

UWL REPOSITORY

repository.uwl.ac.uk

Measuring changes in Schlemm's canal and trabecular meshwork in different accommodation states in myopia children: an observational study

Wang, J, Xiang, Y, Chen, L, Zhao, Y, Chen, W, Chen, Z, Liu, S, Jing, S, Manyande, Anne ORCID: https://orcid.org/0000-0002-8257-0722, Wang, P and Zhang, H (2019) Measuring changes in Schlemm's canal and trabecular meshwork in different accommodation states in myopia children: an observational study. Eye, 34 (2). pp. 374-382. ISSN 0950-222X

http://dx.doi.org/10.1038/s41433-019-0548-2

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/6308/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

1	Measuring Changes of Schlemm's Canal and Trabecular Meshwork in
2	Different Accommodation States in Myopic Children: an observational study
3	
4	Running title: SC and TM size in different Accommodation states
5	
6	Junming Wang ¹ , Yan Xiang ¹ , Liugui Chen ¹ , Yin zhao ¹ , Wei Chen ¹ , Zhiqi Chen ¹ ,
7	Shiliang Liu ¹ , Sili Jing ¹ , Anne Manyande ² , Ping Wang ¹ , and Hong Zhang ¹ ,
8	
9	1. Department of Ophthalmology, Tongji hospital, Tongji medical college,
10	Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
11	2. School of Human and Social Sciences, University of West London, London, UK.
12	
13	Corresponding author: Junming Wang, Address: Jiefangroad1095#, Wuhan, Hubei,
14	China. Zip code: 430030
15	<u>Tel:+011862783663410</u> , Fax: +011862783663410, Email: eyedrwjm@163.com
16	
17	Conflict of interest statement
18	The work is original, and there is no conflict of interest to disclose
19	Funding
20	This work was supported by the Natural Science Foundation of China (81770921
21	to H.Z. and to J.W.)
22	

23 Abstract

Purpose: Studies were designed to evaluate changes in the size of the Schlemm's Canal
(SC) and trabecular meshwork(TM) during accommodation stimuli and cycloplegia
states in myopic children.

Methods: 34 children were enrolled. A -6D accommodation stimulus was achieved by looking at an optotype through a mirror. Cycloplegia state was induced with 1% tropicamide. Two states were confirmed by measuring the central lens thickness(CLT), the anterior chamber depth and the pupil diameter. The size of the Schlemm's Canal (SC) and Trabecular Meshwork(TM) was measured using swept-source optical coherence tomography. And the associations between the change of the SC and the CLT were analyzed.

34 Results: When compared with the relaxation state, under -6D accommodation stimuli, the size of SC increased significantly: the SC area (SCA) amplified from 35 $6371\pm2517\mu m^2$ to $7824\pm2727 \mu m^2$; the SC length (SCL) from $249\pm10 \mu m$ to 295 ± 12 36 μm, and SC width (SCW) from 27±9 μm to 31±8 μm. Under cycloplegia state, the SCA 37 reduced to 5009 \pm 2028 μ m²; the SCL to 212 \pm μ m and the SCW to 22 \pm 5 μ m. In addition, 38 the changed areas of SCA (r=0. 35; P=0.0007), SCL (r=0. 251; P=0.0172), and SCW 39 (r=0. 253; P=0.016) were significantly correlated with the change in CLT. However, 40 the size of TM did not change substantially when compared with the relaxation state. 41 Only the TM length (TML) increased from 562±45µm to 587±47µm after -6D 42 43 accommodation stimulus.

Conclusion: SC size enlarges after -6D accommodation stimuli and shrinks under

45	cycloplegia. However, for TM, only the TM length increase under accommodation
46	stimulus state.
47	KEYWORDS: Schlemm's Canal, Trabecular Meshwork, accommodation
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	

