition, requiring simply the diagnosis of a 

mental disorder with either recognised severity or significant health service 

use. Despite small modifications, the NSF for Mental Health definition of SMI 

is broadly that still used in the UK. Internationally, the situation mirrors the UK. 

In the United States for example, according to Drake et al (2007), where a 

diagnosis is required to access publically funded mental health service; 
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definitions encompassing the three Ds are used across federal health care 

providers. 

 

The word ‘serious’ within the phrase SMI, has the power to suggest other 

mental disorders are ‘non-serious’. The term is merely used to represent 

conditions commonly grouped together. The definitions of SMI above 

encompass a range of conditions and clinical diagnoses. They can, however, 

still be considered useful. Grouping conditions based on severity will be 

especially useful for service providers and commissioners. In other words, 

although heterogeneous in medical diagnoses, the group is homogeneous in 

terms of service use and need.  

The definitions above stem from a service administration or commissioner 

perspective, one where the severity and burden on the health system are 

critical to the definition. The first stage in identifying this group will, however, 

require a clinical diagnosis. There is no single clinical definition of SMI; it is a 

suite of disorders. Khatana et al (2001) supported the views of Wang et al 

(2002) that frequently, operationalised definitions of SMI cover three domains 

of the Diagnostic and Statistical Manual of Mental Disorders classification 

(DSM); mood disorders, anxiety disorders and non-affective psychoses. The 

DSM is a set of clinical codes used to define known mental disorders and map 

to the International Classification of Diseases (ICD).  

 

In the US, Schinnar (1990) suggested that a patient had a severe mental 

illness when he or she had the following: a diagnosis of any non-organic 

psychosis; a duration of treatment of two years or more; dysfunction, as 
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measured by the Global Assessment of Functioning (GAF) scale (American 

Psychiatric Association 1987; Khatana et al. 2011). Specifically, the two levels 

of dysfunction defined by cut-off points of the GAF are tested: moderate or 

severe dysfunction a GAF score of 70 or less, indicating mild symptoms or 

some difficulty in social, occupation or school functioning; or only severe 

dysfunction a GAF score of 50 or less, indicating severe symptoms or severe 

difficulty in social, occupational or school functioning. The broad definition; the 

`two-dimensional definition' is based on the fulfilment of the latter two criteria 

only (American Psychiatric Association Diagnostic and Statistical Manual of 

Mental Disorders 2002). 

 

Yet more simple definitions include only specific disease groups. Three 

conditions, schizophrenia, schizoaffective disorder and bipolar disorder, were 

considered by the National Institute for Health and Clinical Excellence (NICE) 

(National Institute for Health and Clinical Excellence 2009) for use as the 

Quality and Outcome Framework (QOF) indicators relating to SMI. Finally, 

recent work by the Mental Health Foundation (2007), included psychosis, 

bipolar disorder, schizophrenia, schizoaffective disorder and puerperal 

psychosis within SMI. These small numbers of conditions, especially 

schizophrenia, schizoaffective disorder and bipolar disorder do cover a large 

proportion of the total SMI cases. This group of clinical definitions is not used 

universally, with different variants of DSM IV domains. They are however the 

most common, covering the majority of conditions considered as an SMI. 

 

Prevalence 
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Recent data in the UK from the Information Centre for Health and Social Care 

(2011), the QOF reported a national prevalence of 0.8 percent (438,000 

patients). This covers patients registered with primary care who have a 

diagnosis of schizophrenia, bipolar disorder or other psychoses and who are 

considered to have serious morbidity. The prevalence varies between primary 

care trusts (PCTs), ranging from 0.5 to 1.5 percent as documented by the 

National Institute for Health and Clinical Excellence (2009).  

 

Epidemiological data concentrating broadly on SMI are scarce. According to 

the Information Centre for Health and Social Care (2009), all psychotic 

disorders, not solely cases defined as ‘serious’, have estimated prevalence 5 

per 1,000, with an incidence of 31.7 per 100,000 in England. Schizophrenia is 

the most common psychotic disorder, affecting approximately 400,000 in 

England. Point prevalence estimates vary from 1.1 to 2.4 percent (National 

Institute for Health and Clinical Excellence 2009) with an estimate of lifetime 

prevalence of 8.7 per 1000. Recent estimates, from systematic review, place 

incidence in England at approximately 15 per 100,000 person years (Halliwell 

et al. 2007). Finally, estimates of schizoaffective disorder remain scarce; 

indeed debates remain as to whether it is a discrete condition, or merely co-

occurrence of schizophrenia and mood disorders. Lifetime prevalence, 

according to Halliwell et al. (2007), estimates range from 2 to 10 per 1,000. 

Raw data suggest the prevalence may match schizophrenia, however, not 

when accounting for its diagnostic uncertainty.  
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The National Institute for Health and Clinical Excellence (2009) reported that 

bipolar disorder affects an estimated 545,000 patients in the UK. International 

estimates report a lifetime prevalence of bipolar disorder of between 0.9 and 

2.1 percent and a prevalence of bipolar disorder with manic episodes of 

approximately 1 percent (Halliwell et al. 2007). There is variation between 

populations with estimates of the prevalence without manic episodes 

especially varied, between 0.2 and 2.0 percent. Khatana at al (2011) again 

supports the views of Pini et al (2005) that an estimate of the incidence of 

bipolar disorder across three UK cites, in those aged 16 to 64 years, was 4.0 

per 100,000, although this varied from 1.7 in Bristol to 6.2 in London. More 

generally, estimates place annual incidence at 7 per 100,000, with a lifetime 

prevalence of bipolar disorder with manic episodes of between 4 and 16 per 

1,000 as documented by the National Institute of Excellence (2006). A recent 

Finnish study, using a nationally representative population-based screening 

study, placed lifetime prevalence slightly higher than previous estimates at 2 

per 1000 (Piri et al. 2007).  

 

Demographics patterns in SMI  

Evidence of differences in SMI across population sub-groups is varied, but 

generally is believed to affect men and women equally. Lifetime prevalence of 

schizophrenia and bipolar disorder, according to The National Institute for 

Health and Clinical Excellence (2009) and Kirkbride et al (2012), is equal 

between the sexes. A review on available literature by Abrams et al (2008) 

showed schizoaffective disorder may have a greater impact in women, 

although as discussed above, the literature on this condition remains sparse. 
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Although the overall prevalence is equal between sexes, the patterns in 

incidence with age differ. Both schizophrenia and bipolar disorders have an 

earlier onset in men compared with women (The National Institute for Health 

and Clinical Excellence 2009; Information Centre for Health and Social Care 

2009; Kirkbride 2012), both occur most frequently between late adolescence 

to early adulthood. Schizophrenia typically has first onsets between the ages 

of 20 and 30 years, with estimates of a mean age of 21 in men and 27 in 

women. Bipolar disorder presents between the ages of 17 to 29 years (Pini et 

al. 2005; Halliwell et at. 2007), with estimates of a mean of 30 years in men 

and 35 in women, typically later than schizophrenia. Schizoaffective disorder 

has a marginally wider range, covering the modal ages of the two conditions 

above. The incidence of all declines with age, however, schizophrenia can 

have a secondary peak in incidence in the mid to late-forties (Loranger 1984). 

 

There are differences in many common mental illnesses across socio-

economic position (SEP), with the most deprived suffering a greater 

prevalence. The relationship with incidence appears weaker. Social 

fragmentation may promote incidence in deprived communities; however, this 

remains under-studied, with methodological weaknesses. Most importantly, 

little work has used longitudinal data to establish whether low SEP is causal of 

or caused by SMI.  

 

Knowledge about ethnic variations in mental illness and specifically SMI is 

more established. Notably, the population from black ethnic backgrounds, 

both of African and Caribbean origin, suffer a higher burden of SMI (Sharpley 
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et al. 2001). Remarkably, this is a relationship not found elsewhere in the 

world. According to the results of the AESOP study (Lloyd et al. 2005), the 

diagnosis of both schizophrenia and bipolar disorder is more common in the 

black population in the UK compared with other ethnic groups. Meta-

regression suggests black African and Caribbean groups have a relative risk 

of 4.7 to 5.6 for all psychotic disorders, compared with baseline population 

group in England (Kirkbride 2012). Traditionally, the impact of SMI has been 

considered equal in Asian and white ethnic groups; however, evidence is 

emerging of an increased risk in certain south Asian populations. There is 

evidence of a raised risk of schizophrenia in women of Pakistani or 

Bangladeshi ethnic backgrounds, with some suggestion of an increased risk of 

bipolar disorder. Finally, urbanicity, once controlling for age, sex and ethnicity, 

stands as an independent risk factor for schizophrenia (Kirkbride 2012).    

  

Recent trends in SMI 

Evidence behind recent trends in SMI is highly variable in terms of quality and 

the outcomes studied. Overall, there appears to be no change in incidence 

over approximately the last half a century (Kirkbride et al. 2009; Kirkbride et al. 

2012), a similar picture to that of wider mental health conditions. Incidence of 

schizophrenia has remained stable, although there is a suggestion of 

increased rates in London. These, however, stem from studies not accounting 

for the changes in the ethnic make-up of the population (Kessler et al. 2005). 

Some studies have shown a decline in psychotic disorders, but again there 

are limitations. When accounting for different diagnostic practices over time, 

this relationship is lost (Kirkbride et al. 2012). Finally, one area with significant 
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increase over time is drug-induced psychosis, with up to a 15 percent increase 

each year (Kirkbride et al. 2009; Kirkbride et al. 2012).  

 

Economic burden of SMI 

SMIs have a considerable burden on society, with substantial disability and 

economic impacts (Insel 2008). Indeed, the impact of SMIs far outstrips their 

prevalence. All diseases have indirect costs - costs not directly from the 

medical or social care, but from wider societal impacts. Mental illness, most 

notably SMI are remarkable for their burden of indirect costs (Das Gupta 

2002). There are few estimates on the cost of SMI specific to the UK. Bipolar 

disorders were estimated to cost the UK £2 billion in 2000 (The Sainsbury 

Centre of Mental Health 2003). Recent experimental estimates of the cost of 

all mental illness in the UK placed the burden at approximately £77 billion in 

2003. Only 16 percent of this was from health and social care; with £41.8 

billion in human costs, for example from losses to quality of life; and £23.1 

billion from losses in economic output. These figures do not contain social 

security payments which were not considered a cost, merely a transfer of 

spending power from the state to individuals (Kessler et al. 2008). This is, 

however, an opportunity cost, with spending diverted from other causes. In 

2003, these social security payments amassed to an estimated £9.5 billion. 

Unemployment and sickness absences stand as a particular cost for SMIs, 

with up to 46 percent unemployment in patients with bipolar disorder (The 

Sainsbury Centre of Mental Health 2003).  

Unemployment in patients with SMI particularly impacts patients i.e. more than 

the state: analysis from the United States estimated a $16,300 (£12,600 in 
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2012) per year reduction in earning in patients with SMI (Centorrino et al. 

2009).  

 

Patients with SMI induce increased health care spending. In a Swedish 

cohort, for patients with bipolar disorder compared with match general 

population controls; prescription expenditure was 6 times greater, emergency 

department 5 times, inpatient cost 5 times, and outpatient cost three times 

more. Just comparing subsets with other morbidities, for example patients with 

bipolar disorder and CVD compared with CVD alone, differences dropped but 

were still large. In-patient costs were four times greater, out-patient two times 

greater and emergency department costs three times greater. This 

relationship held across a range of diagnosed co-morbid conditions, but was 

especially great for diabetes and metabolic syndrome. Even restricting further 

to specific aspects of prescribing within specific conditions, spending was still 

greater in patients with bipolar disorder. Spending on controlling glycaemia in 

patients with diabetes, for example, was 50 percent higher per patient with 

bipolar disorder (Kessler et al. 2001). Generally, patients with SMI have high 

health service use. Estimates place patients with bipolar disorder more likely 

to use health services than all conditions except for those with panic and 

psychotic disorders (Pini et al. 2005). 
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SMI  and co-occurrence of physical medical diseases  

Patients diagnosed with an SMI suffer generally poorer health compared with 

the general population. This is borne out most clearly by their life expectancy. 

Estimates place the life expectancy of patients with SMI at between 15 and 30 

years lower than the general population (Druss 2007; Jones et al.2004), 

although possibly a ten year difference in those with schizophrenia compared 

with those without  (Drapalski et al. 2008). There is further worrying evidence 

in recent years from the United States that this gap may be growing. In 

general, poor health outcomes stem from a combination of poor health 

behaviours, direct impacts of the SMI, impacts of medication and fragmented 

care (Drapalski et al. 2008). Patients with SMI have poor help-seeking 

behaviour, which particularly impacts on poor outcomes. It is, however, not the 

SMI directly that has greatest impact on mortality: it is secondary conditions 

that add significantly to morbidity and mortality (Druss 2007). These co-morbid 

conditions (presenting in conjunction with the index disease), contribute 

significantly to poor health outcomes. From a large sample of Medicaid 

recipients in the US, estimates suggest over 70 percent of patients with an 

SMI had a second diagnosed chronic condition, with 50 percent having two or 

more (Carney et al. 2006). When examining co-morbidity with SMI, authors 

conclude that patients are at an increased risk of diseases affecting every 

organ of the body (Felker et al. 1996). Notably, although incidence rates of co-

morbid conditions are increased, there is evidence that mortality rates are 

increased to a greater degree (Kilbourne et al. 2011). This is an important 

finding, indicating that once diagnosed with co-morbid conditions, care 

outcomes are significantly worse (McIntyre et al. 2006). There finally is a 
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greater amount of undiagnosed diseases, so patients with SMI are less likely 

to be aware that they have a co-morbid condition even if diagnosed (Radke et 

al. 2010).  

Co-morbid conditions exacerbate the impact of SMI. For example, in a sample 

of patients suffering from manic episodes, the presence of a physical co-

morbidity increased inability to work (a two-fold increase comparing one co-

morbidity with none) (Kilbourne et al. 2005). There is further evidence of an 

association between greater co-morbidity with lower income, greater benefits 

claims and medical consultation. There is even evidence of a dose response 

as the number of co-morbidities increase (Kilbourne et al. 2005). 

 

Although the co-morbid conditions affect the entire body, certain co-morbid 

conditions are particularly common in patients with SMI. Older SMI patients, 

for example, suffer an especially greater burden and circulatory and 

pulmonary co-morbidity (Hennekens et al. 2005). CVD is the most frequent 

cause of death in patients with bipolar disorder, followed by cancer and 

respiratory disease. Below the evidence behind a number of co-morbid 

conditions is reviewed in greater detail.  

 

Cardiovascular Diseases (CVD) 

The cardiovascular diseases (CVD) are the leading cause of death in both 

patients with schizophrenia and bi-polar disorder, with coronary heart disease 

(CHD) being the single biggest cause (Osby et al. 2001; Miller et al. 2006; 

Goff et al. 2005). Estimates place patients with an SMI at between a 2 to 3-

fold increased risk of a CVD event compared with the general population ( 
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Drapalski et al. 2008; Osby et al. 2001; Goldstein et al. 2009; Osborn et al. 

2007), with a similar 2 to 3-fold increased risk of death (Druss 2007). One 

review of data for patients with schizophrenia concluded that approximately 

two thirds of this population are expected to die from CVD, compared with 

approximately half of the general population (Osby et al. 2001). For patient 

sub-groups, women may have a greater increase in CVD risk than men. There 

is also an earlier onset of CVD. In one US survey, patients with CHD were on 

average 13 years younger if they had a SMI co-morbidity (Osborn et al. 2007). 

 

The best English data comes from over 40,000 patients with SMI in the 

general practice research database (GPRD) - a nationally representative 

collection of primary care records. Under the age of 50 years, patients with 

SMI had a 3-fold increased risk of CHD mortality and 2.5 times increased risk 

of stroke; over 50 years these were both 2-fold increases (Johannessen et al. 

2006). The increased risk of a first CVD event, did not match that for mortality, 

with in fact no increased risk for those aged 50 years and over.  

 

The main cause behind this substantial co-morbidity and cause of mortality is 

clear. Patients with SMI have substantially poorer CVD risk factor profiles than 

the general population. A large review of published data from the United 

States clearly indicates the problem. Patients with schizophrenia have a 

higher smoking prevalence; poorer control of blood lipids; a marginally higher 

prevalence of hypertension (19 vs. 15 percent) and considerably more obesity 

(Osby et al. 2001). The increased risk of hypertension is less clear. In one 

Swedish sample incidence was significantly higher in patients with bipolar 
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disorder, but not for those with schizophrenia. Other data suggests only a 

slight increase in patients with SMI.  

 

Similar data from the UK shows patients with schizophrenia have the entire 

suite of CVD risk factors, much worse than the general population. This 

includes more smoking, obesity, physical inactivity, poor lipid profiles and poor 

diet (McCreadie 2003). Osborn et al. reported recent data on the 

cardiovascular health in SMI patients in UK general practice (Osborn et al. 

2006). Compared with the general population, SMI patients were twice as 

likely to have a raised global CVD risk scores, with a higher median risk score. 

The difference in global risk was especially apparent for younger ages. There 

was a higher smoking prevalence, lower HDL cholesterol, higher total 

cholesterol, a small increase in raised BP and a higher diabetes prevalence 

(diabetes being an independent  risk factor for CVD) (McCreadie 2003) (see 

page 23). Older patients have smaller differences in CVD risk factors, 

probably due to a healthy survivor effect (Johannessen et al. 2006).  

 

Two particular risk factors for CVD (as well as risk factors for other poor health 

outcomes) stand out in groups of patients with SMI. Estimates of smoking 

prevalence for those with SMI are between 60 and 90 percent, approximately 

3 times those in the general population (Drapalski et al. 2008; Osby et al 

2001). There is also evidence of an even higher difference in the prevalence 

of very heavy smoking (Drapalski et al. 2008). Increased smoking rates are 

likely for many reasons, including the alleviation of symptoms and social 

acceptance. Adding to these problems, there is evidence from routine care, 
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that smoking cessation efforts can be less effective than in the general 

population. This critically does not have to be the case. Trials show smoking 

cessation can be effective in patients with SMI, especially if tailored for the 

patient and drug therapy is included (Osby et al 2001). 

 

The second risk factor to particularly impact patients with SMI is obesity. An 

American sample suggested an approximately two-fold increase in 

prevalence, with an especially large increase in highly obese women 

(Dickerson et al. 2006). Women with SMI suffer a higher burden of obesity 

compared with men (Drapalski et al. 2008). Of greater concern to 

cardiovascular health is the increase in abdominal obesity compared with  

obesity per se (Drapalski et al. 2008) (see page 25). In addition to risk factors, 

deficiencies in care outlined above have an impact on mortality rates; 

including poor prevention and acute care. UK data show the increased risk of 

CVD mortality is significantly greater than the first event; secondary prevention 

and acute care for CVD remains suboptimal in patients with SMI 

(Johannessen et al. 2006).  

 

Respiratory Illness and other conditions  

Respiratory illness is another significant co-morbidity for patients with SMI. 

One US study, showed COPD was the single greatest co-morbidity (Carney et 

al. 2006). Similarly, in another study, COPD and asthma in SMI group were 

the second and third most prevalent (point prevalence) conditions after 

hypertension (Sokal et al. 2004). There is evidence that respiratory diseases 

in this group shows a greater increase in standardised mortality than the 
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general population, when compared with circulatory disease and diabetes. 

There is increased risk of many respiratory illnesses, including COPD, 

bronchitis and asthma (Drapalski et al. 2008; Himelhoch et al. 2004). Data 

suggest a three to four-fold increase in chronic bronchitis, a five-fold increase 

in asthma risk and approximately two-fold increase in COPD (Drapalski et al. 

2008; Sokal et al. 2004). Although largely due to smoking prevalence, this 

may not be the only factor. Second hand smoke, as well as other as yet 

unknown factors may be important (Drapalski et al. 2008; Sokal et al. 2004). 

As discussed above, patients with SMI are believed to be at increased risk of 

co-morbidities affecting the entire body. There is evidence of higher HIV 

prevalence in some SMI populations (Drapalski et al. 2008). For example in 

one US sample, patients with schizophrenia had a 1.5 times greater adjusted 

prevalence and a four-fold increase in patients with affective disorders (Bank 

et al. 2002). There is some evidence of women with SMI having an increased 

risk of obstetric complications (Thornton et al. 2010). Finally, the impact of 

how patients with SMI interact with health services is highlighted in paper 

which describes late presentation with appendicitis and how this  results in 

poorer outcomes and more complications (Cooke et al. 2007). 

 

Diabetes  

Diabetes (and impaired fasting glycaemia (IFG)/ impaired glucose tolerance 

(IGT) has an established and significantly increased impact for patients with 

SMI. There is a clear increased incidence and prevalence of diabetes in 

patients with SMI. Older estimates from the US indicate a 1.5 to two fold 

higher prevalence of diabetes, although this may now be higher (Osby et al. 
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2001; Bushe 2004). More recent estimates quote this figure as a three to four 

fold increase compared with the general population (Drapalski et al. 2008; 

Bushe 2004; Goldstein et al. 2009). One significant international study, 

including 220,000 respondents from 52 countries showed diabetes prevalence 

in patients with SMI varied considerably between countries, ranging from 

nearly zero to eleven percent (Nuevo et al. 2011). Finally, there is some 

evidence that if diabetic, SMI patients are more likely to have complications 

(Felker et al. 1996; Nuevo et al. 2011). This indicates poor glycaemic control, 

which is likely in part to be due to poorer care and delayed diagnosis, but this 

together with anti-psychotic medication also potentially important (Nasrallah et 

al. 2006; Holt et al. 2010). 

 

Despite being evident, there is considerable debate over the cause of this 

increased risk. Reasons include, poor health behaviours and lifestyle which 

are evident  in patients with SMI (Bushe 2004; Osby et al. 2001); weight gain 

and insulin resistance caused by anti-psychotic medication (Bushe 2004; 

Osby et al. 2001); or an unknown physio-pathological cause, potentially 

through a direct genetic link or inflammatory mechanisms (Nuevo et al. 2011; 

Thakore 2005). Current studies can, at times, offer contradictory views. One 

longitudinal study in Wales found, in a sample of patients presenting with 

psychosis, that before contact with the health service, diabetes prevalence 

was equal to the general population. After the first encounter, however, 

incidence doubled (Le Noury et al. 2008). This, the authors concluded, 

suggested treatment for SMI was responsible for diabetes. A second study of 

note showed that as psychotic symptoms increased, there was linear increase 
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in the prevalence of diabetes. This was independent of SMI diagnosis, 

medication and known metabolic risk factors. This suggests a more direct link 

between symptoms and diabetes, although how this might occur is entirely 

unknown (Nuevo et al. 2011). Finally, there is evidence of an increased 

prevalence of aspects of ‘the metabolic syndrome’ (see below) in patients with 

SMI, of more severe symptoms and of more limited impacts of treatment 

(McIntyre et al. 2010). In reality, it seems likely that both lifestyle and the 

medications are implicit in the diabetes risk, with potential for a third, less 

understood pathway.  

 

Metabolic syndrome  

The metabolic syndrome is a cluster of conditions relating to metabolic 

abnormalities, and stemming from a small number of common causes 

(Grundy et al. 2004). These are risk factors for a number of diseases, most 

notably CVD and diabetes. Numerous definitions exist, but generally the 

cluster includes abdominal obesity, raised blood pressure, dyslipidemia, 

hyperglycaemia and micro-albuminuria. Although one can consider them as 

merely risk factors for other diseases, these tend to be grouped due to their 

common causes. Between 50 and 60 percent of SMI patients are considered 

to have the metabolic syndrome internationally, the prevalence of metabolic 

syndrome in bipolar disorder ranges from approximately 20 to 55 percent. The 

two share both lifestyle and patho-physiological risk factors. The depressive 

side of bipolar disorder, for example, increases eating and therefore weight 

gain. There are also metabolic traits shared by the conditions, for example 

gluco-corticoid resistance and immune system abnormalities. Recent genetic 
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analyses show that metabolic syndrome, and indeed CVD itself share basic 

genetic pathways (de Almeida et al. 2012). 

 

As mentioned above, anti-psychotic drugs (neuroleptics) may be implicit in the 

metabolic syndrome. These drugs cause weight gain, although there is 

variation between agents.  Two medications, Clozapine and Clanzapine, may 

be especially associated with metabolic syndrome, increasing total weight 

gain, abdominal adiposity, insulin resistance and affecting lipid metabolism 

(Newcomer 2007). In a randomised trial comparing anti-psychotic medication 

with a placebo, there was a 1.2 to 5 fold increase in impaired glucose 

tolerance and evidence of up to 4kg in weight in 10 weeks when taking the 

medication (Druss 2007). Increased risk of metabolic syndrome, therefore of 

CVD and diabetes, is complex in patients with SMI and multi-factorial in its 

causes.  