67 Introduction

Glaucoma is the leading cause of irreversible blindness worldwide and its 68 69 incidence is high. It is also acknowledged that elevated intraocular pressure (IOP) is the major risk factor for glaucoma, which appears to result from increased resistance 70 71 to aqueous humor outflow. Trabecular meshwork (TM) and Schlemm's canal (SC) are the key structures related to aqueous humor flow pathways^{1, 2}. Clinically, surgical or 72 pharmacological treatments targeting SC and TM could alleviate elevated IOP³. 73 Therefore, SC and TM have been considered as promising therapeutic targets for the 74 75 treatment of glaucoma. Researchers reported that accommodation stimulation promotes aqueous humor outflow facility and decreases IOP ⁴⁻⁶. On the other hand, 76 paralysis of accommodation with cycloplegia raises the aqueous outflow resistance 77 and the IOP^{7, 8}. The possible mechanisms underlying these changes are unclear. Most 78 researchers suggest that the mechanical effect of the ciliary muscle under different 79 accommodation states mediates the TM and SC structural changes. However, to date, 80 81 the effects of accommodation on the structural changes of SC and TM have not been observed in vivo for humans. Currently, the optical coherence tomography (OCT) 82 83 provides a non-invasive cross-sectional imaging technique of the eye and produces static and dynamic anterior segment images. Besides, myopia is a known risk factor 84 especially for primary open-angle glaucoma^{9, 10}. The aim of this study is to explore 85 changes in TM and SC structures of different accommodation states (accommodation 86 87 stimulus, relaxation of accommodation and paralysis of accommodation) in myopic patients by the adoption of OCT imaging as this could benefit our understanding of 88

89 glaucoma.

90 Methods:

91 Ethics approval was obtained from the local Institute's Ethical Committee (Huazhong University of Science and Technology) and the study protocol registered 92 with chictr.org.cn (ChiCTR-ROC-16008832).Written informed consent was obtained 93 from parents. In total, 34 children at a refraction outpatient clinic of Tongji hospital 94 were recruited to the study during a period of 4 months between June and September, 95 2017. Children were aged from 7 to 14 years old and suffered from refractive error 96 97 (\geq -6D and \leq −0.5D, corrected visual acuity of at least 20/20 in Snellen equivalent), and needed cycloplegic refraction testing. The exclusion criteria were: (i) presence or 98

history of other ocular diseases, (ii) the amplitude of accommodation of subjects less

than 6.0 D and (iii) the presence of central nervous system or systemic diseases.

101

99

Experimental procedure:

Serial regular ocular examinations were performed to screen patients with ocular
diseases other than refractive error: these include slit lamp, fundus examination, IOP,

104 axial length check and subjective optometry. Afterwards, amplitude of

accommodation was measured using minus lens test as reported by León¹¹ and

106 patients were excluded if their accommodation amplitude was less than 6D.

107 Then patients were asked to undergo an OCT test. The first test was under the

108 relaxation state accommodation, which was achieved by far point staring. Next,

109 subjects were tested under the -6D accommodation stimulate state. This state was

achieved by watching mirrored optotypes, which were placed at a distance calculated

for each individual based on the formula: 100/-(-6+X) cm (X was the patient's refractory error value in diopters). Lastly subjects were tested under the state of cycloplegia. This was done by giving patients 1% tropicamide eye drops on the cornea surface 5 times with a 5 minute interval in each eye and measurements were made 5 minutes after the last drops of tropicamide.

116 Outcome measures: OCT Data Acquisition and Processing

117 The primary outcome measure in this study was the SC area (SCA) of different

118 accommodation states. Participants underwent examinations of swept-source optical

119 coherence tomography (OCT) (CASIA SS-1000; Tomey Corporation, Nagoya,

120 Japan), which is specifically designed for anterior segment imaging using a 1310nm

121 wavelength with a scan speed of 30,000 A-scans per second and an axial resolution of

less than 10 µ m. To enable measurements of different states, we did as Esteve-

123 Taboada reported¹² by using a tilted first surface mirror to fix stimulus at different

vergences in the left eye. The tilted mirror with a frame carrying a rotation axis was

fixed to the OCT machine (see simulated diagram, Fig. 1A). Subjects were asked to

126 look at optotypes in the mirror with the left eye while measurements were taken on

127 the right eye. Researchers adjusted the tilting angle of the mirror for every patient

according to the particular interpupillary distance, testing items and side. Subjects

129 were instructed to look at an optotype through the tilted mirror and the optotype was

130 placed at the required distance (far point for the relaxation and cycloplegic states, an

individually calculated distance for the -6D accommodation state). The angle analysis

mode (dimension, a raster of 128B-scans each with 512 A-scans over 8 mm) was used