 

Mental co-morbidity  

Other mental co-morbidity, despite potentially not having the same impact on 

mortality as some conditions, does represent a significant burden on morbidity 

in patients with an SMI. The majority of patients with bipolar disorder have at 

least one other axis-1 disorder, with estimates of lifetime prevalence of 

upwards of 65 percent and a point prevalence of one third (Pini et al. 2005; 

McElroy et al. 2001). The greatest single mental co-morbidity is anxiety 

disorder, with some lifetime estimates of prevalence reaching 65 percent (Pini 

et al. 2005; McElroy et al. 2001). The risk is not restricted to anxiety disorder, 

with for example a ten-fold increased risk of panic disorder. The prevalence of 



 
 

28 

concurrent mental co-morbidities is exemplified by data from patients in one 

English mental health unit from the 1990s (Pini et al. 2005). Twenty percent of 

patients with an SMI reported a second mental health diagnosis from within 

the previous six months (Virgo et al. Journal of Mental Health 2011). 

 

Substance misuse is highly prevalent in patients with SMI. Although now 20 

years old and from the US, the largest general population survey of mental 

health co-morbidity exemplifies this. The rate of lifetime alcohol or drug use 

disorder in the general population was approximately 17 percent. This was 

compared with 47 percent for people with schizophrenia, 56 percent for 

people with bipolar disorder and around 30 percent for people with other mood 

disorders or an anxiety disorder. Overall, across SMI this was summarised as 

a 50 percent lifetime prevalence (Regier et al. 1990), with a 25 to 35 percent 

point prevalence. Comparing the odds of risk with the general population, 

there is 10 to 20 times higher odds of alcohol abuse and up to 30 to 40 times 

increased odds of illicit substance abuse in both patients with bi-polar disorder 

and schizophrenia (Felker et al. 1996; Nuevo et al. 2008). 

 

Despite this bleak prognosis, there is evidence of successful inventions for 

what is called the “dual diagnosis”, SMI with substance abuse. Trials using 

peer-support, longer residential interventions and even intensive outpatient 

intervention can all reduce substance abuse. No data currently assess the 

cost incurred by health systems from these co-occurring mental conditions. It 

is, however clear, that patients with an SMI require wider care for their mental 

health than the index condition alone.  
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2.2 Commissioning for patients with SMI  

There is evidence of poorer acute care, including follow-up after disease 

events and hospital in-patient care, in-patients with SMI (England et al. 2005; 

NHS Diabetes Commissioning Mental Health and Diabetes Services 2001). 

Again in a national US sample, patients with SMI were less likely to receive 

hospital care for CVD and diabetic complications. Similarly, despite evidence 

of increased need, patients with SMI are significantly less likely to receive 

appropriate care following a CVD event, patients with SMI were up to three 

times less likely to receive necessary procedures (England et al. 2005).  

 

Following heart failure, there is evidence that SMI patients are less likely to 

receive follow-up care and more likely to face re-admission. One final piece of 

evidence concerning the quality of care, suggests that patients with 

schizophrenia have a greater rate of adverse events in hospital, compared 

with the general population (Mechanic 1995). 

 

The reasons behind limitations in care and the quality of care are complex and 

remain understudied. Generally, it is the evidence based and more cost 

effective practices that are underused, whereas some areas, such as use of 

emergency departments, can be overused. One of the largest weaknesses in 

care provision is the separation of mental health services from other aspects 

of care. This separation can be geographic, through funding, through 

organisation and expertise, or the culture of providers. Although possibly the 

most simple difference, the geographic separation is likely to be vital. There is 

direct evidence that co-location of wider medical and preventative services 
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with mental health services can increase the use of a suite of services and 

result in better patient outcomes, including blood pressure control.  

 

One thing that is clear is that integrated care is of paramount importance for 

patients with SMI. As such, primary care has been proposed as the best 

setting to improve patients’ health. Primary care practitioners, have the 

greatest experience of holistic and integrated care. For this to happen, 

however, a number of barriers must be overcome. There firstly needs to be 

collaboration between primary care and psychiatric services. Primary care 

doctors can be unfamiliar with psychiatrists, which can limit access to care 

resulting in ? generally face poor co-ordination and collaboration (Cooke et al. 

2007). Secondly, primary care clinicians must accept psychiatric conditions do 

not inhibit routine medical care. Clinicians can view patients with SMI as 

disruptive to their practice, cite time constraints as a barrier or simply be 

uncomfortable with the situation. All of these stop general practitioners 

managing patients with SMI. Qualitative work does, however, suggest general 

practitioners are willing to take a central role, not only in the diagnosis of, but 

also the routine care of patients with SMI (Johannessen et al. 2006).  

 

The appropriate site of health care for patients with SMI is still debated. 

Psychiatrists often acknowledge they should provide physical care. This, 

however, frequently does not happen. Psychiatrists can delegate care and 

need not keep up to date with evidence-based practice outside their specialty. 

Some psychiatrists, although a minority, do not consider the physical health of 

their patients, which contributes to the morbidity. 
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These barriers are frequently caused by the SMI itself, and include forgetting 

required care, a lack of knowledge of how to access care and difficulties in 

communication.   

 

There is little specific guidance on commissioning services for patients with 

SMI, and less evidence on the effectiveness of different strategies. One 

certainty is that both continuity of care and integrated care play particular 

importance for patients with SMI (England et al. 2005; NHS Diabetes 

Commissioning Mental Health and Diabetes Services 2001). They must be 

able to ‘seamlessly’ navigate between aspects of care, especially mental 

health care – but also physical care. Integration is particularly important 

because patients with SMI are amongst the most socially excluded (England 

et al. 2005); therefore have fewer opportunities for care and the condition can 

make it hard to negotiate care pathways. They also require care over 

prolonged periods, a situation in which integration is vital (England et al. 2005; 

Mechanic 1995). 

 

Integration is especially difficult for patients with SMI. Jurisdiction for care can 

span many bodies, for example mental health trusts, secondary trusts, primary 

care and social services. Integration requires both the co-ordination and co-

location of services. Shared training and learning amongst practitioners may 

also be important (England et al. 2005). Finally, a model in which patients are 

assigned a single, multi-disciplinary team to manage physical health need 

may be effective. These teams can co-ordinate, but also support those in 

direct contact with patients, reducing fragmentation (Mechanic 1995).  
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A number of considerations for commissioning services for patients with SMI 

emerge from the evidence above, with a particular focus on co-morbidities. 

Firstly, and important to consider for all commissioning decisions, given the 

differential increase in mortality compared with disease incidence for patients 

with SMI, there is a very real need to improve the routine care in those with 

diagnosed disease (NHS Diabetes Commissioning Mental Health and 

Diabetes Services 2001). Commissioning services that allow for regular 

physical assessment may be effective. Following a formal guide, such as one 

for diabetes produced by NHS diabetes may also enable the correct 

processes for evidence based commissioning (NHS Diabetes Commissioning 

Mental Health and Diabetes Services 2001).   

 

The setting of physical care may be important. Firstly, there is evidence that 

distance to care can be especially inhibitive for patients with SMI. Co-location 

of physical care with mental health services may be effective. At the very least 

there has to be a clear statement of where physical healthcare is received and 

who is responsible. This will prevent patients with SMI from falling in between 

providers, thus missing out on care. Mental health nurses are considered, due 

to their relationship and contact with patients, to be in an excellent position to 

help improve the physical health of the SMI. Frequently, however, they are 

lacking competencies and training. Using evidence based health improvement 

profiles (HIPs) and training may promote this care pathway to reach its full 

potential (Robson et al. 2007). 

 



 
 

33 

 Patients with SMI suffer poorer than average outcomes from national 

screening programmes, largely due to decreased uptake. An alternative 

approach to screening or at least extra focus on patients with SMI may be 

warranted. Bespoke interventions for patients with SMI to reduce CVD risk 

can be effective (Smith et al. 2007).  Currently CVD risk in those without 

diagnosed vascular disease is the focus of the NHS Health Check 

programme. Incorporating patients with SMI into the programme, but like one 

London PCT, separate performance management to promote uptake is a 

possible solution (NHS Diabetes Commissioning Mental Health and Diabetes 

Services 2001). Bespoke interventions for ‘dual diagnosis’ (SMI and 

substance abuse) can also be effective. Finally, dental care is poorer in 

patients with SMI than the general population. Although there are few 

evidence-based interventions, focus must be placed on access to care and 

good oral hygiene, with particular focus on provision for in-patients.  

 

In conducting this review, several gaps in the literature on mental health and 

medical co-morbidity became evident. First, most of the existing literature on 

co-morbidity examines the impact of particular co-morbid conditions on an 

index medical or mental illness (e.g., diabetes and depression). While there is 

value in these specific, clinically-focused approaches to understanding co-

morbidity, patients with co-morbid conditions share many common features 

that make them valuable to examine as a distinct population of interest. They 

are, in many ways, analogous to racial and ethnic disparities groups who are 

monitored separately and often require tailored quality improvement 

programs. Second, nearly all of the current evidence for this population 
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focuses on clinical models rather than organisational or systems level 

approaches to implementing those models. Comparative effectiveness trials 

will be needed to compare organisational approaches to delivering and 

sustaining these evidence-based approaches to improving care for persons 

with co-morbid conditions. Finally, health reform will include a broad range of 

changes in insurance coverage and care delivery that could have a 

disproportionate impact on persons with co-morbid medical and mental 

conditions. Tracking the impact of this legislation on costs, burden and 

outcomes of care for this population could provide important information to 

inform future iterations of health legislation. 

 

2.3 Prevalence modelling  

Prevalence modelling is a technique used to estimate the number of people 

with a particular condition or risk factor in a population when direct evidence is 

not available (American Psychiatric Association Diagnostic and Statistical 

Manual of Mental Disorders 2002). Direct evidence may be lacking because 

surveys or data collection have not been undertaken, are technically 

impractical, or are unreliable. 

 

Methods for generating synthetic or modelled estimates range in complexity 

from simple to highly sophisticated. Crude estimates of the number of cases 

can be generated by applying known prevalence rates to a different 

population, for example applying national rates measured in a large survey to 

a local population; or applying local rates for a recent year to a projected 

future population. However, many factors such as age, gender, deprivation 
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and ethnicity can influence the prevalence of a behaviour, risk factor or 

disease and more complex epidemiological modelling techniques are required 

in order to take such factors into account. 

 

The need for prevalence Modelling 

In many cases, routine data are not available to measure directly the 

frequency and distribution of diseases or behaviours in local populations 

(Diez-Roux 2000). Modelling is often the best alternative for quantifying 

prevalence in the absence of reliable direct measures. Typically, direct 

measures are not available at local level for lifestyle behaviours such as 

smoking or alcohol consumption, or for diseases that are generally managed 

in primary care, for example diabetes or hypertension. 

 

Understanding the distribution of behaviours that affect health (either 

positively or negatively) is increasingly important in the allocation of public 

health resources and the delivery of interventions (Congdon 2006; Congdon et 

al. 2007). Prevalence modelling can be used to assess need and help identify 

those communities that will most benefit from public health initiatives. 

Modelled estimates of prevalence can also be helpful in explaining variations 

in care utilisation and outcomes (Congdon et al. 2007). 

 

The quality and completeness of routine datasets, such as the Quality and 

Outcomes Framework (QOF) for primary care, are improving, and QOF is now 

a reasonable basis for prevalence estimates of many diseases. However, the 

measured prevalence is limited to diagnosed disease (Congdon 2008; Cooper 
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et al. 2002). Modelled estimates that include undiagnosed disease in the 

population can offer additional information that can inform case-finding 

initiatives and highlight areas where under-diagnosis could be an issue. 

 

There is considerable interest in obtaining estimates of expected prevalence 

at various geographies and for different subgroups of the population, for 

example ethnic groups or age cohorts, to assist in understanding and tackling 

health inequalities (Congdon et al. 2007). 

 

Methods 

Many methods exist for creating synthetic estimates of prevalence, and in 

many cases methodologies are combined and adapted to make best use of 

the information and data available (Homer et al. 2006). There is often a 

balance to be struck between increasing the complexity of the model by 

incorporating more contributory factors and the availability of good quality data 

at local level to populate the model. These input requirements of a model are 

often restricted by what information is available (Gunners-Schepers 1989). 

Complex models can also suffer from difficulty of interpretation, which negates 

the benefit of increased accuracy. 

 

2.4 How does the model work? 

All models are based on assumptions. Good models clearly state the 

assumptions that have been made and good interpretation of modelled 

estimates takes into account the limitations of the assumptions. 
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1) Regression models using demographic characteristics from large 

surveys 

Multiple variables from large surveys can be used to model the risk factors for 

a behaviour or disease, using techniques such as multi-nomial logistic 

regression. However, it is important to limit the factors considered to those for 

which data are available in the population of interest. For example, cholesterol 

level or family history of disease may be important risk factors which were 

recorded in the source survey, but such information is not usually available at 

population level and therefore these are not appropriate variables to be 

included in a disease prevalence model. 

 

National surveys are usually limited to people living in private households and 

omit populations such as the homeless, those living in institutional care, 

‘special populations’ (armed forces and prisoners) who are the people 

particularly likely to decline to participate. For some disease areas, notably 

some types of mental illness, these omitted populations can be particularly 

important. Despite this limitation, national surveys are often the best source of 

prevalence information available, but where possible should be used in 

conjunction with other evidence about the likely extent to which they miss 

cases. Models can then be adjusted to take account of the resultant under-

estimation of prevalence. 

 

Although regression models most commonly use survey data, other data 

sources, for example information recorded in general practices, can also be 

used to create this type of prevalence model. 
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2) Capture-recapture methods 

Capture-recapture methods are used to estimate the number of people with a 

disease or behaviour, for example the total number of injecting drug users, 

including those unknown to any services. A random sample of people is taken 

(‘captured’) from the whole population, and examined for the characteristic of 

interest. ‘Sample 1’ is the number of individuals found to have the 

characteristic. A second random sample of the whole population is then taken 

and ‘Sample 2’ is defined similarly as those found to have the characteristic. 

Some people will appear in both Sample 1 and Sample 2 and the proportion of 

Sample 2 that was also in Sample 1 is calculated. This proportion is assumed 

to be equivalent to the proportion of all the people with the characteristic in the 

whole population that were captured in Sample 1. Hence, by dividing Sample 

1 by this proportion an estimate of the total number with the characteristic is 

obtained.  

 

3) Combining multiple sources 

Often there are several estimates of prevalence rates available from larger 

and smaller scale epidemiological studies, which need to be integrated. For 

example, regional prevalence rates from large national surveys can provide 

control totals for smaller geographies for which synthetic estimates are 

generated. Each source will have strengths and weaknesses: national surveys 

may have robust sampling and include a wide range of risk factors, but can 

lack local detail, whereas local studies may use more elaborate methods, for 

example capture-recapture techniques, but may focus on unrepresentative 
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areas. Combining prevalence estimates requires critical appraisal of the 

appropriateness of each source and development of mathematical 

methodology, to integrate the variance estimates from unrelated sources to 

produce an overall confidence interval for the synthetic estimate. 

 

Meta-analysis techniques have been developed to combine multiple estimates 

of prevalence, each of which may have data quality issues, to produce one 

triangulated estimate with improved quality at small area level. Estimates from 

a wide range of sources can be combined, including prevalence estimates 

from surveys, data from primary care and modelled synthetic estimates.  

Bayesian statistical methods can be employed to synthesise a diverse set of 

available data into a prevalence estimate. For example, Goubar et al (2008) 

combined an array of information, including routine surveillance data and 

anonymous surveys, to estimate HIV prevalence in various risk groups using 

Markov chain Monte Carlo simulation. 

 

2.5 Validation, confidence intervals and robustness 

Prevalence model validation is problematic for a number of reasons. There is 

no other major or definitive source of the national HSfE prevalence data to use 

for the models, apart from population-based prevalence research for specific 

diseases. The literature search before developing each model revealed what 

studies currently existed and this was also useful for initially validating the 

models. The accuracy of model outputs depends on the predictive power of 

the model and on the accuracy of the input data. Models should be subjected 

to validation checks to ascertain their robustness and general applicability. 
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Estimates of the accuracy of prevalence estimates based on simple models 

can be generated by combining the uncertainty in prevalence rates from the 

source study or trial with the stochastic variation expected given the size of 

the local population. This approach results in a range estimate for the 

prevalence, rather than confidence intervals. The range estimates are 

calculated using the same methods as those used to derive the control limits 

for funnel plots.  

 

However, if there is uncertainty around both the population data and the input 

data, the calculation of confidence intervals can be complex. Bootstrapping 

methods are commonly used in such situations. 

 

Four ways of validating models  

a.    Sensitivity testing 

Sensitivity testing can be useful in assessing how the uncertainty in input data 

affects prevalence estimates. For some models, very small variations in the 

input data will have a large effect on the results. Other models may be 

relatively insensitive to variability in input data. For example, 10 different 

sources of practice level smoking prevalence data were input into the APHO 

chronic obstructive pulmonary disease (COPD) models. Estimated COPD 

prevalence in general practices ranges from 1% to 7%. In 92% of cases, 

changing the source of smoking prevalence data made an absolute difference 

of less than 0.3% in the COPD prevalence estimate. Estimates generated 

using different smoking prevalence source data were strongly correlated with 
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each other (r2 > 0.95). 

One-way sensitivity analysis such as this evaluates the impact of a change in 

one variable on the model results. Multi-way sensitivity analysis is more 

powerful and can be used to assess the impact of changing two or more 

variables simultaneously. 

 

    b.    Internal validation 

One method of assessing the performance of a model is to use it to predict the 

response for each subject in the source data (e.g. a large survey). These 

predictions are called fitted values. The differences between the fitted and the 

observed values are called residuals. Residual analysis can be used to check 

the adequacy of any assumptions used when creating the model. It can also 

be used to identify whether any additional factors should be included. 

To check the accuracy of the model, the predicted ‘classification’ of each 

individual (i.e. whether or not they have the disease or behaviour that is being 

modelled) can be compared with their actual classification. This will result in a 

‘misclassification’ (also known as a ‘contingency’ or ‘confusion’) (Table 1). 

 

  

Table: 1.  Misclassification table of modelled results 
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 c.   External validation 

   One method of assessing external validity is to map observed and expected 

prevalence and investigate associations with a low ratio of observed to 

expected cases, at both local authority, PCT and/or practice levels. The gold 

standard validation would be comparison of model predictions with a 

comprehensive population survey or case-finding efforts in a number of 

differing populations: deprived and advantaged, rural and urban, etc.  

 Receiver-Operating Characteristic (ROC) Analysis 

ROC analysis is a useful way of assessing the accuracy of a model by 

understanding the trade-off between the sensitivity (in this sense referring to 

the true positive rate; Table 2) and the specificity (the true negative rate). The 

method was developed to assess the accuracy of distinguishing signal from 

noise in radar systems and has since been applied in many other settings, 

including clinical diagnostic testing and the evaluation of regression models 

that classify cases into two categories, for example diseased and non-

diseased. Sensitivity is plotted against 1-specificity (specificity subtracted from 

one) over a range of values and the area under the curve (AUC or AUROC) is 

used as a summary of the predictive or diagnostic accuracy. A ‘perfect’ model 

that accurately predicts every case has AUROC = 1. Typically, models have a 

convex ROC curve and an AUROC between 0.5 (equivalent to random 

chance) and 1. A model with AUROC < 0.5 is less accurate than random 

chance. 
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2.6 Projections and forecasting using models 

Prevalence models can often be adapted to predict future prevalence. The 

sophistication of projected prevalence estimates depends on the modelling 

methodology adopted, and falls into three broad categories: 

a. Same risk, changing (e.g. increasing and/or ageing) population. Use the 

same model coefficients or risks of disease but incorporate population 

projections. For example, what will be the prevalence of coronary heart 

disease (CHD) in 2020 if we assume that the age- specific risks do not 

change but we take into account the aging population? This is sometimes 

called the ‘prevalence ratio method’ 

b. Same population, changing risk. Use the same demographic information 

but change the risk profile. For example, what will be the prevalence of 

CHD if smoking prevalence reduces? 

c. Modify the population and the risks to produce ‘scenario models’ e.g. what 

will be the CHD prevalence with an ageing population and reduction in 

smoking. 

 

One of the characteristics of complex systems such as health is, that no 

matter how tightly the present state of the system is specified the future state 

cannot be confidently predicted. Extra care should be taken in interpreting 

modelled estimates of projected prevalence as the assumptions inherent to 

the model may not hold in the future. 
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2.7 Using prevalence models 

It is important to remember that prevalence figures generated by models are 

synthetic estimates of the expected prevalence of disease. They are not ‘real’ 

measures of prevalence. It must be remembered that ‘all models are wrong 

but some are useful.’ Discrepancies between modelled estimates and other 

sources of data (such as primary care disease registers) may be due to local 

variations not captured by the model and cannot be solely attributed to 

weaknesses in directly measured prevalence data. For local populations that 

differ significantly from a ‘typical’ population (e.g. a large black and minority 

ethnic (BME) population that has a very different smoking pattern to the 

national average) the assumptions of a model may not apply and 

discrepancies may occur. Local expert opinion (e.g. local GPs’ knowledge of 

the pattern of disease) can be invaluable in interpreting and applying synthetic 

estimates of prevalence.  

 

A typical use of prevalence estimates is to compare expected prevalence with 

recorded prevalence, for example from the QOF in England. Such an 

approach needs to be taken with care. Are the two populations comparable, or 

are you trying to compare adult prevalence with all-age prevalence? Is the 

definition of disease used in the modelled estimates the same as the clinical 

definition used for diagnosis in primary care? Does the model include an 

estimate of undiagnosed disease or not? An understanding of these issues 

and differences is vital in interpreting any comparisons made between 

synthetic estimates and measured prevalence. 
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Because modelled prevalence is an estimate of expected prevalence, 

generally with the assumption that the local area behaves in the same way as 

the population from which the source data were derived, it is not straight 

forward to use synthetic estimates to evaluate the impact of a local 

intervention. For example, low modelled prevalence of binge drinking in a local 

area that has invested heavily in action to decrease alcohol misuse is not 

proof that the investment has reduced binge drinking. It is only an indication 

that the area can expect a low prevalence, given its demographic 

characteristics. Local interventions or prioritisation of an issue may explain 

discrepancies between modelled and directly measured prevalence, but the 

discrepancy does not prove that an intervention or policy is effective. It is not 

advisable to use prevalence models for performance management or to 

evaluate the impact of a local programme. 

 

It is also inappropriate to use modelled estimates to monitor changes over 

time. Changes in estimated prevalence could be due to updated local input 

data (e.g. demographics) or changes in the source data used to generate a 

new version of the model. There may also have been adjustments in the 

modelling methodology used if source data have been re-modelled. 

 

2.8 Issues with Small Area Estimates (SAE) 

A geographical area is regarded as "small" if the area sample is insufficient to 

yield direct estimates with adequate precision and reliability. In order to make 

estimates for small areas with adequate levels of precision, it is standard to 

use indirect estimates that utilise information from outside areas with similar 
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characteristics to the area of interest. Generally, a statistical model is used to 

obtain indirect estimates for geographical areas considered to be "small". The 

information from respondents who are outside the geographical area and 

other geographical characteristics are incorporated through the use of a 

statistical model. Small area estimates of the prevalence is important where 

risk factors vary widely, but are important for decision and policy makers, and 

their quality is a crucial concern. One example is in health promotion, when 

addressing area-specific health issues or lifestyle behaviours. In some 

deprived areas people might have more restricted access to screening 

programmes or preventive healthcare campaigns, or they may have a higher 

level of certain risk factors. Knowledge of the prevalence of risk factors in 

small areas is essential to make health promotion strategies more effective. 

 

Small area estimation is conducted in two stages. In the first stage, regression 

analysis is performed modelling survey data (e.g. HSfE) against predictors of 

the condition under investigation. This analysis is conducted for the subset of 

areas covered by the survey. The output from this first stage is a set of 

parameter estimates. At the second stage each area of the population, the 

coefficients of the predictor variables obtained from the first stage model, are 

attached to the identical set of variables at the small area level to produce an 

estimate for the area as a whole.  

Synthetic modelling for small areas uses a number of methods to generate 

estimates: 

a. Simple (non-modelled) methods using indirect standardisation, 

b. Models using individual level covariates only, 



 
 

47 

c. Models combining individual and local area-level covariates, 

d. Models using area level covariates only, 

e. Other approaches for larger areas of geography, 

 

Only two (a and c) of the methods are reviewed here as they are more 

applicable to the study in question.  

a) Indirect standardisation 

This involves applying national estimates derived from national surveys to 

area-level population counts to generate area estimates. An example of this 

approach – If we have to calculate the proportion of men smoking in a 

particular ward would involve (a) using national estimates of smoking patterns 

and (b) applying these to the local population, weighted by the proportion of 

persons in the sub-group in the small area.  

 

This model has an intuitive appeal in its generally easy and inexpensive to use 

(Nacul et al. 2007). The major drawback is that it assumes that the national 

rates of each subgroup are applicable uniformly across all areas.  

 

b) Using covariates from census 

This is an extension of the above method. It uses the information regarding 

the relationship between individual health behaviour measures obtained from 

surveys against a set of predictor variables for the same individuals.  

These models estimate the probability that a person with specific known 

characteristics (e.g. age, gender) currently smokes, is obese etc. The model-

based probabilities are then converted into estimated proportions in each 
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subgroups defined by the covariates who fall into relevant health category. 

These proportions are then applied to the covariate counts available from the 

census to derive an overall estimate for the small area in much the same way 

for indirect standardisation. The major drawback concerns its data 

requirements. This form of synthetic estimation requires exact 

correspondence between the covariates used at national and local level.  

 

The two methods above are all at the individual level. An alternative model is 

the multi-level models incorporating random effects (also known as mixed 

models). Their importance to small area estimation lies in the fact that a 

random effects specification assumes that significant systematic variation 

between small areas remains after the effects of covariates in the model have 

been accounted for. Such ‘unexplained’ variation is modelled through the 

addition of small area specific random coefficients to the fixed effects. Such 

multilevel models give rise to more complex ways of building a model for 

health behaviour measures; generating small area estimates from these 

models parameters and thus calculating the confidence interval for them.  

Using this technique, a model can be applied to survey data that 

simultaneously account for individual and area influences on health 

behaviours such as smoking. 

 

Conceptually and methodologically, the model is more useful than simple 

models as it combines both individual and geographic level data. However, it 

also requires stringent data requirements (as above) and estimating standard 

errors are infinitely more complex. 
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2.9 Summary 

So how should the “fitness for purpose” of prevalence models, including 

validity, be defined? In the case of disease risk scores, the technical criteria 

are widely agreed. The accuracy of a risk prediction score can be judged on 

two main components—calibration and discrimination. A well-calibrated score 

is one in which the predicted risk is similar to the observed risk. The more 

important component of accuracy is discrimination or the ability of a score to 

differentiate between people who will have an event from those who will not, 

over a defined period of time. 

 

Similarities and differences are discussed in the sections dealing with model 

development. In the absence of more robust local data QOF data is useful to 

an extent. However, use of case-finding in practice populations is seriously 

considered as a good predictor. In general, it is expected that modelled 

prevalence estimates to exceed QOF registered prevalence for 90 per cent of 

practices, with previously described model limitations leading to under 

prediction in perhaps ten percent of practices. 
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3. MENTAL HEALTH NEEDS ASSESSMENT 

3.1. Background 

The health and social care costs of mental health in England are around 22.5 

billion per year (New Economic Foundation 2011) and mental ill health 

accounts for more than 12% of the NHS budget. The number of people with 

mental health problems is likely to rise by 14.2% to 9.88 million by 2026 (The 

Royal College of Psychiatrists 2008; Murali et al. 2004).  

 

NHS Brent has a priority for commissioning mental health services. Part of the 

commissioning process requires a comprehensive needs assessment of the 

community to make decisions about delivery of an optimum service. This 

needs assessment needed to be evidence-based via three strands:  

1. geographical information mapping, 

2. framework to improve equity of access and,  

3. a process to improve mental health well-being and health promotion.  

 

An effective needs assessment exercise has to be inclusive of normative, 

comparative and social needs. It must have the robustness to represent the 

various spectrums into the mix of understanding the mentally ill’s needs 

(Marmot Review Team 2011; North East Public Health Observatory 2012). 

Felt and expressed need are usually obtained from interviews and surveys 

while normative and comparative needs are based on more grounded 

research and professional opinion (Smiley 2005).  
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Normative studies of needs assessments usually incorporate for instance, 

prevalence rates of a particular group while comparative needs focus on a 

comparison of services of a particular group.  

 

Several factors affect the estimation of mental health needs of the community. 

The prevalence of people at high risk of admission to a mental health service 

will be only one of many  factors which affect the need for care, as expressed 

as number of inpatient beds, outpatient slots and community mental health 

and primary care slots (and corresponding clinical resources) needed 

(Institute of Public Health 2011). Some of these influencing factors, among 

others, are likely to be: 

 

 Number (and trend) of cases in community, 

 Number of presenting cases in community per year (incidence), 

 Catchment population for the facilities, 

Clinical criteria and severity thresholds for those criteria, are used to make the 

clinical decision for referral from each part of the service to another  

(‘discharge’ threshold 

 

As part of this PhD study, a mental health needs assessment (MHNA) was 

conducted to identify and appraise the current and future level of service 

provision for the long term mentally ill. In addition to collating current data and 

intelligence as part of a better commissioning process, the exercise was to 

further refine a tool for the more accurate estimation of the prevalence of 
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mental health in the community and offer some projections with regard to 

changes in mental health needs over the next ten years.  

 

3.2. Aims 

The specific aims of this MHNA were:  

 To provide a broad health profile of the localities, with specific focus of the 

prevalence of mental illness in the London Borough of Brent.  

 Explore patterns of access to primary services.  

 Highlight areas of unmet need and gaps in provision.  

 Highlight the limitations in available data and intelligence and expose gaps in 

understanding.  

 Provide health intelligence for the development of a tool for a more accurate 

estimation of mental health prevalence and associated co- morbidities.  

 

Approach  

The structure of the needs assessment involved a population approach of 

identifying the chronic mentally ill group with a focus on areas of needs, 

supply, and demand. The concept of “need”, from a public health perspective, 

incorporates those needs felt and expressed by local people as well as those 

defined by professionals. It moves beyond the concept of demand and takes 

account of people’s capacity to benefit from health care and public health 

programmes. Supply refers to the number, type and distribution of services 

and resources available from all providers within Brent, public, private and 

third/voluntary sector. Demand is defined as the services that people ask for 
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and use, and can be difficult to measure. In this report, “activity” (i.e. numbers 

of people accessing and using services) can be used as a “proxy” for demand.  

 

3.3. Methodology of the needs assessment  

The needs assessment used rapid participatory appraisal (RPA) technique to 

complete a community health profiling (CHP). The latter has been described 

as an attempt to understand and describe the locality in order to prioritise 

need and has also been viewed as a ‘snapshot’ of the population, providing a 

systemic approach to assessing community health needs and resources 

(North East Public Health Observatory 2012).  

 

This technique is often used in public health to gain community perspectives 

of local health and social needs with aims  to translate these findings into 

action. Some researchers (Bowen 2008) considers RPA as a form of “action 

research” in that the researchers and participants undertake a collective, self 

reflective inquiry in order to understand and improve  upon practices in which 

they participate and situations in which they find themselves. Some primary 

data were obtained through local services delivery units (NHS, Local Authority 

and the 3rd sector) – this information, as part of the PCT data collection 

routine, not only represented real-time service activity but also provided 

general information on local mental health delivery programme to enable a 

profiling of the local mental health community.  
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The RPA provides a robust framework in an adaptable structure (information 

triangle) that holds together data from various sources. It uses a multi-method 

approach and incorporates data that is immediately available from primary 

and secondary sources including the national census. This enables the 

researcher to draw inferences, conclusions or assessments in a limited period 

of time and is thus relevant to health service evaluation. Data collected from 

one source were validated or rejected by checking with data from at least two 

other sources or methods of collection. Informants are not selected randomly 

but “purposefully”—that is, asking a range of people who are in the best 

position to understand the issues. The approach allows only a brief time frame 

and uses limited resources.  

 

The technique has limitations and statistics so produced must be interpreted 

cautiously as they may be based on routinely collected data, which may be of 

questionable accuracy, completeness, and reliability. However, the term 

“rapid” should not necessarily be taken to imply a “quick and dirty” method 

lacking in rigor. The inherent triangulation of sources of data and methods of 

data collection provides opportunities for cross-checking and validating 

findings throughout (Koelen, Vaandrager, & Colomer, 2001; Rhodes et al, 

1999; Tones & Green, 2004). The cyclical process also provides the potential 

for members of the community to reflect on findings as they take shape, and 

encourages their active participation in the research process (Koelen et al., 

2001). 
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3.3.1. Data extraction: - Exploring data sources (data mining) 

The primary method was to explore local, regional and national datasets for a 

comparison of prevalence estimates and a basket of indicators reported 

and/or known about service usage, giving profiles at both Borough and locality 

levels.  

 

Secondary analysis of the wider determinants of physical health and wellbeing 

in terms of healthcare services that supply either in primary or secondary care 

were considered.  

 

Much of the epidemiological analysis in this profile has been undertaken using 

an anonymised patient-level dataset from GP practices in Brent (QOF 

registers) and some Hospital Episodes Statistics (HES). Data from the Public 

Health GP dataset are recorded using Read codes and the date of extraction 

can vary across GP practices. The data source is in the appendix 3. 

Discrepancies in numbers when comparing information from QOF and the 

Public Health GP datasets are due to the method of extraction and coding of 

disease conditions. 

 

Secondary data was extracted using Dr Foster data and Local Authority. Dr 

Foster is a health informatics service that is used by the NHS to monitor the 

acute services (http://www.drfosterhealth.co.uk/). The information routinely 

processed by Dr Foster include key information on admissions, discharges, 

length of hospital stay, demographics (including language and ethnicity), 

http://www.drfosterhealth.co.uk/


 
 

56 

behavioural and clinical risk factors, key conditions, details on the control and 

management of conditions, key medications and interventions. 

 

3.3.2. Collecting data on service usage 

 

All NHS Commissioners including Brent community Trust are required to 

organise meetings with stakeholders and healthcare professionals to  explore 

and examine patients experiences of their care journeys. This enables  the 

gathering of intelligence  with regards to the usage of specific services and 

identified issues and performance details.  The nature of information is 

inclusive of  qualitative material from the “Quality Framework” service 

evaluations schemes which carried out routinely. Data for the mapping come 

from a variety of sources including nationally available statistics – the NHS 

Information Centre for Health and Social Care, Dr Foster  and the local 

authority. 

 

The study used this opportunity, as part of the needs assessment, to profile 

the mental health services delivery programme. Through a number of iterative 

discussions the exercise produced the mapping of existing health and social 

provisions in relation to model patient pathways and service uptake. Routine 

information was collated on service provisions, uptake, complaints, 

satisfaction of services and  included identified gaps in current services and 

other provisions.  
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3.3.3. Analysis framework 

Analysis framework 

Based on material uncovered, the study provided recommendations for ways 

to further improve both the services and ways by which they can be managed.  

It must be noted that any analysis involving service provision is difficult due to 

the fact that there is a great deal of change in service provision at the present 

time. This is due to NHS re-organisation and the economic climate. 

Subsequent meetings of the project group confirmed that the focus of the 

needs assessment was a population approach of identifying at-risk groups 

and areas of need, including the prevalence of mental health problems. The 

MHNA was a complex exercise and required a critical pathway for logistic 

reasons and other practicalities. As such, the exercise was undertaken and 

built up through a number of stages.  

 

3.3.4. Case definitions for serious mental illness 

There is no clear global definition of severe and enduring mental illness (Gask 

et al 2000, Slade et al 2002). However, the Audit Commission (1994) defined 

severe mental illness as affecting those patients with a diagnosis of psychosis 

and compulsory admissions, or aggregate of one-year stay in hospital over a 

five-year period, or three or more admissions in the previous five years. The 

definition outlined by the DH (1995) considers diagnoses of psychosis, severe 

neurotic illness, personality disorder, dementia, with aspects such as a history 

of self-harm, self-neglect or violence. 
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For this study, the QOF definition (as used by the commissioners) of SMI is 

used.  This includes the ICD 10 diagnosis groups F20-29 (schizophrenia and 

delusional disorders), F30-39 (affective disorders like depression), and F60-69 

(personality and behavioural disorders). For the diagnosis groups F 20-29 the 

terms ‘psychotic disorders’ and ‘functional psychosis’ are used 

interchangeably. These categories are in keeping with the ONS Psychiatric 

Morbidity Survey. The needs assessment excluded dementia and drug and 

alcohol dependencies.  
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3.4. Profile of the London Borough of Brent 

 
Brent district covers 43.2 square kilometres and is located in the North West 

of London. Officially it has a population of 270,000 (ONS 2006) although 

Council-commissioned research suggests that this figure could be over 15,000 

higher and is growing steadily. Recent figures indicate significant numbers of 

people moving into the borough creating new emerging communities, as well 

as significant numbers of transient people within the borough.  

 

 

 

Figure 1. London Borough of Brent and its localities  
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The GLA predicts that Brent’s population will increase by roughly 10,000 

people every ten years and is predicted to be 305,575 by 2018.  

 

Figure 2. Brent projected population 

 

Diversity 

Dynamic population movements have resulted in Brent becoming the most 

ethnically heterogeneous borough in the country (Office of Statistics). It is one 

of only two local authorities serving a population where the majority of people 

are from ethnic minorities, and these groups are growing faster than any other 

borough (Fig 2).This means that the chances of 2 people in Brent being from 

different ethnic groups are higher than anywhere else in the country. Black 

and minority ethnic (BME) groups make up the majority of the population at 

54.7% including 18.5% Indian, 10.5% Black/Black British Caribbean and 7.8% 

of Black (other). Approximately 130 languages are spoken in schools in Brent 
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and it has the highest proportion of people born outside the EU in England 

and Wales.  

 

In the next 10 years the BME population is expected to increase to 60% of the 

population. The largest increase is expected to be in the Asian population 

which is expected to increase to just under a third of the population (32%) by 

2014. Substantial increases are expected in the numbers of people in BME 

groups aged 30-65 years and smaller increases in people aged 65 years or 

over. This will have implications for the demand for health care as Asian 

groups tend to have higher rates of diabetes and heart disease and develop 

these diseases about 10 years earlier than white groups, whilst black groups 

have higher rates of diabetes, hypertension and stroke and also develop these 

diseases earlier  

 

Different ethnic groups are concentrated in different parts of the borough. The 

highest concentrations of black residents are in Stonebridge and Harlesden 

wards. Asian residents tend to be located towards the west of the borough 

and the white population towards the east. Kilburn, Mapesbury and Dollis Hill 

wards have the highest numbers of white Irish residents. 

 

Due to the fact that ethnicity was not routinely collated as part of the GP 

dataset (before 2011) we have an incomplete picture. However, the available 

data shows that, within GP practice, the ethnicity of 32.74% of people on the 

severe mental illness register is unknown. This may introduce a bias into any 

further analysis of the ethnicity data as it is not possible to say whether the 
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people with unknown ethnicity follow a similar prevalence to those that are 

unknown.  

 

Deprivation 

Brent has an IMD (Index of Multiple Deprivation) score of 29.22, which means 

that it ranks 53rd out of the 354 boroughs in the country i.e. it is in the 15% 

most deprived local authorities in the country. The indices combine 

information on economic, social and physical issues to produce scores for 

small areas across the whole of England. These indicators are used as 

proxies for levels of deprivation and socio-economic status. All mortality rates, 

admission rates and prescribing data have been linked with the Index of 

Multiple Deprivation by electoral ward. The higher the score, the more 

deprived the ward.   

 

For the purposes of this mental health needs assessment the Index of Multiple 

Deprivation 2007 (IMD) has been used, primarily because it is the most 

comprehensive of the available indicators, as it takes into account not only 

employment status, but also broader determinants of health such as 

education, housing and geographical access to services.   

 

However, Brent has also large sections of the community which are relatively 

affluent; The neighbourhoods experiencing the highest deprivation are largely 

located in the south of the borough. Our most deprived residents also have 

the lowest income levels, highest unemployment levels, poor and 

overcrowded housing and the worst health outcomes (Figure 3).  
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Figure 3. Deprivation scores (IMD) by localities. 

 

Life Expectancy 

There is a 9.3 year gap in life expectancy between the lowest (Harlesden- 

south) and highest wards (Northwick Park – north). Differences in health 

within Brent are dramatically illustrated by examining male life expectancy 

along the Bakerloo line. A journey of 3.5 miles takes you from Harlesden, 

which has the lowest life expectancy for men, to south Kenton, where male life 

expectancy is approximately 9 years higher.  

 

The gap in life expectancy in Brent has persisted over a number of years. 

Recent figures show a slight reduction in the gap; however, this is because of 

a reduction in life expectancy in Northwick Park rather than an improvement in 

Harlesden. Life expectancy for women in Brent is 83.4 years; this is 

significantly greater than the England average of 80.9 years and London at 

82.0 years (2007-2011). Life expectancy for men is 78.2 years which is 
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approximately equal to the England and London average of 77.4 years (2004-

2006).  

 

 

Figure 4: Life expectancy in the Borough. Shows a 7 year gap between north 

and south (within a distance of 3.5 miles). 

 

Life style and health profile of Brent 

Below (figure 5) is a summary of data collected annually for the locality. These 

reflect the overall pattern of lifestyle across the borough. It does not give an 

distribution across the various localities of Brent.  
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 Figure 5. Summary of the Borough’s health profile (2010-11) 
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3.5. Disease profile  - 

    Mortality 

Standardised mortality ratios (SMRs) are a measure of how more or less likely 

a person living in a particular ward is to die compared to that of the standard 

population, in this case England and Wales. This measure takes in account 

differences in the age and sex structure of a population. A value of 100 

indicates that there is no difference in mortality compared to the rest of 

England, a higher value suggests that mortality is higher than England and 

vice versa. 

 

SMRs for both males and females have improved considerably over the past 

decade. Males, aged 15-64, SMR has decreased from 146 in 1993 to 106 in 

2011. The SMR for females, ages 15-64, has decreased from 131 in 1993 to 

98 in 2011. There has also been a significant reduction in mortality rates from 

circulatory diseases and cancers. But there pockets of relatively high social 

deprivation and no data exist on the local variations with regards to SMR 

estimation 

 

   Morbidity 

QOF 

Quality and Outcomes Framework (QOF) is a voluntary incentive scheme for 

GP practices in the UK, rewarding them for how well they care for patients. It 

contains groups of indicators, against which practices score points according 
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to their level of achievement and gives an indication of the overall 

achievement of a practice through a points system.  

 

Since 2004 there has been a central collection of information from GPs about 

how many of their registered patients have certain conditions as part of the 

QOF. This provides information about the prevalence of key conditions in 

Brent and compares it to similar information for the rest of NHS London 

Strategic Health Authority and the rest of the country. There are limitations to 

the data. It should be remembered that not everyone with these conditions will 

be registered with a GP and of those that are, not all will be reported by the 

GPs practice. In some conditions, such as diabetes, the true prevalence will 

be higher than the QOF data suggests, because many people have the 

disease for some time before they develop symptoms and are diagnosed. 

 

3.6. Selective profile of physical diseases common to SMI 

population  

 

Key Facts (refer figure 6) : 

 QOF average data revealed that during 2010-11, 63,396 patients were 

on Smoking Register (prevalence 18.10%). Overall cardiovascular 

diseases (e.g. hypertension, CHD, stroke) prevalence was about 15%. 

Prevalence of CVD related diseases conditions (obesity, diabetes, 

CKD) was 13.5%.  
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 Cardiovascular diseases and cancers are Brent’s biggest killers, and 

mortality rates are up to 50% higher within the most deprived wards. 

Healthy lifestyles and early intervention can have a major impact on 

these deaths. 

 Respiratory disorders are a major cause of mortality, morbidity and 

health inequalities in Brent. 

 There are likely to be large numbers of individuals with COPD who 

remain  undiagnosed. 

 There has been a large increase in the emergency hospital admission 

rate for asthma over the last few years. 

 Rates of admission due to pneumonia are significantly higher than the 

rest of London. 

 Chronic disease and Long Term Conditions (LTCs) are endemic in 

Brent; for example, diabetes prevalence is amongst the highest in the 

country (and second highest in London) at 5.61% of the population 

diagnosed and additional undiagnosed cases of circa 2%. 

 The prevalence of diabetes is expected to increase to around 8.5% of 

the adult population by 2014. In addition, prevalence of key diseases 

such as hypertension, CHD and COPD will increase over the next 5 

years. 

 Rates of tuberculosis (TB) in Brent are amongst the highest in the 

country. 

 The number of people over 75 with dementia is expected to increase 

from 2,027 to 2,226 between 2009 and 2014. 
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Figure 6: Reported prevalence of diseases linked with SMI population  
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3.7. Mental health profile 

Serious mental illness (SMI) 

It is estimated that severe mental illness affects around 1% of the population . 

Almost 0.9% of registered patients in the borough are registered as being 

followed up or treated for a severe mental health problem in primary care 

(similar to national figures).  Under the mental health clinical area, practices 

are asked to maintain a register of those with Serious Mental Illness, defined 

as those suffering from schizophrenia or bipolar disorders or other psychoses. 

It does not include the sizeable group of individuals suffering from personality 

disorder or severe depression.   

 

QOF registers are used routinely to manage the serious mentally ill. Currently 

they provide the following statistical evidence for each GP practice in Brent 

using the 6 registers namely: 

 MH9: The percentage of patients with schizophrenia, bipolar affective disorder 

and other psychoses with a review recorded in the preceding 15 months. In 

the review there should be evidence that the patient has been offered routine 

health promotion and prevention advice appropriate to their age, gender and 

health status. 

 MH8: Is a register of people with schizophrenia, bipolar disorder and other 

psychoses. 

 MH6: The percentage of patients on the register who have a comprehensive 

care plan documented in the records agreed between individuals, their family 

and/or carers as appropriate. 
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 MH7: The percentage of patients with schizophrenia, bipolar affective disorder 

and other psychoses who do not attend the practice for their annual review 

who are identified and followed up by the practice team within 14 days of non-

attendance. 

 MH4: The percentage of patients on lithium therapy with a record of serum 

creatinine and TSH in the preceding 15 months. 

 MH5: The percentage of patients on lithium therapy with a record of lithium 

levels in the therapeutic range within the previous 6 months. 

 

3.8. QOF information 

a. Case registers  

In 2010-11, 0.98% of the Brent registered population (all ages) were on the 

primary care serious mental health register, a total of 3455 individuals.  An 

apparent increase between 2008/09 and 2009-10 may reflect more specific 

criteria for inclusion on the SMI register.  Using the 2009 reconciled population 

base (lower than the unadjusted 2008 population base), the rate is 0.90%. 

Practice rates varied from 0..4% to 1.8%. Overall the locality prevalence rate 

is above national and SHA levels with some practices incurring almost twice 

the national level (approximately 67%).  As expected, there is wide differences 

within the geographical region with some practices showing very low level of 

mental illness (< 0.04%) as shown in figures 6 and 7 below. The 

commissioners needs t seek re-assurances on the accuracy of the data to 

explain the wide variations. 
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These indicators are the proportion of people registered to GPs who are on 

the QOF register with severe mental health problems schizophrenia, bipolar 

disorder and other psychoses in primary care. The data should not be 

interpreted as ‘disease prevalence’. QOF data do not necessarily present an 

accurate picture of disease burden, as disease prevalence reported as low 

could be explained by under-recording or unmet need within the practice 

population.  This information is more a measure of service use, practice 

recording and service quality for people with severe mental health problems 

managed in primary care. Figures 7 and 8 show the pattern of activity for the 

MH09 registers.  

 

 

Figure 7:  An overview of the SMI (QOFs) across the various localities. 
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Figure 8: Mental health raw prevalence as indicated by the QOF register in 

Brent and compared to the UK. 

 

b. Physical review recorded for those on SMI register  

Patients with serious mental health problems are at considerably increased 

risk of physical ill-health than the general population and shorter life 

expectancy (Phelan et al. 2007). It is therefore good practice for a member of 

the practice team to review each patient’s physical health on an annual basis. 

Health promotion and health prevention advice is particularly important for 

people with serious mental illness. However, there is good evidence that they 

are much less likely than other members of the general population to be 

offered these kinds of checks.  

Overall, 91% of those who are on the SMI register and eligible for an annual 

review are recorded as receiving one (QOF Indicator MH09).  Figure 9 shows 

the percentage of patients with schizophrenia, bipolar affective disorder and 

other psychoses who had an annual review is high and compares favourably 
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with the national level. The PCT scores compares favourably against national 

figures (figure 9). However, the Trust needs to explore the patterns of 

exceptional reporting on its chronic mentally ill patients. shows that there was 

little variation by locality. Seven practices had a percentage less than 80%. 

    

Figure 9:  QOF Performance 

 

c. Care plans for those on the SMI registers 

QOF guidance states that patients on the mental health register should have a 

documented primary care consultation that acknowledges, especially in the 

event of a relapse, a plan for care. The care plan which should be reviewed 

annually should include the views of their relatives or carers where 

appropriate. 

Up to one half of people who have a serious mental illness are seen only in a 

primary care setting. For these patients, it is important that the primary care 

team takes responsibility for discussing and documenting a care plan in their 

primary care record. However, if a patient is treated under the care 
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programme approach (CPA), then they should already have a documented 

care plan discussed with their community key worker available.  