133	to capture images of the ACD, PD and CLT. Then, the 3D-angle high-definition mode
134	(dimension, a raster of 64 B-scans each with 512 A-scans over 8 mm) was chosen to
135	capture images of the SC, TM and ciliary muscle 9 o'clock positions and conjunctival
136	vessels were used as landmarks to scan the same site under different states. During the
137	image acquisition, blinking was not permitted and each measurement was taken 4s
138	later since the patient's last blink allowed the tear film to spread over the cornea.
139	
140	Figure 1 about here
141	
142	Image analysis
143	Each image was quantified manually using the Image J software
144	(http://imagej.nih.gov/ij/; provided in the public domain by the National Institutes of
145	Health, Bethesda, MD, USA). Measuring items were determined based on two-
146	dimensional images (example of measure items in Fig1B-F). The anterior chamber
147	depth (ACD) was defined as the perpendicular distance between the corneal
148	endothelium at the corneal apex to the anterior lens surface while the central lens
149	thickness (CLT) was the distance of the midpoint of the front and back of the crystal
150	lens. The pupil diameter (PD) was perceived as the distance between the edges of the
151	iris whereas the scleral spur was the point between the TM and the ciliary body.
152	Thickness of the ciliary muscle at 2(CM2) and 3 (CM3) mm posterior to the scleral
153	spur was assessed (Limited by OCT scan depth, we did not analyze the data of the
154	ciliary muscle width at 1mm posterior to the scleral spur). The SC area was drawn

155	freehand and depicted the area surrounded by the outline of the SC. The SC length
156	was measured from the posterior to the anterior SC end point. The SC width was
157	calculated by taking the two average values of one third points. The TM length was
158	regarded as the distance between the scleral spur and the Schwalbe's line. According
159	to our previous reports ^{13, 14} , each TM width measurement was made perpendicular to
160	the inner layer of the meshwork. The TM width was calculated as the average of two
161	measurements made at the anterior end point of SC and halfway down the SC.

162

163 **Quality control**

Researchers were trained before conducting the study. All measurements were taken 164 by a skilled operator who was blinded to treatments and the scans of each site were 165 166 repeated three times. The ambient lighting conditions were kept constant during the whole procedure in order not to have significant variations in the pupil diameter. 167 The right eye of each subject was selected for OCT scanning while the left eye was 168 169 used for vergence. All measurement items were sequentially taken in three different accommodation conditions (-6D accommodation, relaxation and cycloplegia 170 situation). The images of these eyes were evaluated by two observers independently 171 who were blinded to treatments as before¹⁴. To measure intraobserver repeatability, 172 each image was measured by one observer two separate times at an interval of 3 days, 173 and agreement between the two observations was analyzed. To measure interobserver 174 reproducibility, the same images were evaluated by two observers, and the agreement 175 between them was determined. The intraclass correlation coefficients were calculated 176

178

179 Statistical Analyses

180	The results were evaluated using the SPSS software package version19.0 (IBM
181	Corp., Armonk, NY, USA). Sample size estimation was based on the assumption that
182	there is a difference in SCA between different accommodation states. We computed
183	the sample size needed for a repeated measures analysis of variance (rANOVA). A
184	medial level of partial eta square of 0.06 was adopted, which gave an effect size of
185	about 0.25. A sample size of at least 28 participants was deemed to be sufficient to
186	give us a power of 0.80 with 95% confidence. The final sample size was adjusted to
187	34 based on the 20% participant loss. Quantitative data are presented as mean \pm
188	standard deviation. Repeat measure ANOVA was performed to reveal significant
189	differences between different accommodation states. Prior to the repeat measure
190	ANOVA, the sphericity assumption was checked using the Mauchly's sphericity test.
191	And when the sphericity test was not statistically significant, the Greenhouse-Geisser
192	correction was applied. The Bonferroni procedure was used as a post hoc test for
193	comparisons between groups and P< 0.05 was set as statistical significance in all
194	cases.

195

```
196 Results:
```

A total of 34 children, aged from 7 to 14 years were recruited. Four were excluded
due to poor patient cooperation or low quality of the OCT images. Thus, a total of 30

199	patients (16 male; 14 female) were eventually included in the analyses. The mean
200	values for various variables were: patient age 12.07±2.27 years, best corrected visual
201	acuity 1.08 \pm 0.12, AL 24.61 \pm 1.33mm, the refraction –3.05 \pm 2.53 diopters,
202	intraocular pressure 15.24±2.65mmHg and the amplitude of accommodation
203	10.23±2.12 diopters.
204	1. Accommodation state changes achieved by accommodation stimulus or
205	cycloplegia
206	To determine whether artificial accommodation states have been established, we
207	tested the changes of the central lens thickness (CLT), anterior chamber depth (ACD)
208	and pupil diameter (PD). There were significant differences between different
209	accommodation states (F _{CLT} =112.9, P _{CLT} =0.00; F _{ACD} =153.8, P _{ACD} =0.00; F _{PD} =271.4,
210	$P_{PD}=0.00$). When given -6D accommodation stimulation, the CLT increased (from
211	3.62±0.17mm to 3.89±0.24mm, P<0.001), while ACD (from 3.28±0.23mm to
212	3.09±0.26mm, P<0.001) and PD (from 5.71±0.86mm to 4.62±0.73mm, P<0.001)
213	decreased. Under the state of cycloplegia with tropicamide, the CLT reduced (from
214	3.62±0.17mm to 3.57±0.15mm, P<0.001), whereas the ACD (from 3.28±0.23mm to
215	3.35±0.22mm, P<0.001) and the PD (from 5.71±0.86mm to 7.90±0.51mm, P<0.001)
216	increased (Fig2).
217	
218	Figure 2 about here
219	

220 2. Ciliary muscle thickness (include CM2, CM3) in different accommodation

221 of the ey	e.
---------------	----

222	We also observed the thickness of ciliary body muscles in different
223	accommodation states. Two sites of the ciliary muscle which are 2mm and 3mm
224	distance from the Scleral spur were tested. Ciliary muscle thickness changed at CM2
225	(F=12.9, P=0.00) and CM3 (F=25.0, P=0.00). When compared with the basal state,
226	the 2mm distance from the Scleral spur of the ciliary muscle increased under the
227	cycloplegia state (496±69 μ m vs 468±69 μ m, P<0.05) but not under the
228	accommodation stimulus ($454\pm64\mu$ m vs $468\pm69\mu$ m, P>0.05) (Fig 3). The thickness of
229	the ciliary muscle at 3mm distance from the Scleral spur decreased under the
230	accommodation stimulus (271±8µm vs 292±8µm, P<0.05) and increased under the
231	cycloplegia state (310 \pm 8µm vs292 \pm 8µm, P<0.05).
232	
233	Figure 3 about here
234	
235	3. Schlemm's Canal changed in different accommodation states of the eye
236	We evaluated the changes of the Schlemm's Canal by measuring its area, length
237	and width. After-6D accommodation or cycloplegia with tropicamide was given,
238	when compared with the relaxation state, the mean values of SCA (F=10.959; P $<$
239	0.05), SCL (F=8.345; P < 0.05) and SCW (F=5.107; P < 0.05) were found to have
239 240	0.05), SCL (F=8.345; P < 0.05) and SCW (F=5.107; P < 0.05) were found to have significantly changed. After -6D accommodation stimulation, the SCA increased on
239 240 241	0.05), SCL (F=8.345; P < 0.05) and SCW (F=5.107; P < 0.05) were found to have significantly changed. After -6D accommodation stimulation, the SCA increased on average by 22.80% (7824±2727 μ m ² VS 6371±2517 μ m ² , P < 0.05), the SCL by