Overall 88% of those on the SMI register are recorded are having a care plan 

(QOF indicator MH6).  This figure should be 100% as a care plan should be 

developed for all those on the SMI register either with primary care or for 

those on CPA with the patient’s care-coordinator.  

 

d. Comprehensive care plans 

QOF MH06 is an index of measurement of patients who had had a 

comprehensive care plan documented in the records. 21% of practices did not 

conform to this clinical guideline with some variations along geographical 

settings. 13% of practices had exceptional reporting in this category (figure 

10). Although it is below the national average, it is imperative to understand 

this variation. If patients are being exceptionally reported it may be that some 

are   falling through the net and may eventually get compromised.   

 

Figure 10: QOF care plans 
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%

Practice Disease Achievement Practice Exception Rate Practice Raw Prevalence PCT Exception Rate National Exception Rate

Data source: QMAS database - 2008/09 

data as at end of June 2009

MH06: The percentage of patients on the register who have a comprehensive care plan documented in the records agreed between 

individuals, their family and/orcarers as appropriate.
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Within the borough, the proportion of patients on the practice registers from 

0.29% up to 3.9% (3.9% were registered by the Harness group in Harlesden. 

This practice provides services for homeless and transient individuals). Other 

practices with more than 1.2% on the register included practices largely in the 

south of the borough.  

 

Analysis also showed that a significant number (65%) of SMI tend to  be 

clustered around Central Middlesex Hospital (the acute mental services).  This 

clustering nexus has been reported by Congdon (2011) for other parts of the 

UK. This geo-location of SMI is an interesting phenomenon which is further 

explored in the study as part of the COPD prevalence estimate.  

 

Other key facts 

The majority of people with severe mental disorders, as picked up in the 

assessment, are within the 18-64 age range, with 71% of females and 81% of 

males falling within this range. The male-female split is even with only 18 

different between the two; however there are a higher percentage of females 

of an older age than males. 

 

Psychotic disorders and bipolar disorders account for 90% of all the diagnoses 

(62% and 28% respectively). Local data confirmed the national rates from the 

Psychiatric Morbidity Survey 2010 that showed that more females than males 

would be expected to have a psychotic disorder within the 16-74 age range. 
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The data shows that, when grouped into quintiles of deprivation by Medium 

Super Output Area (MSOA), that the more deprived the area is the higher the 

prevalence of severe mental health issues. This is based on the deprivation of 

where the people actually live rather than on the deprivation scores of the 

practice as used in the QOF section. This would suggest a direct link between 

deprivation and severe mental illness.  

 

Within Brent as a whole under 10% of patients who are on a GP severe 

mental illness register have not had a recorded review in the previous 15 

months as at 31st March 2010.  

 

The percentage of patients who are on a GP severe mental illness register 

and not followed up for non-attendance of a review is lower than 10%. 

However, there is a large variation across the locality with only 3.9% of 

patients not followed up in Wembley and 16.5% in the Harness locality.  

 

The percentage of patients who are on a GP severe mental illness register 

and do not have a care plan is documented as being just under 11%. There is 

little variation across the PCT having the lowest percentage at 9.6% and the 

highest at approximately 13%.  

 

3.9. Ethnicity and mental health   

There is good evidence that there is an unequal distribution of mental health 

problems among black and various minority groups. As mentioned previously, 

Brent has the UK’s most ethnically diverse population. Marginalised groups 
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such as asylum seekers and the homeless who are likely to have experienced 

traumatic life events are more likely to have complex mental health problems 

and therefore vulnerable to deliberate self-harm. Brent is committed to target 

its health promotion campaigns to these communities. A crucial factor is 

accessibility to service.  

 

The rate of admissions for BME population is below that expected – 

significantly less than the London rate, and below the national rate (table 2 ). 

Similarly the white ethnic group admission ratios are significantly low 

compared to other parts of London (figure 11).  However, this reflect the ethnic 

composition of Brent.  

 

 

Table 2: The percentage of community using mental health services in Brent.  
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Figure 11: Use of services – A comparison with London and UK. 

 

Co-morbidity 

Co-morbidity is the presence of two disorders or illnesses occurring 

simultaneously in the same person.  Surveys show that drug abuse and other 

mental illnesses are often co-morbid.  Six out of ten people with a substance 

use disorder also suffer from another form of mental illness. 

 

The prevalence of co-morbid alcohol, other drug, and mental disorders in the 

UK total community and institutional population is estimated to be around 

22.5% for any non-substance abuse mental disorder, 13.5% for alcohol 

dependence-abuse, and 6.1% for other drug dependence-abuse.  Among 

those with a mental disorder, the odds ratio of having some addictive disorder 

was 2.7, with a lifetime prevalence of about 29% (including an overlapping 

22% with alcohol and 15% with another drug disorder).  The highest mental-

addictive disorder co-morbidity rate was found for those with drug (other than 

alcohol) disorders, among whom more than half (53%) were found to have a 

mental disorder with an odds ratio of 4.5. 
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Physical review recorded for those on SMI register  

Patients with serious mental health problems are at considerably increased 

risk of physical ill-health than the general population and shorter life 

expectancy (Marder et al. 2004). It is therefore good practice for a member of 

the practice team to review each patient’s physical health on an annual basis. 

Health promotion and health prevention advice is particularly important for 

people with serious mental illness. However, there is good evidence that they 

are much less likely than other members of the general population to be 

offered these kinds of checks. Overall, 91% of those who are on the SMI 

register and eligible for an annual review are recorded as receiving one (QOF 

Indicator MH09). There was little variation by locality. Seven practices had a 

percentage of less than 80%. 

 

Co-morbidity 

Co-morbidity is the presence of two disorders or illnesses occurring 

simultaneously in the same person.  Surveys show that drug abuse and other 

mental illnesses are often co-morbid.  Six out of ten people with a substance 

use disorder also suffer from another form of mental illness. 

 

The prevalence of co-morbid alcohol, other drug, and mental disorders in the 

UK total community and institutional population is estimated to be around 

22.5% for any non-substance abuse mental disorder, 13.5% for alcohol 

dependence-abuse and 6.1% for other drug dependence-abuse.  Among 

those with a mental disorder, the odds ratio of having some addictive disorder 

was 2.7, with a lifetime prevalence of about 29% (including an overlapping 
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22% with alcohol and 15% with another drug disorder).  The highest mental-

addictive disorder co-morbidity rate was found for those with drug (other than 

alcohol) disorders, among whom more than half (53%) were found to have a 

mental disorder with an odds ratio of 4.5. 

 

3.10. Factors influencing need for mental health services 

The community prevalence of those people at high risk of admission to a 

mental health service will be only one of the several factors, noted above, 

which affect the need for care, as expressed as number of inpatient beds, 

outpatient appointments and community mental health and primary care 

appointments (and corresponding clinical resources) needed. Influencing 

factors, among others, are likely to be: 

 Number (and trend) of cases in community (prevalence)  

 Number (and trend) of new presenting cases in community per year 

(incidence) 

 Catchment population of the facilities 

 Which clinical criteria and severity thresholds for those criteria are used to 

make the clinical decision to admit to services 

 Availability (i.e. amount of) and development of service quality and quantity in 

each locality 

 Which clinical criteria and severity thresholds for those criteria, are used to 

make the clinical decision for referral from each part of the service to another 

(‘discharge’ threshold) 
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3.11. Service provision in community services 

Primary care services 

Primary care provides a wide array of services and is diverse in terms of its 

organisation, the services offered and the professionals involved. The services 

for patients with mental ill health that are provided by primary care 

practitioners include health promotion; assessment and detection/diagnosis; 

management, advice and information, treatment including medication, 

psychological interventions or complementary therapies and referral; follow-up 

and continuing care of chronic and recurring disease; rehabilitation after 

illness; and co-ordination of services. 

 

GP Services 

There were 166 Whole Time Equivalent (WTE) GPs working in 72 GP 

practices in Brent as of 1st January 2009 included:  

 19 single handed practices  

 6 PCT salaried practices 

 12 PMS practices providing a range of services for refugees and asylum 

seekers, the homeless population and those who are unregistered  

 There were 351,000 patients registered with a Brent GP as of the 1st January 

2011. Patient turnover at approximately 20% per annum is high. The number 

of WTE GPs per 100,000 population weighted by age and need was 68.8 per 

100,000 in 2006. This is higher than the England rate of 61.8 per 100,000 and 

the 15th highest in London. Analysis of primary care data within Brent shows a 

higher percentage of smaller practices as compared with national averages. 
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70% of Brent practices are one and two handed practices compared to 54% in 

London and 42% in England.  

 GP practices list sizes are varying from just under 2,000 to about 15,000 

patients. Overall highest list size is observed in Kilburn. Most of the smaller 

practices have about 2,000 or fewer patients. Most of the GP practices, except 

in Kilburn localities, have maximum between 8,000 to 11,000 patients.  

 

Service uptake  

Overview 

There were a total of 769 admissions and 789 discharges to inpatient services 

in year 2008/9. Some patients may have been readmitted more than once in 

the year.  Half of all patients are discharged with the three weeks and patients 

will usually spend less than six months on an acute inpatient ward, although 

problems with discharge may mean that this is not achieved in practice.  

Analysis of the admission data highlights a number of issues. Males have 

higher admission rates for schizophrenia and delusional disorders than 

females, which reflects national prevalence rates for these conditions. Whilst 

females have nearly double the admission rates for mood affective disorders 

which reflects national prevalence rates for these conditions. Since 2005 there 

has been an increase of 20.8% in the total number of mentally ill in Brent. 

A significant number of Brent patients with a mental health diagnosis are also 

admitted to acute hospital wards.  In many cases, these are short stay for 

alcohol related mental health problems.  Some may be admitted via acute 

A&E and then be transferred to specialist MH providers.     
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The rate for personality disorders provides an interesting local picture. 

Nationally men have a higher prevalence rate for these conditions, but Brent 

in-patient data illustrates that it is females who have higher admission rates 

than males.  

 

Generally the number of admissions for schizophrenia and affective disorders 

is in line with predictions based on deprivation and demographics.  There is 

however some variance in some wards. Brent standardised admission rates 

are generally lower than national rates, except for schizophrenia. Senility and 

organic mental disorders are rising over the last 4 years. There is an upward 

trend in number of alcohol-related disorders.  

 

The rate of admissions for schizophrenia and related disorders was between 

240 and 280 cases over the last 5 years. Apart from senility related disorders, 

most diagnostic groups do not showing any significant trend. 

 

It should be noted that the arithmetic mean or 'average' is often used to 

compare stay lengths between different hospitals.  This is not an ideal method 

as averages can be badly distorted by small numbers of long-stayers.  The 

most appropriate figure to reflect overall stay length for an in-patient unit is the 

median – i.e. the number of days by which 50% of admissions will have 

finished.  For Brent over the last 5 years the median (13 days) is considerably 

lower than the average (50 days). 
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Key details 

Analysis of the admission data highlights a number of issues. Males have 

higher admission rates for schizophrenia and delusional disorders than 

females, which reflects national prevalence rates for these conditions. Whilst 

females have nearly double the admission rates for mood affective disorders 

which reflects national prevalence rates for these conditions. Since 2005 there 

has been an increase of 20.8% in the total number of mentally ill in Brent.  

A significant number of Brent patients with a mental health diagnosis are also 

admitted to acute hospital wards. In many cases, these are short stay for 

alcohol related mental health problems. Some may be admitted via acute A&E 

and then be transferred to specialist MH providers.  

The rate for personality disorders provides an interesting local picture. 

Nationally men have a higher prevalence rate for these conditions, but Brent 

in-patient data illustrates that it is females who have higher admission rates 

than males.  

The rate of admissions for schizophrenia and related disorders was between 

240 and 280 cases over the last 5 years. Generally the number of admissions 

for schizophrenia and affective disorders is in line with predictions based on 

deprivation and demographics. There is however variance in some wards.  

 

3.12. Commissioning model  

The study sought to explore needs, demands, use and outcomes within 

mental health services using a more refined local prevalence index and how 

these can be framed into a framework that could enhance commissioning. The 

fundamental relation between these variables is complex.  
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Essentially, the mediating factor relating need, demand and activity (e.g. how 

much need is turned into demand) are the clinical  decisions at each stage, 

including patients’ decisions whether to seek services. To appreciate this 

dynamic, it is best to use a framework to explore the relationship. This can be 

summarised by this schematic diagrams (figures 12 and 13) below.  

 

 

Figure 12: Schematic diagram showing the decision flow for service 
commissioning  
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Figure 13: Schema for service commissioning using clinical decision flow. 

 

However, the other factors are equally important in mediating the transition 

from need to activity, via ‘demand’ and together produce a feedback loop 

increasing (or decreasing) ‘supply induced demand’, which is often ‘supply 

awareness demand.’  

 

This makes it difficult to use epidemiological estimates of prevalence of mental 

disorders to estimate ‘need for mental health care’. This is because the ‘need’ 

depends on the thresholds of severity at which the clinical deciders use to 

define a ‘case’ requiring treatment. In turn, this severity decision depends on 

the effectiveness of treatments: some treatments might only be effective on 

mild cases; other treatments might only be suitable for more severe cases 

because they have side effects which are only worth being exposed to if the 

severity of need (and therefore potential benefit) is large.  
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It is more difficult to use the epidemiological ‘need for care’ (even assuming 

that thresholds of admission to various mental health services are 

operationally agreed and adhered to in practice) because treatment activity is 

incompletely effective and suboptimal outcomes either prolong treatment or 

require readmission to services, thus increasing the amount and kind of 

mental health service provision required.  

 

Therefore, the appropriate commissioning/planning question is not how many 

mental health service resources of various kinds do we need. The appropriate 

question is, given the reality of present patterns of resources, what kind of 

information do we require to have an effective commissioning outcomes? 

 

This whole complexity of public health planning depends ultimately on the 

need to have good epidemiological information and good prevalence 

estimates are essential to this process.  

 

This suggests  that prevalence of severe mental illness, a widely used proxy 

for levels of long term mental health care need in local populations, can be 

effectively modelled using regularly updatable population data published by 

the Office of National Statistics area-type classification with local primary care 

data.  

 

3.13. Limitations of the needs assessment 

There are gaps in the needs assessment - what is presented is for areas 

where data is available, and what is possible within the time limits of the 



 
 

89 

project. It was not possible to carry out a full assessment of user engagement 

in the commissioning process. Other areas not covered that could be 

considered in future needs assessments include the mental health needs of 

people with other types of disability, including visual impairment, HIV and 

physical disability. 

 

Date Quality 

The reliability of data is crucial in the whole aspects of service design, 

planning and delivery.  Quality data underpins everything from needs 

assessment, to pathway development from service redesign to defining 

positive outcomes for users. 

 

However, there is a national consensus that data generated from this area is 

at best contestable. Mental health data has a reputation for being of poor 

quality and reliability. This is an area that needs to be addressed urgently. It is 

applicable across primary and secondary care. Raising awareness amongst 

clinicians and practitioners in primary and secondary care on the importance 

of good clinical coding should be seen as an important element of their work 

not a tedious bureaucratic exercise. 

 

A further development that would greatly advance the relevance and accuracy 

of such comparisons would be to feedback information to each participating 

trust, so that each could decide on a knowledge-based plan to improve 

specified areas of practice in anticipation of a subsequent further appraisal, 

thus continuing and enriching the audit cycle. 
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3.14. Conclusion 

The prevalence of enduring mental illness identified is over three times that 

which was expected using national prevalence data underlining the particular 

challenges of mental ill health in deprived localities. The overall prevalence of 

patients identified as suffering a long-term mental illness was three per 1000 

patients registered, but rates varied widely between practices, in part due to a 

higher prevalence of patients with psychotic disorders in the more 

disadvantaged areas, which was not unexpected. The methods used here 

would not have identified long-term mentally ill patients in the community who 

had not been in touch with any health or social services for some time, such 

as the homeless. 

 

In the south of the borough there were some  high mean general practitioner 

consultation rate of 8.1 consultations per year in some areas compared with 

the rate of 6.5 per year found in the north sector. Though few in number, most 

long-term mentally ill patients are demanding of general practitioners' time. 

However, 29 patients (7% of the total) had had no recorded contact with their 

general practitioners for a year. This confirms suspicions that some disabled 

long-term mentally ill patients are not seen regularly by their general 

practitioners, although they seem to be few in number in these practices. 

 

According to practice records, most contacts with general practitioners were 

for minor physical problems, repeat prescriptions and sickness certificates. It 



 
 

91 

is possible, however, that mental state review occurred more often and was 

not specifically recorded in the notes. 

 

The findings presented here suggest that patients in long-term contact with 

specialist services cannot be taken as representative of the whole population 

with long-term mental illness.  

 

This study has demonstrated that long-term mentally ill patients can be readily 

identified in general practice. General practitioners could perhaps use their 

contacts with these patients to play a greater role in monitoring their mental 

state and psychotropic medication.  

 

Future direction 

For effective planning and commissioning, the commissioners need 

information on: 

 The prevalence of disorders in the present and in the future 

 The prevalence of the determinants of mental illness 

 Current service activity and predictions of likely future activity 

 

The commissioners should work with acute mental health services to develop 

accurate, comprehensive and timely data on each of these four areas.  The 

first two are for the most part not directly under the control of the 

commissioning process and developments in this should be about developing 

a resource / database of local and national data sources which are of benefit 

in planning, forecasting and commissioning services.  The APHO report on 
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mental health Indications of Public Health in the English Regions (APHO, 

2007) provides a useful starting point but not sufficient. At regional level it 

presents a wide range of data on the factors which can give rise to poor 

mental health, the mental health status of populations, provision of 

interventions of care for mental illness, effectiveness of partnerships, service 

user experience, workforce capacity and traditional outcomes such as suicide.  

 

To develop service intelligence on activity and outcomes, there are a number 

of relevant initiatives that need to be considered. It is important to combine the 

national mental health observatory (mental health minimum data set) with a 

local pathfinder site minimum data set for a better prevalence estimate within 

small area population. Locally, links should be made to relevant agencies to 

understand what data they might hold, its strengths and weakness and how it 

might be used to support the commissioning process.  

 

Finally, the use of MHNA as a methodology to understand and analyse risk 

factors at neighbourhood level cannot be emphasise too highly. In an area like 

Brent, the mobility of its resident is fluid. Annually, there is around 30% of the 

population shift, particularly in areas such as Harlesden and Kilburn. National 

prevalence estimates are not sufficiently sensitive to these  changes. Routine 

MHNA can help commissioners with a useful guide for health investment in 

areas of needs. This is a powerful tool in shaping better local health 

prevalence measures.  
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4. Local area estimate prevalence modelling  

4.1. A methodological framework 

Health commissioners and public health departments depend on good local 

health intelligence to plan services. Where it is not possible to obtain local 

prevalence data, the only way is to estimate the number based on national 

prevalence and local resident population. This makes the assumption that the 

national prevalence estimates apply and reflect the local population setting. 

Chronic conditions like cardiovascular and respiratory diseases risk factors 

such as high blood pressure, cholesterol, smoking, diabetes and physical 

inactivity are linked to socio-economic determinants such as working 

conditions, housing, or social relationships. These parameters vary from 

locality to locality within and between borough and districts. As such crude 

estimates based on national surveys which ignore local differences can be 

sometime misleading and may have a serious impact on service delivery. This 

scenario is further complicated when dealing with a population suffering from 

co-morbidities. 

 

A pragmatic model that derives information from national estimates and 

factors local variances into national predictions is proposed. This approach 

aimed to provide a more “realistic” prevalence estimates of CHD and COPD 

within primary care was discussed and was supported by the local 

commissioners and the public health department.  
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The study aimed to generate a model to estimate local level prevalence rate of 

two diseases namely CHD and COPD in the first instance and to further refine 

this estimation at GP locality area level. The model is then applied to 

determine the prevalence of a sub population group namely the SMI with  

concurrent medical morbidities of the two conditions (as single disease entity 

or a combination of both).  

 

The definition of a “local level” refers to a borough/metropolitan area of 

approximately between 300,000 - 450,000 patients (size of a typical PCT). A 

“GP locality”, on the other hand is a small area covering between 10,000 – 

25,000 patients.  The approach does this specifically through an adaptation of 

the methodology used by the UK’s office of national statistics, known as 

synthetic regression estimation fitted using local level co-varieties. The choice 

to focus of two conditions namely CHD and COPD was based on the 

epidemiological differences including is a significant volume of “undiagnosed” 

cases in COPD (in relation to CHD) as highlighted by APHO (2008). Osborn et 

al (2007) also suggest that the people with SMI suffer from COPD co-

morbidity due to the fact many of them are smokers and live in socially 

deprived and challenging areas. 

 

The estimate modelling is done through an iterative process involving a 

number of phases. This approach facilitates sequentially the extraction of the 

data with each phase feeding the next step. In the first instance, there is a 

need to establish how the chosen physical medical condition prevalence is 

estimated at regional level. The next step is to derive a local prevalence 
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estimate model for each of the co-morbidities. It is important to remember that 

the prevalence figures generated by existing models are estimates of the 

expected prevalence of disease for national levels. Due to local variances for 

a wide range of factors, discrepancies between modelled estimates at practice 

level and other sources of data such as QOF disease registers may be due to 

local variations not captured by the model and cannot be solely attributed to 

weaknesses in QOF data. For practices with populations that significantly 

differ from a ‘typical’ population (e.g. large black or ethnic minority population 

that has very different smoking pattern to the local average) the assumptions 

of the model may not apply and discrepancies may occur. 

 

In summary, this is an iterative sequential process that draws from the 

national prevalence estimates to predict the prevalence of a chronic physical 

disease within the local practices population base. This is done through the 

following sequence: 

1. Determine the estimate prevalence model of a small population area for a 

stated disease condition 

2. Develop the local template to adjust regional estimation for that disorder 

3. Apply the local template to estimate the prevalence of that disorder within the 

SMI population using a probability estimate  

 

a. Local area prevalence estimate  

A multivariate modelling analysis using data from Health Survey For England 

(HsFe) and regression models are used to estimate of both CHD and COPD 

at CCG (PCT) level. The variables include  demography, socio-economic 
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factors, smoking behaviours, QOF data and attributes associated with the 

named conditions. The study also used geographically weighted regression 

(GWR) to associate geographical patterns to disease conditions namely 

COPD. Geo-location habitat patterns for chronic diseases have become a 

concern for public health. They create “health ghettos”  that makes planning 

and delivery of care harder. 

 

b. Developing estimate template for smaller areas (GP 

practice level). 

Using the regional prevalence rates, the re-adjustment of the number of 

patients is calculated using an approach suggested by Nacul et al (2008) and 

recommended by APHO. The rationale takes consideration of the local health 

inequalities and makes an adjustment. The assumption is that increased 

mortality (SMR) of a condition will reflect an equivalent increase in that 

disease prevalence, thus using an SMR ratio for the adjustment factor. For 

example, the national estimates suggest if a condition (A) in Brent has an 

estimated SMR of 155, then the prevalence in each GP in the locality is 

increased by 55%.  

 

Since all GP practices in the borough will have different levels of deprivation 

(as measured by UV67 for each practice), an adjustment factor is introduced. 

This factor (multiplication factor) takes into account the local deprivation 

scores (based on UVF). 
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The proposed algorithm is as follows: 

Calculating a locally adjusted prevalence estimate 

Step 1 

 

 

 

Step 2 

 

 

Step 3 

 

 

   

Step 1 

Using national estimates, a prediction of the prevalence rate is made for the 

practice. It takes account of local variances within Brent. In the absence of 

sufficiently precise published data on the relationship between deprivation and 

condition (x), the model makes an assumption that areas with higher mortality 

rates have a comparably higher prevalence of that disease. For example, 

assuming condition (x) in Brent is reported to have an SMR of 117, then the 

model increased the predicted prevalence in each practice in the locality by 

17%.  

 

Y = mx ± c * m = gradient   
* x  = UVF (Brent deprivation 
score)   
* c  = intercept      

Multiplication factor (mf)    
 

Y = (mx ± c)/100 
 

X = UVF (locality score) 

Locally adjusted 
prevalence 

Locally adjusted SMR 

 



Loc_ adj _ SMR

Nat _ SMR
mf

Formatted: French (France)
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Step 2 – The multiplication factor 

This step establishes a multiplication factor (mf) which will be used to correct 

the local differences. The APHO endorses this form of statistical adjustment in 

modelling framework (Technical Briefings 3, 2008). This is derived from a 

linear regression equation of (Y = mx +/- C), where m is the slope and (+/-)C 

is intercept. The mf is derived by dividing the above equation by 100 namely,  

mf = ((Expected local SMR  x UV scores)) / 100. Applying this factor to a ratio of 

the adjusted disease SMR (local) to national SMR will yield an a more locally 

sensitive prevalence rate.   

Thus, a GP locality with a UV67 score of 20% (level of deprivation) will yield a 

linear relationship like : Cond(x) SMR = (2.604xUV67)+25.97, where the slope 

is  4.39 and 16.04 is  intercept. The mf is calculated for each locality (based 

on UVF scores) and will be factored in the adjusted prevalence estimation. 