243	$27\pm9 \ \mu m P < 0.05$). However, after cycloplegia with 1% tropicamide, the SCA
244	decreased on average by 21.37% (5009±2029 μm^2 VS 6371±2517 $\mu m^2,P<0.05),$ the
245	SCL by 14.76% (212±14µm VS 249±10 µm, P < 0.05) and the SCW by 17.90%
246	(22±5 μm VS 27±9 $\mu m,$ P < 0.05) (Fig5). In addition, the changed areas of SCA (r =
247	0. 35; P = 0.0007), SCL (r = 0. 251; P = 0.0172), and SCW (r = 0. 253; P = 0.016)
248	were significantly correlated with the change in CLT (Fig4).
249	
250	Figure4 about here
251	
252	4. Trabecular meshwork changed in different accommodation states of the eye
253	We evaluated the changes of trabecular meshwork by measuring its length and
254	width. TM width was found to have made no significant changes in different
255	accommodation states (F=2.48, P=0.92), but TM length changed considerably
256	(F=15.8, P= 0.00). When compared with the basal level, TM length increased on
257	average by 4.49% (587 \pm 46µm VS 562 \pm 45µm, P<0.05) after -6D accommodation
258	stimulus. However, it did not change after cycloplegia with tropicamide (Fig5).
259	
260	Figure 5 about here
261	
262	Discussion:
263	This study, to our knowledge, is the first in vivo study reporting the effects of
264	different accommodation states in human TM and SC structural changes in myopic

patients. These findings will provide a more reliable and trusted message to our 265 understanding of the mechanisms of IOP regulation, the aqueous humor outflow. The 266 267 outcome is also beneficial to understanding the mechanism of glaucoma. In the present study, myopic children were recruited since they needed cycloplegia 268 for optometry and there was no burden for additional pharmacological intervention. 269 Two artificial accommodation states were established. Paralysis of accommodation 270 was achieved by tropicamide which is normally used in clinics and already known to 271 be safe when used in children with myopia. Accommodation stimulus was achieved 272 as reported by Ferrer Blasco¹². To verify these two artificial accommodation states, 273 parameters associated with accommodation, including central lens thickness (CLT), 274 anterior chamber depth (ACD) and pupil diameter (PD) were tested. As expected, the 275 276 CLT increased after -6D accommodation stimulation but decreased following cycloplegia. On the other hand, the ACD and PD decreased after -6D accommodation 277 stimulation whereas it increased after cycloplegia with tropicamide. Thus two typical 278 279 artificial accommodation states were established in myopia children as previously reported^{12, 15, 16}. 280

Ciliary body muscles change with accommodation. The change of CM provides direct evidence of accommodation stimulation and cycloplegia. There are researches which have explored changes in the ciliary muscle structure with accommodation using UBM, MRI and OCT¹⁷⁻²¹. The results indicate that the shape change occurred in the anterior portion of the ciliary muscle with accommodation. Ciliary muscle thickness at 1mm posterior to the scleral spur increased with accommodation but thinned at CM2, 287 CMT3. In our study, due to limitation of the OCT scan depth, we only analyzed changes
288 at CM2 and CM3 and found that their thickness decreased after -6D accommodation
289 stimulation. And our results are consistent with other studies^{17, 18}.

In this study, we found that the SC structure significantly changed under different 290 accommodation states: the SC area increased on average about 22.80%, the SC length 291 by 18.76% and the SC width by 16.53% after -6D accommodation stimulation. On the 292 other hand, after cycloplegia with 1% tropicamide, the area of SC decreased on 293 average by 21.37%, the SC length by 14.76% and the SC width by 17.90%. Earlier 294 295 studies have shown that accommodation stimulation or pilocapine can decrease the aqueous humor outflow resistance and lower the IOP^{4, 5, 22}. Paradoxically, cycloplegia 296 increased the aqueous humor outflow resistance in monkeys, normal people and 297 POAG patients^{7, 8}. The reason of the IOP change is totally unclear. However, we 298 could speculate that this is possibly due to the change of the SC structure, mainly the 299 inner wall of SC and the juxtacanalicular tissue (JCT), which are the major sources of 300 aqueous humor outflow resistance, under different accommodation states. The power 301 of accommodation derived from ciliary muscle contraction includes the longitudinal 302 and circular ciliary muscles. The longitudinally ciliary muscle is directly connected to 303 the scleral spur in human eyes^{23, 24}. Thus, when the ciliary muscle contracts during the 304 accommodation state, it also can posteriorly and internally pull the sclera spur, which 305 produces the widening of the spaces between the corneoscleral trabecular and the 306 distension of the outer and endothelial meshwork, and thus increase the giant vacuoles 307 into the SC ²⁵. The ciliary muscle tendon has elastic-like fibers called the cribriform 308

plexus which directly connect to the inner endothelial wall of the Schlemm's canal²⁶. 309 The ciliary muscle tone can therefore, directly influence the Schlemm's canal inner 310 wall and JCT structure through the fiber system of the cribriform plexus^{26, 27}. 311 Trabecular meshwork, another important structure in the aqueous humor outflow, 312 however, did not change significantly in size after -6D accommodation stimulation 313 and cycloplegia. Only the TM length increased slightly on average by 4.49% after -314 6D accommodation stimulus. We speculate that maybe TM also possesses the ability 315 to contract. Wiederholt et al found a direct role of trabecular meshwork contractility 316 in aqueous outflow regulation²⁸. The researchers showed that TM contains cholinergic 317 innervation nerve terminals and α -smooth muscle actin positive cells in bovine, mice 318 and primates^{1, 29}. In vitro perfusion of the anterior segments (without ciliary muscle) 319 320 with cholinergic agonist (pilocapine) could induce contraction of the TM and decrease the outflow facility³⁰. However, when pilocapine is applied to the entire eye of the 321 ciliary muscle, the outflow facility increased both in mice and primates^{1, 31}. This 322 323 evidence indicates that TM and the ciliary muscle are not connected in the same way. Although under the accommodation stimulation, TM could be pulled by the ciliary 324 body. However, contraction of TM itself could offset the stretching effect of the 325 ciliary muscle on TM. 326 There are some limitations in this study. First, we only observed SC and TM 327 changes under the -6D accommodation stimuli, but not a step-by-step accommodation 328 329 (from-2D to -6D). A more detailed assessment of the accommodation states could

330 provide additional information for daily life situations such as reading, which usually

331	needs 2-4D accommodation and already demonstrated IOP lowering. Second, we only			
332	tested myopic patients. Whether there is a difference in healthy people or other cases			
333	needs further study. Third, this study is limited to children, who are likely to have			
334	more compliant tissues. For adults, the effect would likely be smaller and need further			
335	study to confirm.			
336	In conclusion, SC size enlarges after -6D accommodation stimuli and shrinks after			
337	cycloplegia. However, for TM, only the TM length increases under accommodation			
338	stimulus state. These may reveal the reason why IOP decreased after accommodation			
339	and help to characterize the underlying pathophysiological mechanisms involved in			
340	the regulation of IOP and glaucoma.			
341				
342	Conflict of interest statement			
343	The work is original, and there is no conflict of interest to disclose.			
344	Acknowledgment			
345	This work was supported by Natural Science Foundation of China (81770921 to			
346	H.Z. and 81470632 to J.W.).			
347				
348	Reference:			
349	1. Overby DR, Bertrand J, Schicht M, Paulsen F, Stamer WD, Lutjen-Drecoll E. The structure of			
350 351 352	on outflow facility in mice. <i>Invest Ophthalmol Vis Sci</i> 2014; 55 (6): 3727-3736.			
350 351 352 353 354	 Grant WM. Clinical measurements of aqueous outflow. <i>American journal of ophthalmology</i> 1951; 34(11): 1603-1605. 			