Worked example 

For example, let us assume that Brent’s standardised mortality ratio (SMR) for 

condition (x) was 140 - Increased the predicted prevalence of Brent by 40%. 

Locality Harlesden 

SMR prediction (borough) 140 * based on national  
estimates 

UV67 score  

(for a practice ) eg E84077 

35 * based on 2001 Census 
Regression line:  



Cond(x)(4.389*UV67)+16.04 

Adjusted SMR 169 (4.389*35) + 16.04 

Derived multiplication factor 1.69 * ((4.389*35) + 16.04)/100 
 

Step 3 – Prevalence (local estimate - adjusted)   

Adjusted prevalence rate (AP) = (SMR (calculated on local UV67 

scores)/national (SMR estimates))/multiplying factor  
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C. Determining the prevalence estimate of SMI with physical co-
morbidity 

 

Having established the prevalence estimate for condition (x) for the locality, 

the next step is to calculate the likelihood of the presence of that condition 

from our SMI population. Ideally, we should also have developed a local 

estimate of SMI using the above technique, but due to technical and clinical 

issues, this is not possible to date. The APHO is currently developing an 

approach to resolve this problem. Instead, we use the QOF data (routinely 

collected by GPs) to have a crude estimate of the number of SMI within the 

locality.  The estimation of concurrent co-morbidity is carried out through 

probability modelling (using Bayesian statistics). A schematic illustration is 

presented below (figure 14). 

 

 

Figure 14 : Schematic diagram to describe algorithm for establishing prevalence 

estimation for co-morbidity among SMI at local levels 

 

 



 
 

100 

Here, the study sought to establish the probability that two conditions e.g. 

CHD and COPD (A, B) are prevalent in our local SMI group. This necessitated 

an estimation of what are the chances all, none or one of these conditions 

given that they have SMI. To calculate this, we must to determine: 

1. The probability of having 2 disorders  

2. The probability of having none of these conditions 

3. The probability of having one of the conditions 

 The probability of having 2 conditions is a product of the separate 

prevalence: P(A,B) =  (P(a))(P(b)) 

 The probability of having one of the diseases, namely 

  P(1)  = {(Pa)(1-P(b))} {(Pb)(1-P(a))}  

 The probability of having two (2) diseases, 

  P(2)  = {(Pa)(1-P(b))} {(Pb)(1-P(a))}  

 probability of having none of the conditions, 

 P(0)  = (1-P(a))(1-P(b)) 

These probability estimates are then applied to the local data sets of GP 

practices.  
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5. Disease prevalence model development  

5.1. Introduction 

 
The Association of Public Health Observatories (APHO) has produced 

estimates of the number of people in each primary care trust (co-terminous 

with local authorities) who they estimates have CHD. Whilst this is useful it is 

probably more useful to examine this at practice level. The accuracy of the 

estimates depends on the modelling methodology.  This section considers the 

development of a model for coronary heart disease (CHD). 

 

5.2. Coronary heart disease model (CHD) 

Coronary heart disease (CHD) is the UK's biggest killer, with one in every four 

men, and one in every six women dying from the disease. Nationally, around 

300,000 people have a heart attack each year, and 1 in 50 people have 

angina, an estimated 1.2 million people with the condition (Minnino et al. 

2000).  It is widely recognised that coronary heart disease is a major cause of 

health inequality and a major course of premature mortality under 75 years of 

age.  Nationally, just over a quarter of deaths in people under 75 years of age 

are due to circulatory disease, and of these, over half (57%) are due to 

coronary heart disease,  In addition, coronary heart disease alone is estimated 

to cost the UK more than £7 billion each year (Jordan et al. 1998). 

 

The HSfE for 2006 estimated, based on respondents’ self-reports of doctor-

diagnosed CHD, that the prevalence is about 6.5 per cent in men and 4.0 per 

cent in women, and this increases markedly with age (Minnino et al. 2000). 
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This prevalence has remained static over the last ten years. However, the 

QOF, covering over 8,000 practices and 53 million patients, shows a GP-

registered unadjusted prevalence of only 3.5 per cent (but note that 

unadjusted prevalence rates show these registers as a percentage of the 

total practice list size i.e. for all ages) (Jordan et al. 1998; Phelan et al. 2001). 

 

The disparity between CHD prevalence estimates from large surveys, in 

particular the HSfE, and the number of patients diagnosed with CHD and 

registered in QOF led to demand for a CHD prevalence model at PCT and 

Local Authority level that gives an accurate estimate of true prevalence 

(Druss et al. 2001). The Association of Public Health Observatories (APHO) 

published a simple prevalence model to support development of 2009-10 Local 

Delivery Plans. However, it was acknowledged that this was a crude model 

and that more was needed to make sensitive model for local use.  

 

Prevalence terminology 

The term CHD can be confusing and this may often mask its true 

identity and this may lead to various methods of estimating CHD 

prevalence. Questionnaire responses such as those used in HSfE to define 

CHD, may be less accurate than clinical diagnosis. Conversely, reliance on a 

medical diagnosis may under-estimate prevalence, as patients with 

unrecognised angina or very mild symptoms may not attend (or be correctly 

identified by) their GP. 
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Defining  prevalence    

There   are   differences   between   various   methods   of   estimating   CHD  

 

prevalence.     Questionnaire   responses   such   as   those   used   in   HSfE  

 

to   define   CHD,   may   be   less   accurate   than   clinical   diagnosis.   Con

versely,,   reliance   on   a   medical   diagnosis   may   underestimate   preval

ence,  as  patients  with  unrecognised  angina  or  very  mild  symptoms  may 

 not  attend  (or   be  correctly  identified  by)  their  GP.      A   Belgian   analys

is   of   the   records   of   four   large   Belgian   epidemiological   studies   duri

ng   the   past   30  years   compared   clinical   and   electrocardiographic   (E

CG)   findings showed 

that  Q   wave  patterns,  ST  segment  depression  or  elevation,  T  wave  inv

ersion  or  flattening,  and  left   bundle   branch   block   are   often   seen   as 

  indications   of   silent   myocardial   ischaemia.      The   occurrence   of   isc

haemia-

like   findings   on   the   ECG      was   comparable   between   men   and   wo

men   (9.0%   v   9.8%).      The   results   from   this   and   other   studies   co

nsistently   show   that   ischaemialike  ECG  changes  are  associated  with  

an  approximately  twofold  increased  risk  of   dying  of  CHD.  

 

In the British Regional Heart Study (BRHS), there was considerable overlap of 

questionnaire and ECG evidence of CHD and high agreement between self-

report and medical record for diagnosed CHD: for example, 80 per cent of 

men with a GP record of angina, reported their diagnosis and 70 per cent of 
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men who reported an angina diagnosis had confirmation of this from the 

record review (National Institute of Excellence 2010; Department of Health 

2010). The prevalence of diagnosed angina in 1992 in these older men was 

10.1 per cent according to self-reported history and 8.9 per cent according to 

GP record review.  

 

However, only half of those with a definite electrocardiogram could recall a 

medical diagnosis of CHD (Department of Health 2010). Even in patients with 

severe (grade 2) angina, 40 per cent could not recall being told that they had 

heart disease. Overall, only one in five of those regarded as having CHD were 

able to recall such a diagnosis having been made by a doctor, and these were 

likely to be those most severely affected. 

 

It must be noted that there was substantial agreement between self-report 

and GP record of angina (Information Centre for Health & Social Care 

2009). The BRHS subsequently combined two questionnaire-based 

definitions to define prevalence: either current angina symptoms, which 

were defined as a positive response to standard World Health Organisation 

(Rose) questionnaires (overall prevalence 11.1 per cent); or history of 

diagnosed CHD was defined as subject recall of ever having had a doctor's 

diagnosis of either angina or heart attack (overall prevalence also 11.1 per 

cent) (Information Centre, NHS, 2008). 
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Table  3: Percentage  prevalence of IHD, by survey year, age and gender. 
Source: HSfE, Information Centre 
 

While CHD mortality has greatly declined in the last four decades, the use of 

age-adjusted rates to describe CHD mortality obscures the fact that the 

decline largely represents the postponement of CHD deaths until older age. In 

fact, the overall burden of CHD is increasing in parallel with the increase in life 

expectancy. As the burden of prevalent CHD is increasing, identifying persons 

with CHD, measuring its incidence and outcome and how these vary over time 

and across populations is essential to understanding the determinants of the 

trends in CHD. This in turn is crucial to define the relative contributions of risk 

factor reduction and therapeutic improvements, which is necessary to design 

effective interventions to reduce CHD. 

 

Community surveillance is a comprehensive approach designed to track 

disease at the community level and is less costly and more efficient than 

cohort studies. In the US several community surveillance studies have 

reported on temporal trends in CHD prevalence e.g. the Atherosclerosis 

Risk in Communities study, the Minnesota Heart Survey the Olmsted County 
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Study and the Worcester Heart Attack Study (Information Centre for Health & 

Social care 2009). An analysis of US NHANES data on participants aged ≥ 40 

years who attended the medical examination, the age-adjusted prevalence of 

angina pectoris, self-reported myocardial infarction and ECG-defined 

myocardial infarction were 5.8% of 9255, 6.7% of 9250 and 3.0% of 

8206 participants, respectively (De Bacquer 2000). The age-adjusted 

prevalence of coronary heart disease defined by the presence of any of 

these conditions was 13.9% among men and 10.1% among women. These 

studies suggested that in the US medical care of clinical CHD was the main 

contributor to the mortality decline (Walker et al. 1998). 

 

Outside the USA, the World Health Organisation’s (WHO) MONICA 

(Multinational Monitoring of trends and determinants in cardiovascular 

disease) Project was established in the early 1980s to monitor trends in 

cardiovascular diseases and to relate these to risk factor changes. Its central 

goal was to explain the trends in cardiovascular disease mortality observed 

from the 1970s. There were 32 MONICA centres in 21 countries (Walker et al. 

1998). In these populations, the decline in coronary disease mortality is 

mostly related to the decline in CHD events, thereby pointing to primary 

prevention as the main source. However, the study populations excluded over 

65s in whom most CHD occurs. 

 

In a survey of a rural Indian population, CHD was diagnosed based on past 

documentation, response to WHO - Rose questionnaire, or changes in ECG. 

The prevalence of CHD (clinical + ECG criteria) was 3.4% in males and 3.7% 
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in females. According to ECG criteria only, it was 2.8% in males and 3.3% in 

females and according to Q-waves only, it was 1.6% in males and 0.9% in 

females (Shaper et al. 1984). In a Finnish population survey, Ahto et al found the 

prevalence of angina symptoms was 9.1% among men and 4.9% among 

women aged 64-97 (Shaper et al. 1984). Ischaemic ECG findings were 

common: 32.9% of men and 39.3% of women had such changes. An 

international systematic review and meta-analysis found that angina 

prevalence varied widely across populations, from 0.73% to 14.4% (population 

weighted mean 6.7%) in women and from 0.76% to 15.1% (population 

weighted mean 5.7%) in men (Lampe et al. 2001). 

 

In the UK, Carroll et al used GP records in London and found a prevalence 

of 8 per cent of men and 5 per cent of women over 44 years of age - 

although this may be lower than the true national average (Alexander et al. 

2003). There was a history of myocardial infarction in 30 per cent of men and 

22 per cent of women with CHD. Lampe and colleagues examined trends 

in the prevalence of CHD in men participating in the BRHS. The authors 

demonstrated a decrease in the prevalence of current angina symptoms: 

the age adjusted annual percentage change in odds was -1.8%. However, 

there was no evidence of a trend in the prevalence of history of diagnosed 

CHD (Information centre. NHS 2008). 

 

A study by Davies et al examined trends in CHD incidence prevalence, and 

mortality in the UK between 1996 and 2005, using the THIN GP database (a 

total of 5 million patients). The results indicate that, while CHD mortality 
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declined, CHD incidence decreased less than mortality, resulting in an 

increase in CHD prevalence (Shaper et al. 1984). From 1996 to 2005, 

age-standardised incidence of CHD decreased by 2.2% in men and 2.3% in 

women per year (average percentage change). Age-standardised, all-cause 

mortality among those with CHD, decreased by 4.5% in men and 3.4% in 

women per year (average percentage change). Age-standardised prevalence 

increased by 1.3% in men and 1.7% in women per year (average percentage 

change). The decline in incidence had some impact on limiting the increase in 

prevalence, but its effect was offset by the increase in prevalence occurring as 

a result of improved survival among people with CHD. Although patients with 

nitrate prescriptions were also included, this study relied mainly on CHD 

diagnostic codes which may underestimate actual prevalence. 

 

5.2.1. Local area prevalence estimation framework 

The APHO used regression models to estimate prevalence and used the 

HSfE as its main source of data. This approach does not take account of 

geographic context, exemplified by interactions between demographic risk 

factors and geographic locations, or by effects of local geographic variables 

e.g. cultural norms. For example, assumptions do not hold for minority ethnic 

populations e.g. South Indian women.  

 

The proposed local model incorporates both national survey information 

(HSfE) on patient risk factors and local geographic data (Moran et al. 2010). 

This approach is applied to drive micro area prevalence estimates, 

specifically estimates of CHD for the locality of Brent. The model incorporates 
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prevalence differentials by age, gender and ethnicity from the national survey. 

Whilst national model uses random effect that allows for spatial correlations, 

local area information takes account of health inequalities relating to poverty 

and urbanity.     

 

Model Construction 

A regression model for prevalence includes person level attributes (age, 

gender, ethnicity, etc.) that are known to have significant CHD risk gradients.  

 

Data source 

a.    Populations 

The CHD prevalence model used ONS 2009 mid-year LA population 

estimates by ethnic group, age and sex. Five ethnic groups were used: white, 

black, Asian, mixed and other. In order to calculate estimate prevalence of 

CHD in the future, population projections were incorporated into the model. 

ONS has not published population projections by ethnic group, so the 2009 

(LA) distribution of ethnic groups was used to generate population estimates 

to 2020.  

Local population data were data to this mix. This provided a “more realistic” 

scenario for local estimates. 

b.   Ethnicity 

The proportion of practice population in ethnic groups was supplied by the 

Care Quality Commission (CQC). HES is the only routine dataset which 

includes GP practice and patient ethnicity and has high levels of completion 

and data quality. It is assumed that the hospital admissions (excluding 
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maternity and mental health) reflect the true ethnic population of the practice 

and there is no systematic bias. The proportions by ethnic group for each 

practice were calculated by dividing admissions within each ethnic category 

by the total admissions for the practice. The same ethnic distribution is 

applied across all age bands as there are insufficient hospital admissions to 

robustly calculate the distribution of ethnic groups by age and sex for practices. 

c.  Deprivation 

Deprivation scores are taken from IMD 2008. Deprivation scores for PCTs 

were calculated by taking a population weighted average of the scores for 

each Medium Super Output Area (MSOA) which in turn was calculated by 

taking a weighted average of the IMD2004 scores of each Lower Super 

Output Area (LSOA) within the PCT. Five deprivation categories are used in 

the model. Note that these categories are based on quintiles of IMD score at 

LSOA level (Table 5). When the cut-offs are applied to larger geographies (LA 

or PCT) there is not an even distribution across all categories. 

 

 

 

 

 

 

 

 

Table 4  : Index of multiple deprivation banding 

  

Rank IMD IMD Number % 

HSfE 2006 HSfE 2007 

 1 0.59 -8.34 .55 – 9.02 3,803 17.87 

 2 8.35 – 13.71 9,03 -14.14 3,573 16.79 

 3 13.72 – 21.15 14.15 – 21.17 3,788 17.80 

 4 21.16 – 34.20 21.18 – 33.52 4,551 21.38 

 5 34.21 – 86.36 33.53 – 85.69 5,571 26.17 

   Total 21,286 100 
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d.   Smoking status 

National (England) proportions of smokers, ex-smokers and current smokers 

by age and sex are taken from HSfE (2007-2009 pooled). These 

proportions were then adjusted for each LA/PCT using the synthetic 

estimates of smoking prevalence for 2006- 2009, using the following 

algorithm:  

 

 

Local prevalence of smokers to (age, sex, category) = national prevalence of 
smoking in (age, sex, category) * local overall smoking prevalence / national 
overall smoking prevalence . Local ex-smokers in (age, sex) category not 
adjusted. 
 

Nasl = 1 – Easl – Sasl 
 
where 
 
S= proportion of population who are smokers 
E= proportion of population who are ex-smokers 
N= proportion of population who have never smoked 
L= local 
N= national 
as= by age and sex 
 
This approach assumes that the proportion of ex-smokers in each age-sex 

category is fixed and the number of never-smokers increases as the number of 

smokers decreases. Regional analysis of the relationship between 

prevalence of smokers and ex-smokers in the HSfE shows no systematic 

relationship and therefore it was decided that the ex-smoking rate should not 

be locally adjusted (see figures 15).  

 

 



Sasl  Sasn 
Sl

Sn
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Figure 15: Prevalence of smoking in the UK (gender) 

 

The same smoking prevalence rates are applied across all ethnic categories. 

This was partly due to the fact that no data (by ethnicity) existed at the time of 

the study. Also future changes in smoking prevalence are not taken into 

account in the CHD prevalence projections. This is because of the uncertainty 

associated with predictions of smoking prevalence and the lag time between 

smoking cessation and improved health. Even if there was a rapid drop in the 

number of smokers over the next few years, any associated decrease in CHD 

would not be seen for many years. 

 

Operationally, three issues had to be considered. First, the modelling predicts 

the number of people with identified CHD within each population, taking 

account only of the demographic distribution of the population. The prevalence 

of patient-reported doctor-diagnosed CHD in each age/sex stratum is based 

on national data from the HSfE. It allows first for the differential risk of each 
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CHD symptom for the various ethnic groups as against the white as reference 

category.  Data for educational attainment could not be used as this was not 

available. Brent has a significant number of immigrants and displaced 

population cohort (due to conflicts elsewhere) and this information was 

unavailable and probably not reliable.  

 

The second takes account of inequalities and includes geographic effects but 

without any interactions between area and local attributes. This focused on 

the county level variables such as poverty index. Many geographic influences 

may be unobserved (e.g. various environmental and health behavioural 

influences) and these are represented in the second models by random 

effects. It is sensible to allow unobserved influences to be spatially correlated 

to reflect smoothly varying risk factors in space.  

 

The third approach allows area-person interactions, in that random effects are 

taken to be ethnic specific. Differentiation of area effects by ethnicity reflects 

epidemiological evidence such as that noted by Casper et al (2006) that CHD 

mortality and prevalence disparities between ethnic groups vary by place of 

residence. 

 

The modelling and estimation of the effects of interest was carried out using 

STATA. The initial output consisted of two tables: one with the estimated 

regression coefficients, corresponding p values and 95% confidence intervals, 

and another with the estimated odds ratios (exp(b)), which in the table appear 

as relative risk ratios (RRRs) and 95% confidence intervals. A positive sign of 
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the estimated coefficient is associated with an increase in the odds of the 

outcome had angina or heart attack, and a negative sign is associated with a 

decrease in the odds. Since Prob (A) = Odds (A) / 1+ Odds (A), for uncommon 

outcomes such as CHD, RRR can be assumed to be the same as the odds 

ratio (OR). (See explanation in methodology section page 99). 

 

Assumptions  

It is assumed that the: 

 Proportion of smokers, ex-smokers and never-smokers is the same      

           across ethnic groups 

 Proportion of ex-smokers in each age-sex group is the same in all 

areas 

 Smoking prevalence rates from the model-based estimates of lifestyle 

behaviours are reliable 

 Prevalence of CHD in those aged under 40 is negligible 

 Due to lack of data, it was not possible to treat ex-regular-smokers and 

ex-occasional smokers separately. Ex/occasional smokers are treated 

as non-smokers 

 

In summary, this method is straight-forward and extremely cost-effective 

relative to the implementation of a population survey, but it does assume that 

the local prevalence of a condition or behaviour is entirely dependent upon the 

socio-demographic composition of the area.  Models which combine individual 

and area level effects represent a significant advance, but it has proved 
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difficult to quantify the precision of small area estimates without simplifying 

assumptions.   

 

5.2.2. Model construction:  Validation process 

The methodology supporting model-based estimation for large population has 

been validated and is well established, and it is not the purpose of this study 

to re-examine it. Rather, it aims to validate individual sets of ward-level model-

based estimates of the prevalence of cardiovascular risk factors.  

These estimates should be valid and accurate provided that: 

(a)  The risk factor in question is strongly associated with individual level and 

area level covariates,  

(b)   The developed model is well fitted.  

 

If the first criterion is satisfied then it is possible to create a model that 

explains a large proportion of the variance in the prevalence of risk factors. If 

the second criterion is satisfied then the developed model accurately 

describes the relationship between uptake of the risk factor and the individual 

and area-level covariates.  

The validity assessments focus were on:  

a. Internal 

b. External  

 Predictive validity –  

1. Is there any association with QOF data?  

2. Does it converge with Case findings? 

3. Face validity 



 
 

116 

The extent to which the models supporting the estimates are well fitted—that 

is, they adequately describe the relationship between the health behaviour 

and individual level and area level covariates is assumed as it operates on the 

same principle of the regional model.  

 

a) Internal validation  

The prediction of the model was assessed in two ways: 

 by deriving predicted probabilities of the CHD outcome in Stata from the 

models and comparing these to the observed cases 

 by generating a receiver operating characteristics (ROC) curve using the 

predicted probabilities of the CHD outcome compared to the observed cases 

 

One method of assessing performance is to use regression model to predict 

response for each subject. These predictions are called fitted values. The 

difference between the fitted and the observed values are called residuals. 

Ideally the best prediction should result from utilising the most risk factor 

information in the regression model. Ideally the best prediction should result 

from utilising the best locally available information. However only a limited 

range of HSfE variable data is either available or can be estimated at the 

primary care organisation (PCO) or local authority (LA) level, so there is no 

purpose in including other variables (see Table 6). The study validated the 

local model by comparing it, in terms of prediction, to a model including all 

available and significant HSfE variables. In addition, however, the amount of 

missing data affects the prediction of a model. The Stata10 software package 

was used for analysis. All variables were re-coded to drop negative values for 
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estimation purposes. The methodology applied was multinomial logistics 

regression with the “cluster” adjustment option for local variables. For analysis 

of two categories (where needed), the multinomial regression  was reduced to 

binomial logistic regression. The prevalence in each age group, gender, ethnic 

group, area of residence and level of deprivation were derived from the odds, 

using the formula: prevalence=odds/(1+odds). 

 

In the complete HSfE variables the largest proportion of missing data occurred 

in those variables related to drug treatment for high blood pressure. Treatment 

with ACE inhibitors, beta blockers and calcium blockers are  significant. 

However these may also be used to treat established CHD, so the association 

may be unrelated to hypertension. In addition, the HSfE relies upon patient 

recall for drug treatment. Not unexpectedly, much of the data for these 

variables is missing. Systolic and diastolic BP were added as ordinal variables 

to the model, but this resulted in major changes to ORs for other variables. 

This may simply be related to model instability because of the large numbers 

of variables included. The addition of a single variable for hypertension, either 

treated or untreated, will be explored as a further later step in model 

development. 

 

The prevalence figures generated by the models are estimates of the 

expected prevalence of disease. Discrepancies between modelled estimates 

at practice level and other sources of data such as QOF disease registers 

may be due to local variations not captured by the model and cannot be solely 

attributed to weaknesses in QOF data. For practices with populations that 
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significantly differ from a ‘typical’ population (e.g. large black or ethnic 

minority) were excluded. Hence the model COMP 1 included the “complete” 

list of variables, including BP drugs; model COMP 2 included the “complete” 

list of variables, but excluded BP drugs (table 5). The model included impact 

of age, Index of Multiple Deprivation (IMD) and ethnicity on outcomes (table 

7 and 8). The predicted prevalence by BM category is shown in table 7.  