357		open-angle glaucoma: European study results. Graefe's archive for clinical and experimental
358		ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle
359		<i>Ophthalmologie</i> 2011; 249 (10): 1537-1545.
360		
361	4.	Jenssen F, Krohn J. Effects of static accommodation versus repeated accommodation on
362		intraocular pressure. Journal of glaucoma 2012; 21 (1): 45-48.
363		
364	5.	Read SA, Collins MJ, Becker H, Cutting J, Ross D, Savill AK et al. Changes in intraocular
365		pressure and ocular pulse amplitude with accommodation. The British journal of
366		ophthalmology 2010; 94 (3): 332-335.
367		
368	6.	Cassidy L, Delaney Y, Fitzpatrick P, Blake J. Effect of accommodation on intraocular pressure
369		in glaucomatous eyes. Ir J Med Sci 1998; 167 (1): 17-18.
370		
371	7.	Barany E, Christensen RE. Cycloplegia and outflow resistance in normal human and monkey
372		eyes and in primary open-angle glaucoma. Archives of ophthalmology (Chicago, Ill : 1960)
373		1967; 77 (6): 757-760.
374		
375	8.	Velasco Cabrera J, Eiroa Mozos P, Garcia Sanchez J, Bermudez Rodriguez F. Changes in
376		intraocular pressure due to cycloplegia. The CLAO journal : official publication of the Contact
377		Lens Association of Ophthalmologists. Inc 1998: 24 (2): 111-114.
378		
379	9.	Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for
380		open-angle glaucoma: a systematic review and meta-analysis. <i>Ophthalmology</i> 2011; 118 (10):
381		1989-1994 e1982.
382		
383	10.	Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and
384		myopia: the Blue Mountains Eye Study. <i>Ophthalmology</i> 1999; 106 (10): 2010-2015.
385		
386	11.	Leon AA, Medrano SM, Rosenfield M. A comparison of the reliability of dynamic retinoscopy
387		and subjective measurements of amplitude of accommodation. <i>Ophthalmic Physiol Opt</i>
388		2012; 32 (2): 133-141.
389		
390	12.	Esteve-Taboada JJ. Ferrer-Blasco T. Alov MA. Adsuara JE. Cerdá-Durán P. Mimica P <i>et al.</i>
391		Ocular anatomic changes for different accommodative demands using swept-source optical
392		coherence tomography: a pilot study. <i>Graefe's Archive for Clinical and Experimental</i>
393		Ophthalmology 2017: 255 (12): 2399-2406.
394		
395	13.	Chen Z. Song Y. Li M. Chen W. Liu S. Cai Z <i>et al.</i> Schlemm's canal and trabecular meshwork
396		morphology in high myopia. <i>Ophthalmic Physiol Opt</i> 2018: 38 (3): 266-272.
397		
398	14.	Chen Z. Sun J. Li M. Liu S. Chen L. Jing S <i>et al.</i> Effect of age on the morphologies of the human
399	-	Schlemm's canal and trabecular meshwork measured with sweptsource optical coherence
400		tomography. Eve (Lond) 2018.

401		
402	15.	Richdale K, Sinnott LT, Bullimore MA, Wassenaar PA, Schmalbrock P, Kao CY et al.
403		Quantification of age-related and per diopter accommodative changes of the lens and ciliary
404		muscle in the emmetropic human eye. Invest Ophthalmol Vis Sci 2013; 54(2): 1095-1105.
405		
406	16.	Farouk MM, Naito T, Shinomiya K, Eguchi H, Sayed KM, Nagasawa T et al. Optical Coherence
407		Tomography Reveals New Insights into the Accommodation Mechanism. Journal of
408		ophthalmology 2015; 2015: 510459.
409		
410	17.	Esteve-Taboada JJ, Dominguez-Vicent A, Monsalvez-Romin D, Del Aguila-Carrasco AJ,
411		Montes-Mico R. Non-invasive measurements of the dynamic changes in the ciliary muscle,
412		crystalline lens morphology, and anterior chamber during accommodation with a high-
413		resolution OCT. Graefe's archive for clinical and experimental ophthalmology = Albrecht von
414		Graefes Archiv fur klinische und experimentelle Ophthalmologie 2017; 255 (7): 1385-1394.
415		
416	18.	Lewis HA, Kao CY, Sinnott LT, Bailey MD. Changes in ciliary muscle thickness during
417		accommodation in children. Optom Vis Sci 2012; 89(5): 727-737.
418		
419	19.	Lossing LA, Sinnott LT, Kao C-Y, Richdale K, Bailey MD. Measuring Changes in Ciliary Muscle
420		Thickness with Accommodation in Young Adults. <i>Optometry and Vision Science</i> 2012; 89 (5):
421		719-726.
422		
423	20.	Stachs O, Martin H, Kirchhoff A, Stave J, Terwee T, Guthoff R. Monitoring accommodative
424		ciliary muscle function using three-dimensional ultrasound. Graefe's Archive for Clinical and
425		Experimental Ophthalmology 2002; 240 (11): 906-912.
426		
427	21.	Sheppard AL, Davies LN. In Vivo Analysis of Ciliary Muscle Morphologic Changes with
428		Accommodation and Axial Ametropia. Investigative Opthalmology & Visual Science 2010;
429		51 (12): 6882.
430		
431	22.	L. Cassidy YD, P. Fitzpatrick, J. Blake. Effect of accommodation on intraocur pressure in
432		Glaucomatous Eyes. 1998: 17-19.
433		
434	23.	Rohen J. Über den Ansatz der Ciliarmuskulatur im Bereich des Kammerwinkels.
435		<i>Ophthalmologica</i> 1956; 131 (1): 51-60.
436		
437	24.	Kupfer C. Relationship of ciliary body meridional muscle and corneoscleral trabecular
438		meshwork. Archives of ophthalmology (Chicago, Ill : 1960) 1962; 68: 818-822.
439		
440	25.	Grierson I, Lee WR, Abraham S. Effects of pilocarpine on the morphology of the human
441		outflow apparatus. The British journal of ophthalmology 1978: 62 (5): 302-313.
442		
443	26.	Rohen JW, Futa R, Lutien-Drecoll E. The fine structure of the cribriform meshwork in normal
444		and glaucomatous eyes as seen in tangential sections. <i>Invest Ophthalmol Vis Sci</i> 1981; 21 (4):