COMP 1  =  “Complete” variables with BP drugs  

COMP 2  =  “Complete” variables without BP drugs 

LOCAL =  only using locally available data 

* only a selection of variables is shown in table  

 

Table 5: Variables included in merged dataset 
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 Risk 

factor 

RR S-

Error 

z P>z 95% 

CI 

Age 25-34 1     

Age 35-44 6.68 2.98 4.41 0 2.91 

Age 45-54 19.51 8.21 7.06 0 8.55 

Age 55-64 65.71 27.23 11.65 0 29.16 

Age 65+ 154.67 65.16 11.65 0 68.87 

IMD  0.59-8.35 1     

IMD 8.35-13.72 1.27 0.14 1.75 .08 0.97 

IMD 13.73-21.16 1.35 0.15 2.63 .009 1.02 

IMD 21.17-86.36 1.85 0.25 6.49 0 2.12 

White 1     

Mixed 1.23 0.85 0.35 0.72 0.39 

Black 0.76 0.16 -1.23 0.21 0.49 

Asian 1.51 0.24 2.56 0.01 1.12 

Other 0.16 0.17 -1.76 0.07 0.02 

 
Table 6: Odds Ratios for LOCAL (public health datasets) , model with only 
locally available variables Including IMD – Index of Multiple Deprivation 
 

 Age band 

 16-24 25-34 35-44 45-54 55-64 65+ Total 

Don’t know 0 0 0 0 0 3 3 

Yes 2 6 43 97 262 694 1,104 

No 2500 3855 4409 3379 2792 20121 35156 

Total 2502 3861 4452 3476 3054 20818 36363 

 

Table 7: Respondents reporting doctor diagnosed CHD by age band 
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Table  8:  CHD prevalence by BMI category 

 

Table 6 shows the frequency of the CHD outcome by age group in the 

merged dataset. The regression model for risk factors for CHD in the “local” 

prevalence model is shown in table 9. As expected, ORs increase strikingly 

with increasing age in all models. In the prevalence predictions, using 

coefficients (not shown in these tables), this results in age-related increases 

in prevalence which closely match the crude overall prevalence. Surprisingly the 

only significant comparison for smoking is for category 3 “used to smoke 

regularly” i.e. this group is more likely to report CHD compared to the group 

“never smoked cigarettes at all”. There is a significant comparison for 

male sex. ORs, p values and confidence intervals are generally similar to 

the “Complete” models. Unfortunately, however, local synthetic estimates of 

smoking prevalence do not include categories for occasional/regular 

smokers. 
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Risk factor RRR Std 

E 

z P>z 95% 

CI. 

Age 25-34 1.00     

Age 35-44 7.13 6.89 2.03 0.04 1.07 

Age 45-54 18.44 17.4 3.08 0.01 2.89 

Age 55-64 50.09 46.7 4.2 0 8.05 

Age 65-74 121.1 112 5.17 0 19.65 

Female sex 1.00     

Male sex 2.25 0.32 5.74 0 1.71 

Never Smoker 1.00     

Used to smoke occasionally 1.03 0.32 0.13 0.9 0.56 

Used to smoke regularly 1.51 0.23 2.63 0.01 1.11 

Current Smoker 1.11 0.23 0.52 0.61 0.74 

White ethnic group 1.00     

Black/Black British e 0.83 0.35 0.43 0.66 0.36 

Asian/Asian British ethnic  1.51 0.43 1.57 0.11 0.89 

BMI <18.51 1.00     

BMI >18.50 & BMI <25 0.53 0.56 0.59 0.55 0.06 

BMI >25 & BMI <30 0.89 0.93 0.11 0.91 0.11 

BMI >30 & BMI <40 1.02 1.08 0.02 0.98 0.12 

BMI >40 0.69 0.73 0.35 0.72 0.08 

Total cholestrol:HDL ratio 0.74 0.04 4.44 0 0.65 

Diabetes; yes 0.68 0.14 -1.8 0.07 0.45 

Family History of CVC; no 0.62 0.11 -.87 0.01 0.45 

 

Table 9: Odds ratios for CHD model  
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Using  AUROC (Area Under Receiver Operating Characteristics Curve) 

Receiver‐ operating characteristic (ROC) analysis was originally developed 

during World War II to analyse classification accuracy in differentiating signal 

from noise in radar detection. Recently, the methodology has been adapted to 

several clinical areas heavily dependent on screening and diagnostic tests, in 

particular, laboratory testing, epidemiology, radiology, and bioinformatics.  

 

ROC analysis is a useful tool for evaluating the performance of diagnostic 

tests and more generally for evaluating the accuracy of a statistical model 

(e.g. logistic regression, linear discriminant analysis) that classifies subjects 

into one of two categories, diseased or non-‐ diseased. Its function as a 

simple graphical tool for displaying the accuracy of a medical diagnostic test is 

one of the most well‐ known applications of ROC curve analysis. 

 

An ROC curve is a plot of sensitivity on the y axis against specificity on the x 

axis for varying values of the threshold, t. The 45° diagonal line connecting 

(0,0) to (1,1) is the ROC curve corresponding to random chance. The ROC 

curve for the gold standard is the line connecting (0,0) to (0,1) and (0,1) to 

(1,1). Generally, ROC curves lie between these two extremes. The area under 

the ROC curve is a summary measure that essentially averages diagnostic 

accuracy across the spectrum of test values. The area under the curve (AUC) 

is an overall summary of diagnostic accuracy. AUC equals 0.5 when the ROC 

curve corresponds to random chance and 1.0 for perfect accuracy. On rare 

occasions, the estimated AUC is <0.5, indicating that the test does worse than 

chance (figure 16). 
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Figure 16:  AUROC curve 

 

AUROC’s for the model tested above were estimated using Stata10. These 

are shown in the chart below. If both sensitivity and specificity area of 

importance in a CHD model, the optimal threshold of t would be 0.75, where 

sensitivity and specificity equal 0.77  The local model, with an AUROC of 

0.8071 exceeds this level, although the complete model has even better 

performance, with an AUROC of 0.8304 

 

b) External validation 

a) Predictive validity 

Because the intended use of this model is primarily for estimation purposes, 

rather than testing a particular theory, the study sought to focus on the 

predictive accuracy of the model. This was carried out by testing number of 

predicted cases against observed events within GP case loads. 
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Testing the model 

The model was applied locally to test its applicability. Based on Health Survey 

for England data and local demographic distribution,  SMR for CHD in the 

London Borough of Brent is estimated at 112. The estimation increases the 

predicted prevalence of each Brent’s practices by 112%. 

Using .. 

SMR (CHD) = (2.402 × UV67) + 25.24, where 2.402 is the gradient, UV67 is 

the local community (Kilburn) deprivation index and 25.24 the intercept of the 

regression line.  

The  multiplication factor (mf) is identified by: 

mf = ((2.402 x 40) + 25.24)/100  (**40 is local deprivation index) >> 1.21 

To get the Llocal prevalence rate for GP Practice X, the local CHD (SMR) is 

divided by national CHD (SMR) and multiplied by the mf  ie 1.21 

           

where LocEst (local estimate) and NatEst (national estimate) 

Thus  

  =  1.31 ,  

where 121.32 (local predicted SMR); 112 (national SMR (see above ) and 

1.21 is the mf 

This shows that Practice X (in Kilburn locality)  has a higher prevalence than 

Brent (as a borough). This was calculated for each GP practice in the Kilburn 

area and for the other four localities in the borough localities (table 10). A 

comparative prevalence of CHD for Brent localities calculated through this 

model giving a predicted number of cases (table 11) 



LocEst

NatEst
 MF



121.32

112
1.21

Formatted: Font: (Default) Arial,
12 pt, Font color: Auto



 
 

125 

 
 

 
 
Table 10: CHD prevalence estimation - Kilburn location 

 

 

 

Table 11: Prevalence estimates for CHD cases for all the localities 
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To test the association between the number of registered cases and  the 

predicted numbers by the model, a series of chi-square tests ( 2 ) (table 12). 

Results show that there is a significant association between predicted and 

actual cases.  

 

The model does not necessarily represent the actual number of people who 

should be diagnosed with CHD for each practice; it is only a guide. The 

characteristics of each practice differ and needs to be considered. 

Furthermore, it does not include undiagnosed cases of CHD. In Brent, it is 

anticipated that there could be relatively large levels of undiagnosed disease 

compared to more affluent areas where people are more likely to present to 

their GP with symptoms.  

 

 CHD (cases) Chi-sq ( 2)  Sig. 

 Registered Predicted   

Kilburn 2082 1259 4.87 P<0.05 

Harness 1914 1567 3.78 P<0.05 

Wembley 1751 2315 3.81 P<0.05 

Kingsbury 1748 1459 3.35 P<0.05 

Willesden 1388 2017 4.04 P<0.05 

 

Table 12: Chi-square tests to demonstrate the association between the various 

localities (within and between). 

 



 
 

127 

A CHD funnel plot “observed vs expected” prevalence by GP practices in 

Brent (2009-10) carried out using QOF datasets for Brent is estimated to be 

3.1% in 2009 (n=295,678) gave further support to the findings. This is higher 

than the prevalence reported by Brent PCT (2.2%) (figure 17). However, this 

was not unexpected due to the data quality issues and the quirkiness of QOF. 

It does indicate that NHS Brent is under-reporting its CHD prevalence. 

 

 

   

Figure 17: Funnel chart for CHD indicating an under reporting of CHD cases for 

2010-11 

 

5.3. Estimating prevalence of co-morbidities 

This phase is concerned with estimating the prevalence of CHD within the SMI 

patient population. This is undertaken (a) calculating the prevalence of the 

concurrent disease and (b) using the Bayesian method to determine the 

probability of having this condition in the SMI group. The determination of the 

prevalence rate of CHD in the local population has been carried out in the 

precedent phase. The SMI prevalence rate is taken from the QOF’s dataset at 

practice level and as expected the level is uneven across the borough. The 
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model assumes that the SMI population via QOF represents the “true level” of 

SMI within the locality. At the time of the study, local estimate of mental illness 

is not sufficiently robust to make a more accurate estimation.  

 

The extrapolation algorithm has been explained in the methodology section.  

Using this probability equation, the prevalence rate of CHD is extrapolated from 

the SMI group using the following formulation:  

    P (CHD I SMI)= P(CHD)(PSMI) / (PSMI I CHD)  

Where   (see figure 18 for a schematic view) 

P(CHD) is the probability of CHD in the local population 

P(SMI) is the probability of SMI in the population (using QOFs) 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 18: Schema to show the relative prevalence (%) of SMI with CHD within the 

population 
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Worked example: 

Testing the model  

In order to test the predictive value of the model five localities in Brent agreed 

to participate in this project. Five case studies below explain how the disease 

prevalence models could be used by health commissioners to factor local 

variances. 

 

Example 

a. Calculation for the presence of CHD in the SMI population within 

locality 

 Establish probability of CHD prevalence (based on the estimate model 

methodology). 

 Use SMI prevalence rate as determined by QOF.  

 Use the probability estimate (based on systematic reviews) to establish the 

likelihood of CHD with SMI. 

 Calculate the likelihood with SMI to have CHD. 

 Test against case finding. In order to find this statistic, the GPs had 

undertaken a complex search of the system to match the two conditions.   
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b.  Estimation of CHD in SMI population 

The prevalence rate of the SMI was based on QOF data (as reported by GPs). 

It should be noted that due to technical difficulties, it is not possible (to-date) to 

make regional estimation of the mentally ill. Since 2008, QOF have been used 

as a proxy measure to determine prevalence. Given that QOF is an incentive 

scheme and that many patients do not regularly go for checks up, this source 

of data is at best unreliable. Using Bayesian probability, we have  

P (CHD I SMI)= P(CHD)(PSMI) / (PSMI I CHD)  

Worked example: 

P (CHD I SMI) = P(CHD)(PSMI) / (PSMI I CHD) 

P (CHD I SMI) =  (0.04)*(0.011) / (0.23) = 0.00191 

** 0.04 (the probability of having CHD) ; 0.11 (the probability of having SMI) – 

(refer to schematic illustration above) 

Kilburn locality 

The formula was applied to the GP practices within the Kilburn locality. Using 

Bayesian probability and the predicted prevalence of CHD (adjusted value), an 

estimation of patients having SMI and CHD was calculated (table 13). Figure 19 

graphically demonstrate the difference between the number of cases derived 

from the national prediction against the local estimates numbers.  

 

Figure 19: Graph showing SMI with CHD (expected vs recorded) within 

Kilburn locality. 
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Table 13: SMI with CHD co-morbidity – Kilburn locality (Actual vs Expected) 

 

Modelled CHD prevalence and prevalence probability estimate of its co-

morbidity with SMI are shown on table 14. Results show a significant 

difference between  observed and case notes findings (table 15).  For each 

locality the modelled prevalence estimates were higher than the register 

prevalence, which would be expected if the model reflected the level of 

diagnosed plus undiagnosed CHD in the community .  
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Table 14 : Number of expected cases and observed cases of SMI with CHD. 
 

 

 

Table 15: T-tests show significance difference between expected and 
recorded cases across all localities. 
 

5.4. Summary 

There are significant differences between the numbers of patients with a 

diagnosis of CHD as recorded by their GP (based on the Quality and 

Outcomes Framework (QOF) register and those reported by the modelled 

data. One possible explanation is that the GP registers are not always up-to-

date (due to boundary movements) and patients not informing their practices. 

Such issues tend to inflate practice patient numbers which affect the 

denominator line. 
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However, this does not tell us total prevalence, only how many have been 

diagnosed. If conditions such as CHD are undiagnosed, and therefore 

unmanaged, outcomes are likely to be poor (for example, premature death or 

disability due to heart attack). However, by comparing the QOF registers with 

the modelled prevalence it is possible to estimate the level of unmet need, in 

this case, the number of patients thought to have CHD who have not been 

diagnosed. 
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6. COPD 

6.1. Introduction 

Chronic obstructive pulmonary disease (COPD) is a chronic condition 

characterised by progressive airflow obstruction, which is not completely 

reversible. It has been called the "silent epidemic" and is the fourth leading 

cause of death in the general population (Information Centre. GP Extraction 

Service. 2010). This disease accounts for nearly 30,000 deaths each year in 

the United Kingdom (UK), corresponding to 5.7 percent of adult male and 4 

percent of adult female deaths, including a significant number of premature 

deaths (Billings et al. 2006). A meta-analysis of studies of the general 

population published between 1990 and 2004 revealed geographical 

disparities in the pattern of the disease due to socio-economic variables (Dr 

Foster Intelligence 2010). The prevalence of COPD was estimated to be 7.6% 

(95% CI 6–9.2%) independent of the defined diagnostic criteria. On the basis 

of 38 studies, the prevalence of chronic bronchitis was estimated to be 6.4% 

(95% CI 5.3–7.7%). The prevalence of emphysema (via chest radiograph) 

was estimated to be 1.8% (95% CI 1.3–2.6%) on the basis of eight studies. 

 

In addition, 1.4% of the population consults their general practitioners (GPs) 

for COPD each year. It accounts for 2% of hospital admissions and over 3 

percent of bed-days in adults, costing the NHS £800 million, and leading to 24 

million working days lost each year (Billings et al. 2006; Dr Foster Intelligence 

2010). 
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Risks factors of public health importance include; air pollution, socio-economic 

deprivation, occupational exposures and possibly ethnicity. Stopping smoking 

prevents the development of COPD, or slows its progress and reduces the 

risk of hospital admissions. Not surprisingly, smoking is the strongest 

independent predictor of COPD, with smokers having over eight times the 

odds of having COPD than the non-smokers (Soljak and Flowers 2008; Dr 

Foster Intelligence 2010).  

 

This "epidemic" seems to be even more silent among individuals with serious 

mental illness who are at particular risk of developing this condition from 

smoking, which is a modifiable risk factor. A team at Queen Mary university, 

London (Congdon 2001) reported that patients with serious mental illness had 

over three times the odds of having chronic bronchitis and over five times the 

odds of having emphysema than a matched group of national comparison 

subjects (Goddard 2005). In their study, they reported prevalence of COPD 

among those with serious mental illness in the order of 22.6% (Congdon 

2006). Consistent with previous research, they found the prevalence of current 

smoking to be 60.5%, which is more than twice the average (27.4%) and 

nationally (22.6%).  

 

COPD is measured by degree of airflow obstruction to the lungs. It is 

measured by spirometric testing, in which the patient performs a forced 

expiration into an airflow measurement device called a spirometer, and the 

volume of the air they exhale is measured over time until they can exhale no 

more. According to the current Global initiative for Chronic Obstructive Lung 



 
 

136 

Disease (GOLD) guidelines, COPD is diagnosed when the ratio of the air 

exhaled in one second (FEV1) to the total exhaled volume of air (FVC) is less 

than 0.7, indicating the presence of obstruction (Horgan et al. 2010). The 

severity of the disease is determined by the variance between the FEV1 

measured and that predicted by age. Mild COPD is diagnosed when FEV1 is 

greater than or equal to 80% of the predicted value. Very severe COPD is 

diagnosed when FEV1 is less than 30% of the predicted value. Conversely, a 

person’s lung age is defined as the age of the average healthy individual 

performing a similar spirometric test; someone with a low FEV1 compared 

with what is predicted for his or her actual age would have a high lung age. 

 

6.2. National prevalence model  

Developing the model 

The national prevalence model used the HSfE as a representative population-

based annual survey, which in 2001 included the assessment of respiratory 

function using spirometry, as well as comprehensive data on risk factors. The 

variables included in the model, based on their association with COPD in 

logistic regression analysis, were age group, gender, ethnicity, smoking 

prevalence, area of residence (rural, suburban or urban) and area-based 

deprivation score (McFadden et al. 2009). The 2001 data refers to 5269 men 

(98%) and 6133 women (95%) over the age of 15 years tested using 

spirometry (Morris et al. 2005. Additional data for multivariate analysis were 

available for 94.3% of the sample. COPD was defined using the British 

Thoracic Society (BTS) criteria: forced expiratory volume in 1s (FEV1) divided 

by forced vital capacity (FVC) under 0.70, and FEV1 <80% of predicted using 
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reference values from the HSfE. The approach used a complex synthetic 

estimation technique using logistic regression.  

 

The baseline odds of COPD in non-smokers was obtained directly from the 

data set (Graubard et al. 2007). The strength of association between each 

explanatory variable and COPD caseness was used to calculate the relative 

odds, which were applied to the baseline odds to derive the prevalence 

estimates for subgroups of risk factors. The main results were expressed as 

expected/predicted prevalence of COPD for population subgroups. The model 

was applied to obtain the total COPD prevalence for 354  local authorities in 

England. The prevalence in each age group, ethnic group, area of residence 

and level of deprivation and smoking status category were derived from the 

odds, using the formula: 

prevalence = odds/(1+odds).  

 

The APHO accepts that this current model is rather crude and that prevalence 

model based on a more comprehensive regression model using more 

sensitive local data would be more discriminative.   

 

 Model Validity 

The model validity was tested by comparing COPD expected prevalence 

results to an alternative model, based on a survey of prevalence studies. An 

additional test involved testing the population of Belfast, Northern Ireland 

population and compared the results with those from a population survey of 
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the same population. The results were slightly lower but within the 95% CI of 

those estimated from the survey (4.9% total prevalence in the 40-69 year olds 

compared with 6.1% (95% CIs = 4.5-7.7) in the survey. The prevalence 

estimates for the whole of England were similar to the Health Needs 

Assessment Report and to other studies that used the BTS definition of 

COPD. The significant correlation between expected prevalence and 

diagnosed COPD and COPD mortality gives reassurance of validity. 

 

Findings 

Table 16 shows the prevalence of COPD by age and gender in England. The 

overall prevalence in the population over 15 years of age was 3.1% (3.9% in 

men and 2.4% in women). For those over 45 years old, the estimated 

prevalence was 5.3% (6.8% and 3.9% in men and women respectively). This 

corresponds to over 1.3 million people in England with COPD, of whom nearly 

800,000 or 60% are men. The odds ratio calculated for gender among current 

and ex-smokers show a wide difference between men and women smoking 

history (table 17). The assumption that ethnicity is not associated with being a 

case of COPD, i.e. that all population has the same risk as the white 

population did not change the total national prevalence estimates 

considerably (1,297 thousand in 15 year-olds and over and 1,065 thousand 

over 45s under this assumption). When we considered the risk of COPD in 

under 45s as equal to the average baseline risk in this age group (in non- 

smokers), the total number of cases estimated was reduced by 60,800, 

resulting in an overall prevalence of 1.25 million or 3% (3.8% in men and 

2.3% in women) (table 18).  
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Age 

group 

Men  

number (%)  

Women 

number (%) 

Both sexes  

number (%) 

15 -44 137,530 

(1.30) 

93,450 (0.89) 230,980 

(1.10) 

45-54 75,720 (2.38) 64,840 (2.00) 140,560 

(2.19) 

55-64 198,400 

(6.90) 

122,440 

(4.11) 

320,840 

(5.48) 

65-74 199,840 

(10.03) 

105,704 

(4.81) 

305,580 

(7.29) 

75+ 172,700 

(11.65) 

132,400 

(5.55) 

305,100 

(7.89) 

Total 784,190 

(3.89) 

518,870 

(2.41) 

1,303,060 

(3.15) 

Table 16: Number and proportion of people estimated to have COPD by age group   
and gender in England (estimates for 2009). 
Values in brackets correspond to mean values in extreme quintiles of deprivation 
score ore approximately the 10th and 90th percentiles of the prevalence distribution 
 
 

Variables Odds ratio (95%) 

Smoking Status Men Women 

Never 1 1 

Former 3.63 (2.54 – 5.21) 1.70 (1.07 – 2.64) 

Current 3.81 (2.64- 5.52) 2.3 (2.23 – 5.14) 

   Table 17: Risk factors for COPD and selection of variables for COPD model 
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Age (p<0.01)  

<35 0.56 (0.13 – 1.65) 0.32 (0.11 – 1.2) 

35-54 2.05 (1.33 – 4.50) 1.65 (1.3 – 3.6) 

55-64 6.91 (4.02-11.89) 1.9 (3.2 – 7.9) 

65+ 10.40 (6.08 – 

17.80) 

8.68 (5.2 – 

14.88) 

Regional locality 

Urban  1 1 

Suburban 0.70 (0.50 – 0.97) 0.45 (0.3 – 0.87 

Rural 0.58 (0.39 – 0.86) 0.34 (0.12 – 

0.86) 

           

         Table 18:  Risk factor COPD – Age and locality 

The latter estimates assume that all cases of airflow obstruction in the 

younger age groups are due to other diagnoses than COPD, such as 

asthma. Table 18 shows the estimated prevalence of COPD in urban, 

suburban and rural England, based on the national population distribution and 

smoking prevalence. The values in brackets show the estimated average 

prevalence for areas in the lower and highest quintiles of deprivation. The 

average prevalence in over 35s varies 4-fold, with the highest values in men in 

deprived urban areas, and the lowest in women in wealthy rural areas. 

When the effect of ethnicity is also considered, the variation in prevalence 

reaches 7-fold, from 1.7% in Asian women from rural areas in the lower 
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quintile of deprivation to 12.5% in black men from urban areas in the upper 

quintile of deprivation. 

 

Model validation 

a. Predictive Validity 

The model validity was tested by comparing COPD expected prevalence 

results to an alternative model, based on a survey of prevalence studies. An 

additional test involved testing the population of another West London locality 

population and compared the results with those from a population survey of a 

similar locality from another borough of London. Using a desktop assessment 

approach, the results were slightly lower but within the 95% CI of those 

estimated from the survey (4.9% total prevalence in the 40-69 year olds 

compared with 6.1% (95% CIs = 4.5-7.7) in the survey. The prevalence 

estimates for the sector were similar to the Health Needs Assessment report 

and to other studies that used the BTS definition of COPD. The significant 

correlation between expected prevalence and diagnosed COPD and COPD 

mortality gives reassurance of validity. The significant correlations between 

expected prevalence and both diagnosed COPD and COPD mortality, gives 

us further reassurance of validity. 

 

b. Density location 

Demand for health care provision in the community is assumed to be evenly 

distributed according to needs and demand. The location of  health care 

services depends largely on the local health care system mediated by needs 

to have rapid  access  services, historical factors and so on. However, access 
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to primary care is a significant part of that process and where there is a high 

density population of a particular condition in a given location this brings 

enormous pressure on the system.   

 

The possibility that there may be a high expected risk in some small areas and 

as part of the validity of the model proposed, the study looked at the density 

issue for COPD. This is equally applicable to any long term condition. 

 

The use of multinomial logistic regression which uses odd ratios based on 

age, sex, ethnicity, rurality, smoking and deprivation scores logistic use of 

prevalence measures for prevalence estimates is generally accepted and 

recommended by the Association of Public Health Observatories (APHO).  

 

From the results in this study suggested that the ratio of recorded to expected 

prevalence was not synchronous. Whist this was not unexpected and 

considering that has a problem of health inequality within the borough, this 

may suggest that there is a north-south problem. The south (with its high 

deprived areas) will have a higher recorded prevalence and there may be a 

problem of under-diagnosis. This may be also helped by the fact that there is 

a high mobile population in this area.  

 

Using the same parameters for COPD prevalence estimates e.g. age, gender 

and post-code, the odds ratios for each person was calculated. As odds ratio 

are multiplicative, an overall odds ratio for each person is derived as the 
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product of the individual odds ratios. In general, if a patient has a set of n odds 

ratios for a particular condition, the patient’s odds ratio is expressed as 

 

where 0p = Odds ratio of population n  

The overall prevalence rate P was calculated as the expected total number of 

COPD patients (from the model) derived by the number of residents in the age 

range. 

The calculated risk population for an area C(a) was defined as:  

 

The expected number of COPD patients [E(a)] in an area C(a) was calculated 

as: 

 

The risk per registered person in an area [R(a)] was calculated as: 

 

    where m is the total number of residents 

The results were mapped at postcode level in the GIS System (software used 

in public health) using boundary files to plot COPD risk density across the 

borough. 

 

The map (figure 20) shows the risk density at post code level (the sum of the 

odds ratios for all registered patients living in the post code boundary). The 

shading can be interpreted that the chance of finding a COPD case in a post 

code with the darkest colour is more than 20 times that of finding a COPD 
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patient in a postcode with the lightest shading, which may suggest an efficient 

strategy for a targeted approach by the health authority.   

 

Discrepancies between modelled estimates at practice level and other 

sources of data such as QOF disease registers may be due to local variations 

not captured by the model and cannot be solely attributed to weaknesses in 

QOF data. For practices with populations that significantly differ from a 

‘typical’ population (e.g. large black or ethnic minority population that has a 

very different smoking pattern to the local average) the assumptions of the 

model may not apply and discrepancies may occur. 

 

While some quite wide areas have low risk density and others are overall high, 

in many areas postcodes having a high risk of COPD are very close to post 

codes of low risk. Also, the pattern of risk does not always reflect the overall 

deprivation in the borough. For example, patients resident in parts of the north 

of the borough, which is very affluent, have a relatively high risk of COPD, 

whilst the reverse is also true of the south. 

 

The local area model predicts individual numbers of cases in an area, a 

method that becomes less reliable as the size of the population decreases. It 

would be inappropriate to use it on a population  as small as one post code. 

By aggregating the individual risks within an area and expressing the result as 

the relative probability of finding a case in the area, rather than predicting 

actual number of cases, case findings strategies based on looking where the 

risks are the highest, can be formulated. 
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The model described here is open to investigation and question and the 

results can be aggregated to any defined geographical area. Output as post 

code level enables GPs to identify where in their catchment areas they have 

the greatest likelihood of finding a previously undiagnosed patient with COPD, 

especially where their catchments have highly varied COPD densities. 

 

 

 

 

 

 

 

 

 

 

 

Figure  (20) – Map showing the density location of COPD cases in Brent. 

 

c. Expected versus Observed  

The model was evaluated by comparing COPD expected prevalence results to 

an alternative model, based on a survey of prevalence studies. 

For the predictive validity, GP-diagnosed and registered prevalence of COPD, 

obtained from the QOF were used. QOF COPD prevalence estimates are 

based on populations registered with GPs. The study derived residence-based 
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registered prevalence estimates for LAs using a look-up table—a pooled 

extract of England GP registers—from the National Strategic Tracing Service 

(NSTS). These were applied to the GP registered population in NHS Brent. 

HES (hospital admission data) from one calendar year was used, patients 

were counted once in each year they were admitted rather than once over the 

three year period.  

 

The overall prevalence in the population over 15 years of age was estimated 

at 3.1% (3.9% in men and 2.4% in women). For those over 45 years old, the 

estimated prevalence was 5.3% (6.8% and 3.9% in men and women 

respectively). The gender difference may be related to their longer history and 

intensity of smoking, as compared to women. The effects of ethnicity and area 

of residence are more evident in women, among whom deprivation score is 

not apparently relevant, after other variables are considered. Urban 

environment increases the risk of COPD, possibly through higher air pollution 

levels.  

 

Social deprivation may increase the risk of COPD through complex 

mechanisms in addition to the higher prevalence of smoking. This may include 

different smoking habits (the model does not take into account duration and 

intensity of smoking as such information is not readily available) and a higher 

likelihood of exposure to other risk factors, which are not easily measured, 

such as passive exposure to tobacco smoking, history of respiratory infections 

and less access to health services and information. Ethnic differences in 
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susceptibility are less clear and less well understood, but might involve a 

combination of behavioural, environmental and possibly genetic factors.  

 

The assumption that ethnicity is not associated with being a case of COPD, 

i.e. that all population has the same risk as the white population did not 

change the total national prevalence estimates considerably (1,297 thousand 

in 15 year-olds and over and 1,065 thousand over 45s under this assumption).  

 

A key advantage of the COPD model is that it is based on high quality data 

from a large representative sample of the population and uses standard and 

specific diagnostic criteria for COPD, which is based on lung function rather 

than symptoms. Response rates were high in the survey with the achieved 

samples matching the target populations closely. Prevalence estimates are 

based on the strength of association between key risk factors for COPD, 

including the effects of ethnicity, area of residence and deprivation, which 

were shown to be independent risk factors for COPD in the HSfE survey. This 

represents a significant advantage in relation to previous COPD prevalence 

models, (Rushton 2005; Barnes 1999) which were based only on smoking 

status, age and gender (also used in the COPD model) of mostly white 

populations outside the United Kingdom. The distribution patterns of COPD  

cases is shown below (figure 21).It would be noted that there is a significant 

number of under reporting of COPD. 
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Figure 21: Funnel plot showing under reporting of COPD  prevalence in Brent. 

 

6.3.  Developing the local model 

Phase I 

As discussed, the national model becomes less reliable as the size of the 

population decreases. An effective local model (at GP level) has to consider 

the variances and nature of local data.  

 

The three-stage process as described previously for CHD (page 100) is 

applied  to the prevalence estimate of COPD. The predictions made concern 

the five (5) localities of the borough focussing on GP practice populations. As 

with CHD modelling framework, the approach used the national datasets to 

make a crude estimate of Brent COPD SMR. The model assumes that SMR is 

correlated with prevalence rate. 

 

Taking into consideration the various risk factors within nd between local 

authorities,  SMR for Brent  was estimated to be 120. So the model would 

predict that GP practices will have an increased predicted SMR by 20%. The 



 
 

149 

model makes the assumption that areas with higher COPD mortality rates 

have comparably higher prevalence of COPD.  

 

Using a linear regression model in the form of Y= mx ± c, the prevalence 

estimate for  locality (a) is calculated sequentially. First, the local SMR 

(adjusted) is determined by  COPD SMR = (4.389 × UV67) – 26.04       

where 4.389 is the gradient, UV67 the deprivation index (for Brent) and 26.04 

is the intercept.  This is fully explained in the CHD section.  

 

The second stage gives the multiplication factor using an UVF score for a 

named locality. To get the adjusted prevalence measure, the adjusted local 

SMR is divided by the national SMR estimation for Brent.  

 

Model assumptions 

The model assumptions include: 

 The real prevalence of COPD in non-smokers under 35 years of age (baseline 

prevalence) is the same as the prevalence in non-smokers of the same age 

group and gender in the 2001 HSfE population. 

 The ratio of odds and prevalence of COPD in the various age groups 

compared to the baseline group is the same as in the HSfE for each gender, 

smoking status and other risk factors. The risks in those falling within each of 

the risk categories are uniform. 

 The model outputs are the prevalence of COPD for the relevant geographic 

area as defined by the user. In this instance, we are focusing on the Borough 

of Brent through its 5 localities based on the estimated population (2009-10). 
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6.4. APPLYING THE MODEL  

Applying the prevalence estimate model to 1 local GP practice datasets (from 

Kilburn) we have: 

 

Worked example 

COPD SMR  
Based on linear regression (fitted factors) 

120 

Estimated prevalence All GP practices are expected to have an 
excess of 20% above baseline 

UV67 for practice X * derived from 2001 Census 35 

Adjusted COPD SMR local Y = mx c 

=  (4.389 x UV67) -26.04 

 

= 127.6 

Multiplication factor =((4.389 x 127.6)-26.04))/100 = 1.3 

Adjusted prevalence rate 
=  mf 

= (127.6/120) x 1.3 

= 1.4 

 

This shows that  GP practice X within the Kilburn locality  had a higher 

prevalence than borough estimated by national formula. The formula was 

applied to each GP practice in Kilburn (table 19) and extended to the localities 

in the borough. A summary of all localities is summarised below (table 20). 

Analysis of the data show that the difference between the two sets showing a 

deficit of 83 cases for Kilburn and 313 for the whole borough. As the NHS is 

based on programme-based budgeting this would lead to significant reduction 

in fundings for this case-mix. 

 







Loc_ adj _ SMR

Nat _est _ SMR
x
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Practice Population 

Prev 

prob Adj_est Nat_est 

1 1844 0.013 24 22 

2 2398 0.017 41 38 

3 2568 0.016 41 38 

4 2838 0.01 28 26 

5 2914 0.013 38 35 

6 3069 0.011 34 31 

7 3079 0.013 40 37 

8 3124 0.013 41 37 

9 7155 0.017 72 62 

10 7409 0.013 96 89 

11 13521 0.013 126 112 

12 14367 0.03 188 154 

13 5466 0.023 126 116 

14 6020 0.013 78 72 

15 6811 0.015 102 94 

   1074 991 

     

Under estimation of cases 83   

     

Table 19   : Adjusted COPD prevalence estimation using the local modelling 
framework against national estimates for Kilburn GP practices. 

 

 

Locality Population Adj_est Nat_est 

Harness 32014 416 384 

Wembley 72171 938 866 

Kingsbury 70153 912 842 

Willesden  55824 726 670 

Kilburn 82583 1074 991 

  4066 3753 

    

Under estimation of cases 313  

Table 20   : Adjusted prevalence estimation for COPD in all localities (local versus 
national estimates) 
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Figure 22:  COPD predicted prevalence of local adjusted estimates against 
national data within the  localities.  

 

6.5. Prevalence estimate of SMI population with COPD at 

local levels 

There is a good body of evidence that there is a high risk of COPD among the 

SMI population (Osborne et al 2007). However, as with CHD, there is no 

national template for estimating this co-morbidity within the SMI population. 

Using the Bayesian probability estimation rationale, it is possible to derive this 

estimate (see chapter 4). Applying it to the Kilburn locality as an example, a 

step-wise calculation is shown on how this derivation is determined (figure 

23).  
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Figure 23.  A schema to illustrate the relationship between COPD and SMI in 

a given population.  

 

 

 

 

 

 

 

SMI+COPD (COPD within SMI – 22.6%) 

COPD (Prevalence estimate 3.5%%)    

 

 

Applying to local setting 

Calculation for the presence of COPD in the SMI population within the locality 

was undertaken by the following process: 

1. Establish probability of COPD prevalence (based on the estimate 

model methodology). 

2. Use SMI prevalence rate as determined by QOF.  

3. Use the probability estimate (based on systematic reviews) to 

establish the likelihood of COPD with SMI. 

4. Calculate the likelihood with SMI to have COPD. 

5. Test against case finding. In order to find this statistic, the GPs had 

undertaken a complex search of the system to match the two 

conditions.   

SMI (1.1%) 
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Estimation of COPD in SMI population 

The prevalence rate of the SMI was based on QOF data (as reported by GPs) 

P (COPD I SMI)= P(COPD)(PSMI) / (PSMI I COPD)  

Where  

 P(COPD I SMI) is the probability of having COPD given that one has SMI 

 P(COPD) is the probability of COPD in the local population 

 P(SMI) is the probability of SMI in the population (using QOFs) 

Worked example: 

P (COPD I SMI) = P(COPD)(PSMI) / (PSMI I COPD) 

P (COPD I SMI) =  (0.02)*(0.11) / (0.23) = 0.00973 

 

Applying the formula to the Kilburn practices, the number of cases of SMI with 

COPD were calculated (table 21). Case findings showed  the actual numbers 

were less than the predicted numbers. It is possible that (a) the number of 

actual cases in practices are under reported (b) prediction is “inaccurate” or a 

combination of both.  Figure 24 (a-e) show the expected versus predicted 

numbers in the district. 
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Table 21: SMI with COPD – Expected vs Registered 

 

 

Fig. 24 (a)      Fig. 24 (b) 

 

Fig. 24 (c)         Fig. 24 (d)  
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Fig. 24 (e) 

Figure 24 (a-e): Graphical representation of SMI with COPD in five localities 

 

Table 22 T-tests showed difference between the case findings and the 

predicted prevalence (p<0.0013, df =14) for the Kilburn locality. Tests  for the 

other localities are summarised in tables 23 and 24 . 

  

        

       

 

 

 

 

Table 22: t-test for SMI and COPD (Kilburn) 
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t-test: Paired 2 sample for means 

 Register 
count 

Predicted 

Mean 89.73 128 

Variance 1153.35 2355.71 

observations 15 15 

df 14  

t (2 tailed) 7.61E-08  

t critical 
value 

2.14  
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Table 23:  COPD predicted prevalence against observed cases 
within the  localities.  
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Mean 104.47 93.14             112.33 102.44 

Variance 2692.84 881.65 3183.77 987.78 

Observations 15 10 10 13 

df 14 9 9 12 

t stat 7.785 9.86 6.3 5.67 

P (2 tailed) 1.8E-06 4.3E-06 0.00004 0.003 

 

Table 24 T-tests – Showing the difference within and between localities. For 

all localities (t-test, df 9-12; p< 0.01) 
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6.6. Multiple co-morbidity 

Multiple co-morbidity is the co-occurrence of a  number of diseases within the 

existence of another disorder.  This study sought to estimate the prevalence of 

two physical disorders namely CHD and COPD within the SMI population at a 

local level. The prevalence estimation was based on a one-year incidence, 

based on data available for the last full year.  After the estimated prevalence 

of the physical disorders was calculated, the model was then adjusted to 

calculate the expected number of SMI within that estimated prevalence. In 

order to estimate the prevalence of SMI with condition (X), Bayesian statistics 

were applied in the form:  

Estimation of population size = ((P COPD local Population) X P SMI (SMI in 

local Population)), where P is the probability. 

 

The generic formulation was used to estimate prevalence values for any 

population for which appropriate demographic information is available. As 

such, the model could be adapted to calculate any co morbid chronic 

disorders provided we had the relative risk ratios.  

 

Pathway for determining prevalence estimate for SMI. 

The CHD prevalence in Brent is estimated to be 7.8% in 2009 (n=295,678). 

This is higher than the prevalence reported by Brent PCT (2.2%). However, 

this was not unexpected due to the data quality issues and the quirkiness of 

QOF. 
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Having established the prevalence estimate for the two conditions CHD and 

COPD within the SMI group for the locality, the next step was to calculate the 

likelihood of the prevalence of these conditions simultaneously. The 

estimation of concurrent co-morbidity was carried out through probability 

modelling (using bayesian statistics). 

 

A.  The probability of having two conditions is a product of the separate 

prevalence, namely 

P(A,B) =  (P(a))(P(b)) 

P (CHD,COPD) = { (Probability (CHD))*{Probability (COPD)} 

Alternatively,  

B.   The probability of having none of these conditions 

P(0)  = (1-P(a))(1-P(b)) 

C. To calculate the probability of having one of the diseases, namely 

 Having A and not B  

 Having B but not A  

P(1)  = {(Pa)(1-P(b))}{(Pb)(1-P(a))}  

   The probability of having two (2) diseases, 

P(2)  = {(Pa)(1-P(b))}{(Pb)(1-P(a))}  
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Locality -  Kilburn 

Using the above formula, the predicted number of cases of the SMI 

population that suffer from CHD and COPD for Kilburn is 52. (table 

25).  

 

Table 25: Estimated prevalence probability (and numbers) for SMI with 
CHD and COPD for the Kilburn locality. 
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The calculations were extended to the rest of the localities (table 
26). The total number expected to have these multi co-morbidities 
is 206.  
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Harness 1.06 0.0048 0.0274 0.00132 42 

Wembley 0.84 0.02 0.02 0.003 35 

Kingsbury 1 0.028 0.027 0.00143 43 

Willesden 0.92 0.03 0.04 0.001 34 

 

Table 26 – Estimation of SMI with CHD and COPD in the other localities. 
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7. Discussion 

 
The aim of the study was to develop a model for estimating the prevalence of 

multiple physical co-morbidity within the SMI group at local area level. As 

direct estimation is not possible, this was carried out in stages. The first stage 

was to estimate the prevalence of the physical disorders within the 

geographical locality followed by a synthetic estimation of these conditions 

within the local SMI population (based on QOF registers). The estimation was 

made using Bayesian methodology. This discussion focuses on the extent to 

which the research undertaken can answer the research questions originally 

posed in 2009 These are: 

i. How do estimations of chronic disease for local areas compare in terms of 

their validity? 

ii. What is the best methodology for estimating the prevalence of multiple co-

morbidity within the SMI population? 

iii. How useful are these prevalence models compared with case findings? Can 

they be used instead of case registers? 

iv. What are the implications of the findings for public mental health planning 

policy? 

v. What are the potential impacts of this study? 

 

These questions are obviously closely related. The answer depends on the 

criteria which should be used to compare prevalence modelling 

methodologies, their “fitness for purpose” in providing reasonably robust local, 

small population/area estimates which can be used by PCTs/ GP practices 
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and in future GP commissioning groups and LA public health departments. It 

is important to distinguish between decision-analysis “cost-effectiveness” 

models and population-based “surveillance” models. A surveillance or 

prevalence model differs from decision-analysis models in that rather than 

representing a hypothetical cohort, it models the population, that is, a 

collection of birth cohorts, over a specified period of time. 

 

7.1. Validity of prevalence estimation of chronic disorders at 

local level 

In order to consider this question, we need to reflect on the purpose of a 

methodology for prevalence modelling at local levels. National prevalence 

estimates are designed to provide rough but reliable estimates at a macro 

level and estimates for a particular geographical area described as more 

"direct" are more preferable for local commissioning. National prevalence 

surveys are not designed to produce "direct" estimates for counties as the 

sample sizes are too small, and hence, the estimates are not reliable or stable 

(Department of Health 2001). 

 

A geographical area is regarded as "small" if the area sample is insufficient to 

yield direct estimates with adequate precision and reliability. In order to make 

estimates for small areas with adequate levels of precision, it is standard to 

use indirect estimates that utilize information from outside areas with similar 

characteristics to the area of interest. To that effect, this study used a 

statistical model to obtain indirect estimates for geographical areas considered 

to be "small".  The use of such a model decreases the variability of the small 
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area estimate, but if some of the characteristics which the model relies upon 

e.g. QOF, are not stable, it may introduce bias into the estimates. For 

example, the movement of patients within and between localities (which could 

be as much as 30%) could be significant in prevalence calculations.  

 

The statistical methodology proposed could be viewed as a proof of concept. 

This model-based estimate is intended to be an improvement on national 

estimates, if the models used are appropriate. However, that may not mean 

that the model-based estimates are close to the true values for every area.  

 

The International Society for Pharmaco-economics and Outcomes Research 

(ISPOR) has published principles of good practice for decision analytic 

modelling in health-care evaluation (Anselin 2006). This is a comprehensive 

framework for validating population-based chronic disease simulation models 

and has been used in a review of published model validation guidelines 

(Leung et al. 2000). Based on the review, a set of recommendations were 

formulated for gathering evidence of model credibility. Evidence of model 

credibility derives from examining: 

a. Model development process 

i. Is it conceptually robust? Are the theories and assumptions underlying the 

conceptual model correct and are the model’s structure, logic and 

mathematical and causal relationships reasonable for the intended purpose of 

the exercise? 

ii. Are the parameters of variables justified? Are relationships between the 

variables specified correctly and do they come from both theory and empirical 



 
 

165 

data? Evidence generally comes from examining the process used to derive a 

value for the parameter (primary source, method of derivation) and 

comparisons with data from other sources. 

  

b. Evidence from examining model performance   

1. Has it face validity?  Is it plausible? Do we have evidence involving 

comparisons of output with expectations? 

2. Internal consistency: assessed by considering functional and logical 

relationships between different output variables. 

3. Between-model comparisons: “modellers should co-operate in comparing 

results and articulating the reasons for discrepancies”. This could be achieved 

by comparing the APHO prevalence models with, for example, Congdon’s 

prevalence models (SB P 2004). 

4. Can the data be used in comparison with external data? Available data should 

be used in model development and data should not be withheld for the 

purpose of external validation.  

 

Using this approach as a broad framework for our validity assessment, the 

study has to satisfy the major components.  We can start by stating that the 

use of simulation models to provide local estimates is a new trend. Such 

approaches have until now focused on model construction - the iterative 

process of scope selection, hypothesis generation, causal diagramming, 

quantification, and reliability testing in large populations, rather than   

combining simulation models with small area co-variates. However, it is 

feasible to do this and it will certainly be done in the future. 
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It is likely, but by no means certain, that more sophisticated methods of model 

development provide better predictions, but a notable feature of the literature 

is that very little comparative validation has been carried out and most have 

compared similar methods.  

 

The use of Discrete Event Stimulation (DES) technique as opposed to  

Markov chains may be more popular with decision makers as it gives superior 

face validity. Furthermore, this model automatically provided a probabilistic 

sensitivity analysis, which is cumbersome to perform with a Markov model. 

DES models also allow inclusion of more variables without aggregation, which 

may improve model precision. However, the differences were not significant in 

terms of the actual predictions. Moreover, these comparisons are only one 

aspect of model validation. The use of the more recent technique of GWR has 

yet to be fully considered.  

 

For example, two or more modelling methodologies could be compared to a 

validation gold standard of local prevalence. This data is difficult to obtain; one 

option would be using data from populations in which extensive case-finding 

has apparently detected nearly all cases of disease. NHS Health Checks data 

might serve this purpose, once a large enough proportion of the population 

has been screened. Unfortunately, although the present national policy 

excludes cases currently on QOF registers, it does not specify that questions 

about patient-reported doctor-diagnosed disease be asked to ensure that 

cases not on practice registers are found. 
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An important step of the validation framework involves determining the 

minimum sample size needed to achieve sufficient correspondence against a 

gold standard. The gold standard serves as a benchmark judged to be the 

best available direct estimate for the small area domain (Audit Commission 

2009). The IHME gold standard is to use sufficiently large sample sizes, which 

can be obtained by choosing small domains with large sample sizes in a 

single survey year, pooling multiple survey years, or increasing domain size. 

They used as their gold standard the direct, age-standardized, sex-specific 

estimates for counties that had more than 900 observations in both periods 

1996-2004 and 2000-2008 (the validation sets). 

 

Such a validation environment allows the selection of a modelling strategy that 

optimally mixes the three approaches of pooling data across time, harnessing 

spatial patterns in the distribution of the outcome of interest and adjusting for 

estimates for local area characteristics. This approach is analogous to that 

used in the development of risk predictions models, where derivation and 

validation cohorts are often initially derived from the same population: for 

example, in the case of QRISK2 derivation, random sampling was used to 

assign practices to the derivation or validation cohort and then their population 

data was used. However, validation should still be carried out in other 

populations if possible. 

 

Finally, two comments on the statistical analyses used in the study. The first 

concerns the procedures used in the study. These were drawn from extensive 
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work, mostly outside  the mental health field. However, this work remains 

experimental and vulnerable to several methodological limitations (Kisely et al. 

2009). The associated inferential techniques have not been fully validated and 

not incorporated into available statistical packages. Secondly, is the use of 

Bayesian methodology. This is at the root of local estimation paradigm. The 

advantage of using the Bayesian iterative calculations is that it gives a 

practical usefulness for commissioners compared to classical analysis 

(Nasrallah et al. 2006). Bayesian modelling provides an ease of obtaining 

predictions and the possible extension to incorporate other relevant 

information or beliefs. However, it does have some disadvantages in that it 

requires specialist software and the difficulties that are sometimes 

encountered in achieving Markov chain Monte Carlo convergence (Burns and 

Cohen 1998). 

 

In summary, although the model has a working validity, the use of small-area 

analysis techniques for sub-population (multiple co-morbidity within a specific 

group of illnesses e.g. SMI) has not been fully validated and is an area for 

future research. The model developed in this study needs to be tested with 

data from parallel yet independent research. There are gaps in establishing 

model credibility e.g. credible interval estimates; the majority of the above 

criteria have been satisfied. 
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7.2. What is the best methodology for estimating the 

prevalence of co-morbidity within the SMI population? 

The study focus was on establishing the prevalence of specific disorders 

within the SMI group and in that context looked at individual conditions 

sequentially e.g. co-existence of CHD, followed by COPD etc. The rationale 

for this approach was determined by availability of data and other practical 

constraints such as the extraction tool that was available for GP systems i.e. 

EMIS (Information centre for Health and Social care 2011). The methodology 

used was both appropriate and justified. 

 

However, patients with SMI have multiple- pathology and as such some 

methodological choices and different analytical strategies have to be 

considered (Wang et al. 2002). Of importance is to consider if co-morbidity or 

multi-morbidity should be used as the dependent variable or an independent 

variable. Hudson (2009) points out, for example, the proportion of subjects in 

the over 65 suffering from two or more disorders from a list of four 

(hypertension, emphysema, psoriasis and osteoporosis) was 2.8%. When 

glaucoma, diabetes and gout were added to this selection of diseases, the 

prevalence of multi-morbidity in the same population increased to 8.9%. The 

same rationale is applicable to the SMI populations. 

 

A key decision to be made before the start of future studies is whether or not 

to account for known patho--physiological relationships between diseases. For 

example, do diabetes mellitus, retinopathy and a diabetic foot in one person 

count as one or as three diseases? The research question should be the main 
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guide in decision making. For example, in a study on the complications of 

diabetes, one is probably interested in the whole spectrum of co-occurring 

diseases, whereas in other studies it might be more interesting to gain insight 

into various disease entities. An obvious difficulty when taking patho-

physiological relations into account is that present knowledge of those 

relations is still limited. 

 

Another important point to consider when analysing co-morbidity is the 

influence of effect modifying or confounding variables. For example, as age is 

a strong determinant of many diseases, it is generally important to take this 

variable into consideration when analysing the co-occurrence of diseases. The 

model did not take this into consideration. If these influences are not taken 

into account or at least described, this can lead to unrealistic or irrelevant 

outcomes. An important conceptual consideration in this context is whether 

the co-variable is an element of the causal chain to be or just a confounder 

without relevance to the causal chain of primary interest (when adjustment is 

useful). Evaluation of effect modification may be helpful to identify different co-

occurrence patterns in the sub-groups. 

 

A suggestion is that when analysing combinations of three or more co- 

occurring diseases, stratified analyses are a good option as long as the study 

population is sufficiently large, giving the opportunity to account for the main 

co-variables. Another option is to carry out a stepwise multiple logistic 

regression analysis, evaluating the determinants of the presence of a disease 

additional to a specific disease or combination of diseases. 
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7.3. How useful are these prevalence models compared to 

case findings? Can they be used instead of case registers?  

 
The regionally observed prevalence data, to which the national estimates are 

compared, may not be representative of the national situation (Halliwell et al. 

2007). Prevalence variations show distinct geographic ‘contextual’ effects that 

are differentiated between ethnic and other demographic categories (Barnard 

et al. 1999). This study identified similar findings to that of other studies which 

found that major geographic variations  do not seem to be explained by area 

demography alone.  

 

As an example of how local estimates can be generated and used, a local 

Canadian public health agency (population 250,000) recently published a 

“textbook” for local disease incidence modelling. Age standardized incidence 

ratios for cancer and the prevalence of Census co-variates were calculated for 

each of 331 dissemination areas. The standardized incidence ratios (SIRs) for 

cancer varied dramatically across these areas. Employing Bayesian 

hierarchical models, areas in the urban core were found to have significantly 

higher SIRs for male lung cancer than the remainder; and neighbourhoods in 

some urban and surrounding rural areas exhibited significantly higher SIRs for 

prostate cancer (Druss 2007). After adjustment for age and spatial 

dependence, average household income attenuated much of the spatial 

pattern of lung cancer, but not for prostate cancer (Goldman et al. 1981). 

 

Because both models are based on the assumption that incidence and 

prevalence are in a steady state, the occurrence of trends in incidence or 
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mortality would lead to discrepancies between the model estimates and the 

observations. Prevalence is a stock variable, comprising all past incident 

cases that are still alive. It is therefore dependent on incidence and case-

fatality from the past as well as the present. 

 

In the SMI group, where multiple medical problems are frequent and 

pathological examinations are performed relatively infrequently, 

misclassification of some disorders like COPD may lead to the over 

registration for the more frequent types of COPD (National Institute for Health 

and Clinical Excellence 2009). This incompleteness seems to be concentrated 

in geographical areas often proximal to acute mental health institutions. This 

would cause distorted prevalence estimates and could contribute to the wrong 

conclusion of our prevalence estimates. 

 

The under registration of incidence may also help to explain the impossible 

negative prevalence calculated for physical illnesses. Under registration 

cannot, however, explain the finding that the prevalence estimates are 

generally higher than the observations for the other age groups.  

 

However, this present study demonstrates the feasibility and utility of local 

datasets to obtain more accurate estimations. This is what the Informing 

Healthier Choices project aimed to do with the APHO/ICL prevalence models. 

Further work is needed to evaluate the impact of using case registers routinely 

at local level.  
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7.4.  Impact of the study 

The findings from this study provide some useful context for health care 

planning. They support the general view that data surrounding co-morbidity in 

general and specifically among the serious mentally ill is not readily being 

addressed by mainstream public health departments in the UK. Information 

available at local levels are of limited use to the commissioners.  

 

Results show that prevalence estimates of multi-morbidity vary widely among 

the localities. The largest difference was observed in geographical areas with 

high deprivation. It could be argued that differences of this magnitude are 

unlikely to reflect real differences between populations and more likely to be 

due to biases in methods. In addition to their differing geographic settings, 

prevalence studies differed in recruitment method and sample size, data 

collection and operational definition of multi-morbidity, including the number of 

conditions and the conditions selected. All of these factors may affect 

prevalence estimates. 

 

Some of the implications are serious in that we are aware that people with 

serious mental illness die, on average, 25 years earlier than the general 

population. This has been demonstrated in a number of recent studies 

(Information Centre for Health and Social Care 2009). While suicide accounts 

for about 30% of excess mortality, about 60% of premature deaths are due to 

“natural causes”, such as cardiovascular and pulmonary disease. 

Cardiovascular mortality in schizophrenia has increased from 1976 to 1995, 

with the greatest increase in Standardized Mortality Ratios in men from 1991 
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to 1995 (Information Centre for Health and social Care 2009). This is a serious 

public health problem that is poorly recognised and rarely addressed. Many of 

the risk factors for these “natural causes” of death, such as smoking, obesity 

and inadequate medical care, are modifiable. Increased attention from policy 

makers as well as persons served, family members and the mental health and 

general health care system is needed (Virgo et al. Journal of Mental Health 

2010, volume 14).  

 

The estimation of medical co-morbidities within the SMI group is a real 

challenge. As indicated, the presence of these co-morbidities is a variable 

constant as it depends on various socio-economic factors. The application of a 

simple adjustment tool has a potential pragmatic value. It allows us to have a 

broad measure of the underlying epidemiological trends. 

 

7.5.  What this study adds 

Work by Phelan et al (2000) has shown that the chronically mentally ill have 

serious risks of developing physical health problems. The current 

commissioning model is based on a single disease framework and does not 

address issues of co-morbidity. Part of the problem is that there is lack of 

relevant information needed for policy planning. Within public health, not much 

work has been conducted in prevalence estimates for multiple comorbidities .  

 

The present study sought to address the complexity of estimating the 

prevalence of concurrent medical disorders (using CHD and COPD as 

exemplars) within the serious mentally ill population in small population 
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samples. To-date very few studies have investigated estimation of prevalence 

rates linking these diseases together for commissioning intentions.  

 

The part of the problems lie in that national prevalence models in the UK use 

a wide number of population characteristics such as socio-economic 

parameters which  are derived outdated information sources e.g. from 10-

yearly population censuses. More pertinent, is that these national data are out 

of date and very often not relevant to local settings. Allowance are not made 

for the effect of deprivation, but to do this quantitatively requires a numerical 

estimate of the likely extent of its effect in any area.  

 

As such, the present prevalence models do not reflect the local variations and 

do not produce satisfactory predictive power as they do not take into 

consideration geographical patterns. Thornicroft (1991) and Carr-Hill et al. 

(1994) argued that prevalence modelling work should entail defining specially 

tailored combinations of individual census items, rather than taking the simpler 

approach of using national estimates.  

 

The study showed that the prevalence estimate for the borough was not in 

synchrony with that indicated by Public Health (England) and used by the local 

commissioning group. The wide variability within the locality points for the 

adoption of a focussed risk adjustment for mental health service planning 

policy for the borough. The finding that over 60% of SMI group live within 1 

mile radius of the local acute mental health services needs  further 

investigation. 
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The findings also suggest that the projected costs for the physical health care 

treatment of adults with SMI should be adjusted for risk in the same way as 

costs for  mental illness treatment. Under use of medical services by the 

seriously mentally ill is a growing concern and if projected costs for adequate 

health care are under estimated because severity and prevalence of physical 

health were not taken into consideration, medical services may not be 

available to everyone who needs them. This would be a gross health 

inequality.   

 

Within that context local commissioners face are two folds (a) develop an 

approach to undertake  local estimates methodology for diseases (b) 

determining a methodology for estimating co-morbidity prevalence within 

serious mental illness.   

 

The model proposed by this study suggests that in order to obtain prevalence  

estimates  that are more sensitive to local variations, a set of sequential 

procedures should be initiated: 

 

1. Use annual needs assessment to ensure veracity of local indicators 

2. Revise national regional estimates considering local variances to estimate 

prevalence of CHD/COPD within GP localities 

3. Test prevalence estimates using case findings. This can been done routinely 

via annual audits e.g. QOF. Bi- annual mental health needs assessment 
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should be part of the commissioners requirements as they provide a unique 

opportunity to explore local variances.  

4.  Use a simple algorithm(as developed by the study) and some basic statistical 

techniques, to develop a better estimate forecast of co-morbidity within SMI 

population.  

The model described here is open to investigation and question, and the 

results can be applied to any defined geographical area. Commissioners can 

have a better understanding of  high pockets of needs and risk densities.  

 

7.6.  Limitations 

Possible confounding variables 

An important point to consider when analysing co-morbidity is the influence of 

effect modifying or confounding variables. For example, as age is a strong 

determinant of many diseases, it is generally important to take this variable 

into consideration when analysing the co-occurrence of diseases. Part of the 

co-occurrence of diseases can be explained by known influences of age (e.g., 

benign prostate hypertrophy and osteoarthritis). Of course other variables 

such as socio-economic status, environmental factors and psychological 

features can also be very influential (Majeed et al 2000). If these influences 

are not taken into account or at least described, this can lead to unrealistic or 

irrelevant outcomes. An important consideration in this context is whether the 

co-variable is an element of the causal chain to be evaluated or just a 

confounder without relevance to the causal chain of primary interest (when 

adjustment is useful - Diez-Roux 2000).  
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Evaluation of effect modification may be helpful to identify different co-

occurrence patterns in various subgroups. When analysing combinations of 

two diseases, known co-variables can be adjusted by using a multiple 

regression analysis (using one of the diseases as the dependent variable) or a 

stratified analysis according to when analysing combinations of two or more 

co-occurring diseases, stratified analyses are a good option as long as the 

study population is sufficiently large, giving the opportunity to account for the 

main co-variables. Another option is to carry out a stepwise multiple logistic 

regression analysis, evaluating the determinants of the presence of a disease 

additional to a specific disease or combination of diseases. 

 

Because of the influence of various factors on the occurrence of diseases in 

general, it is also important to pay attention to confounders and effect 

modifiers when analysing multi-morbidity. Again, age is an obvious 

determinant. In multiple regression analysis with the presence or absence of 

multi-morbidity as the dependent variable, it is fairly simple to adjust for age or 

any other co-variable by including it as an independent variable. Also in this 

context, the consideration of the conceptual framework of the possible 

relationship between the evaluated associations of primary interest, possible 

confounding and effect modification is important. 
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Weaknesses 

The study has a number of weaknesses including technical and systemic 

difficulties. The baseline prevalence for SMI was taken from QOFs data, which 

are generally recognised as weak. From this baseline, the levels of multi-co-

morbidity were established. The framework was designed to deliver evidence-

based interventions into general practice. Prior to its introduction, GPs worked 

reactively and in an uncoordinated way by dealing with the problems patients 

brought to the surgery. Although QOF data are routinely collected for patients 

with schizophrenia, bipolar disorders and other psychoses, elements like 

follow up are not completed because the Gps do not chase their patients.   

The reported rates is close to, but usually above, the reported rate of 

psychiatric admissions provided by the National Centre for Health Outcomes 

Development (NCHOD). It is important to recognise that since QOF datasets 

include patients who are managed in the community without admissions, there 

is a disparity between NCHOD and QOFs rates. A degree of under reporting 

will always appear in QOFs.  

 

There are some problems regarding the fullness and timeliness of the data.  

For example, the SMI population is known to have a tendency to engage in 

smoking behaviour and are also likely to be very heavy smokers. This has not 

been factored into the regression equation. The local smoking cessation 

teams do not routinely gather data for that group for the time being (Nijhuis et 

al 2006).  As such, the data used for the prevalence estimates do not 

discriminate within the population. This is likely to increase the odds ratio and 
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will further increase the prevalence estimates. Further studies in this area will 

need to address this issue.  

 

The risk factors were derived from data that may not be current. Ethnicity 

assumptions derived from census data almost ten years old may well be 

questionable, in the light of changing patterns of immigration in the period.  

 

Modelling provides estimates, not answers. Any model is strictly “wrong”, but 

may be useful within certain limits. The methodology by means of which the 

models were created does not easily permit the calculation of confidence 

intervals on the expected numbers of patients even though 95% confidence 

intervals were presented for the individual factors’ odds ratios, so the models’ 

outputs do not incorporate an indication of the strength of belief we can have 

in their results. The statistical procedure used is rather basic and needs to be 

modified and refined. However, it nevertheless provides a new way of 

undertaking prevalence estimates at local levels.  

 

7.7.  Personal account 

The idea of prevalence modelling was germinated in the early 1990s and was 

further developed by Nita Farouli and the team at Brent PCT when the 

diabetes prevalence model was tested. The use of prevalence modelling as a 

public health tool for planning, has gained momentum since then. However, 

availability of good health intelligence for local health planning remains a 

challenge, especially where the outcome of interest has multiple causes or 

influences. In the course of this study, I have developed a greater appreciation 
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for the possibilities and limitations of public health epidemiological research 

methodology. Public health units within primary care within the UK are 

struggling to juggle the conflicting roles of delivering a public health strategy 

which reflects national trends and meeting local variances. This is a 

particularly big concern for mental health.  

 

While there may be mileage from using national data which bring a baseline of 

information from which we can plan services, there are some serious 

problems within this approach when dealing with mental health data. 

Unfortunately, the doctrine of evidence based medicine and the hierarchy of 

evidence means operational management data is often under-valued. This 

may lead to the under-utilisation of routinely collected data. 

 

During the 1970s, a number of approaches were developed to use time series 

data to study the effect of interventions. I found the textbook by Cook and 

Campbell provided an excellent overview of these approaches. However, 

these methods are not commonly seen in current public health literature, even 

though many important public health questions cannot be answered by RCTs.  

 

In my study I have considered a number of such issues and their impact on 

service delivery, such as ineffective primary care interventions in mental 

health, lack of good routine data collection, rigid (poor) health commissioning 

principles leading to a “silo” approach to health care planning.  

  

In the course of this work, it has become apparent to me that to understand 
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the good public health research approach to deal with such complex issues 

such mental health co-morbidity requires data from multiple sources to 

triangulate the findings. This is especially important for health outcomes which 

are influenced by multiple factors.  

 

From an epidemiological perspective, I felt that the biggest limitation of my 

study was the inability to define the population at risk. This was particularly 

problematic when considering the chronic mental health population. Without 

knowing the mortality risk among those with physical co-morbidity, it is difficult 

to interpret the drivers behind changes in trend. Finally, I have become more 

cautious when interpreting short time series or year-on-year trends. Both of 

these are frequently presented in public health documents or publications and 

it is easy to over-interpret annual fluctuations or short-term changes in trend 

 

7.8. Conclusions  

The methods described offer a potentially usefully way forward for identifying 

undiagnosed cases. They are applicable to other long term conditions for 

which similar models are available on the APHO website. Ultimately, the 

validity or otherwise of the approach will depend on empirical results of its 

use.  

 

The future 

a. Linkages with risk factor prevalence data from GP systems 

The case has been made on how the current models can be linked, both with 

each other and with other modelled data such as smoking prevalence ( eg 
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Chronic Obstructive Pulmonary Disease Model). As noted above, local 

estimates of prevalence or population means (for continuous variables) of 

disease risk factors and lifestyle behaviours e.g. current smoking, obesity, 

blood pressure and physical activity, are of great interest to policy-makers, 

and increasingly to local organisations for planning and performance 

monitoring purposes e.g. in Local Area Agreements. They are also of interest 

to researchers examining the relationships between health determinants, such 

as income and education, and health outcomes such as disease prevalence, 

SRHS and death, because risk factor prevalence and means provide a linkage 

between determinants and outcomes and may be used to predict the latter. 

 

Until now, risk factor prevalence estimates have come mainly from the HSfE, 

from local surveys either run independently from the HSfE, or from synthetic 

estimates. The traditional ("direct") approach to estimation used for the HSfE 

uses classical design-based survey sampling. However, sample sizes are 

typically small within small areas, so the direct estimators have large sampling 

errors (and hence large confidence intervals) even when pooling years of 

survey data (which prevents trend estimates). When there are no sample 

observations in the small areas of interest, direct estimations cannot even be 

calculated. 

 

Potential use of primary care data for risk factor prevalence/mean  

estimation 

The quality and quantity of population-based data collected by primary 

healthcare teams has improved dramatically in recent years, as a result of 
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overall quality improvement, specific data quality initiatives and the impact of 

pay for performance through the QOF (Cox et al. 2006; Mc Fadden et al. 

2009; Fotheringham et al. 2010). The data is also becoming more accessible 

through national GP databases, local IT projects and, eventually, aggregation 

through the Secondary Uses Service via GPES, which could cover over 50% 

of English practices. This would allow near to real-time monitoring of risk 

factor prevalence data. 

 

There is a large volume of risk factor and lifestyle data in GP systems. For 

example, our analysis of the 2005-6 IMS national GP database (about 1million 

active patients) shows that overall about 30% of patients have their smoking 

status recorded in the last 12 months and 17% had their BMI recorded in that 

period. There is therefore the potential to use this data, either alone or in 

combination with other data, to improve local prevalence estimation but data is 

incomplete. It is also easier to measure risk factor prevalence through 

population-based programmes such as NHS Health Checks than it is to 

ensure QOF registers reflect actual disease prevalence. However, there are a 

number of methodological problems to resolve. For example, the data is non-

random - sicker and older people and females are more likely to be sampled 

and these may introduce a bias. 

 

 Case for the development of a simulation model 

A major disadvantage of the current prevalence models is that they are static, 

with a cross-sectional structure. In the US, the Centres for Diseases Control 

are already well advanced in the development of dynamic models (Cortes and 
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Vapnik 1995). In San Francisco, Archimedes is continuing to expand both in 

its scope and functionality. The UK should be developing equally dynamic 

epidemiological models. This requires at the very least a multi-disciplinary 

team with on-going support, not a lone researcher and a single injection of 

funding. 

 

In the UK, in addition to the prevalence models described here, there is 

already a great deal of academic expertise in mathematical modelling, 

particularly for mental health. Examples include work by Gyles Glover for the 

quantitative modelling on the Mental Health Minimum Data Set (MHMDS)  

(Glover 2003). After very promising initial work in the late 1990s and early 

2000s there has been very little support for work in this area. 

 

There is a need for a UK modelling research for physical disease in mental 

health. As indicated above, this is probably because of a lack of public health 

interest in this area of work. This concern was voiced at the Faculty of Public 

Health Annual conference in 2011. A possible way forward would be to make 

this a public health epidemiological research priority. 
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Annex 1 
 
Mental health needs assessment 
 
1. A section of the data compiled as part of the MHNA exercise for Brent GP 
practices. Colour coding reflects levels of concerns for various metrics used to 
monitor performance. 
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KENTON MEDICAL CENTRE Wembley 3024 0.6 31.20 88.33 3.4 70.5 0.68 2.04 0.11 6.80 37.03704 4.7661197 68.428 10.07 1.7 0.0 1.0 15.47

SUDBURY COURT SURGERY Wembley 4012 1.7 98.11 84.00 56.3 77.2 1.21 2.41 0.25 7.39 26.17149 17.6813341 207.354 32.15 2.4 8.0 5.2 19.76

LANFRANC MEDICAL CENTRE Wembley 6995 0.5 26.87 86.65 14.9 64.0 1.33 2.28 0.81 2.52 21.01501 4.74131391 111.326 11.90 0.9 1.5 1.7 19.79

SUDBURY & ALPERTON MEDICAL CENTREWembley 8726 0.9 43.16 86.18 11.0 63.1 1.31 2.30 0.27 6.91 19.94041 13.1386622 159.963 18.02 2.3 1.0 3.6 22.40

BEECHCROFT MEDICAL CENTREWembley 5583 1.2 16.84 86.55 16.8 65.7 2.33 2.33 0.36 18.62 34.03188 26.6597645 1462.663 58.92 4.1 1.7 3.6 23.85

PRESTON MEDICAL CENTRE Wembley 3332 0.5 9.77 85.05 8.6 69.0 0.00 2.42 0.30 3.40 7.803121 3.22906155 41.171 6.47 2.0 0.0 2.4 24.03

EAGLE EYE Wembley 2459 0.5 23.40 88.00 5.1 55.8 0.00 2.09 0.14 1.89 5.286702 3.13136058 30.792 5.08 1.6 0.0 3.7 26.25

ALPERTON MEDICAL CENTRE Wembley 5543 0.5 5.91 86.82 2.0 64.1 0.72 2.17 0.24 5.17 18.22118 6.76442877 77.791 14.03 1.9 0.0 1.9 26.27

STANLEY CORNER MEDICAL CENTREWembley 5231 1 62.38 86.71 25.2 60.8 1.50 2.25 0.76 9.83 26.38119 14.2510688 181.264 31.45 4.3 2.1 2.3 26.58

HAZELDENE MEDICAL CENTRE Wembley 3264 0.5 15.31 84.81 2.5 63.3 0.88 2.20 0.51 12.37 20.52696 5.72233471 94.639 10.13 3.5 2.5 3.5 26.71

PREMIER MEDICAL CENTRE Wembley 4016 1 43.41 85.89 19.8 61.3 0.70 2.45 0.33 15.79 34.86056 14.0281967 260.924 23.72 4.9 0.0 4.2 26.94

THE SURGERY (WCHC) Wembley 2990 0.6 26.13 85.86 15.6 65.6 1.72 2.15 0.11 6.80 22.40803 6.0132291 85.044 31.25 3.0 0.0 3.0 27.07

SMS MEDICAL PRACTICE Wembley 2372 0.8 72.46 84.81 3.7 58.6 0.00 2.52 0.56 3.23 17.28499 6.30477271 83.853 10.99 2.5 0.0 1.9 27.71

SUNFLOWER MEDICAL CENTREWembley 3323 0.9 30.55 88.39 6.8 67.6 3.71 2.32 0.90 15.51 41.52874 25.0719658 246.541 23.65 5.6 3.4 6.5 28.23

LANCELOT MEDICAL CENTRE Wembley 4314 0.3 9.05 86.02 12.6 58.6 0.29 2.31 0.08 3.24 9.272137 5.77617329 47.653 16.74 2.3 0.0 4.0 29.35
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2. Based on the model developed by the study, prevalence estimates of the 
locality by the public health unit. Example 2011-12 
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Annex 2 
 
 
Routine data collected by GPs regarding chronic diseases. Please note 
that exceptional reporting routine can distort figures. 
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Annex 3 
 
Map showing density of population with COPD (based on mapping 
based on  the sum of the odds ratios for all registered patients living in 
the post code boundary within Brent). The south (high deprivation 
locality) is a high risk area. 
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229 

Annex 4 
 
 
DATA SOURCE FOR MENTAL HEALTH NEEDS ASSESSMENT 
 
 
These included: 

Nationally available statistics – NHS Information Centre for Health and Social 

Care. 

 Data at GP practice level,  PCT level,  Borough level,  provider level covering 

i. Hospital Episode Statistics and Mental Health Minimum Datasets 

ii. Prescribing data 

iii. QOF returns 

 Public Health Information service (Health observatories) statistics 

 Data Submissions to national collection services by Providers 

 Data Submissions to commissioners by Providers 

 Research Studies at Local, Regional and National level 

 

Qualitative, Policy and Guidance sources included: 

 NICE 

 Department of Health 

 Sainsbury Centre 

 Kings Fund 

 

Local Information and reports has been provided by: 

 Brent Public Health 

 Brent Mind 
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 Central and Northwest London Mental Health Trust (CNWL) 

 Brent Finance Department 

 Brent Carers 

A coarse estimated prevalence from mental health profile was based on 

various sources of information (national and local) was carried out. Information 

sources were derived from: 

 Adult Psychiatric Morbidity Study 2007 - APMS Reports  

 Dr Foster (HES/SUS data) 2003-10 – Dr Foster data is based on HES data 

from secondary care, profiled nationally against practice list sizes. Specifically, 

data was filtered for the London Borough of Brent. These included data on: 

o GP records - QOF information 

o Mental health register (recording adults who have a serious mental health 

diagnosis 

o Prescribing evidence (number of prescriptions and rate of prescribing per 

head of population) 

Others included: 

 Indexes of deprivation: IMD (Index of multiple deprivation) – available at ward 

level 

 Mental Health Needs Index: MINI/Mini2000 and National Psychiatric Morbidity 

Survey 1993 (NPMS) – available  at ward level 

 Local Index of Need (LIN): Borough level 
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Annex 5 
 
A presentation of the MHNA to the commissioners as part of the 
study 
 