445		574-585.			
446					
447	27.	Hann CR, Fautsch MP. The elastin fiber system between and adjacent to collector channels in			
448		the human juxtacanalicular tissue. Invest Ophthalmol Vis Sci 2011; 52(1): 45-50.			
449					
450	28.	Lepple-Wienhues A, Stahl F, Wiederholt M. Differential smooth muscle-like contractile			
451		properties of trabecular meshwork and ciliary muscle. Experimental eye research 1991;			
452		53 (1): 33-38.			
453					
454	29.	de Kater AW, Shahsafaei A, Epstein DL. Localization of smooth muscle and nonmuscle actin			
455		isoforms in the human aqueous outflow pathway. Invest Ophthalmol Vis Sci 1992; 33(2): 424-			
456		429.			
457					
458	30.	Wiederholt M, Bielka S, Schweig F, Lutjen-Drecoll E, Lepple-Wienhues A. Regulation of			
459		outflow rate and resistance in the perfused anterior segment of the bovine eye.			
460		Experimental eye research 1995; 61 (2): 223-234.			
461					
462	31.	Kaufman PL, Barany EH. Loss of acute pilocarpine effect on outflow facility following surgical			
463		disinsertion and retrodisplacement of the ciliary muscle from the scleral spur in the			
464		cynomolgus monkey. Invest Ophthalmol 1976; 15(10): 793-807.			
465					
466					
467					
-					
468	8 Figure legend:				

469	Fig1. Simulated diagram of experimental set-up and examples of the measured
470	items in OCT image. A: A tilted first-surface mirror with a frame carrying a rotation
471	axis was attached to the OCT machine and used to place the fixation stimulus at
472	different vergences. Measurements were taken on the right eye of the subject while
473	the left eye looked at an optotype through the mirror. Pictures show the simulated
474	diagram (left), the whole view of our testing system (middle) and the large view of
475	optotype in the mirror (right). B: Simulated diagram of the anterior eye segment
476	accounting for the measured items in this study: Central Lens Thickness (CLT), Pupil
477	Diameter (PD), Schlemm's canal length(SCL), Schlemm's canal width (SCW),

478	trabecular meshwork length (TML), trabecular meshwork width (TMW), ciliary
479	muscle 2 (CM2) and 3 (CM3) mm posterior to the scleral spur, scleral spur
480	(SS) . C: OCT image shows the measured CLT, PD. D: OCT image shows the
481	measured ACD. E: OCT image shows the measured Schlemm's canal (yellow loop,
482	including SCL and SCW) and the trabecular meshwork (green arrow, including TML
483	and TMW). F: Image shows the measured ciliary muscle (Yellow line respectively
484	marked the testing site of CM2 and CM3).

485

Fig2: The central lens thickness (CLT), anterior chamber depth (ACD) and pupil 486 diameter (PD) in different accommodation states of the eye. A&D: Example of CLT, 487 ACD and PD in the -6D accommodation state; B&E: Example of CLT, ACD and PD 488 489 in the relaxation state; C&F: Example of CLT, ACD and PD in the cycloplegia state; G-I: Statistical graph of CLT, ACD and PD in different accommodation states 490 (**P<0.01). 491

492

Fig3: Ciliary muscle thickness in different accommodation states of the eye. A-B: 493 Respectively showing 2mm and 3mm posterior to the scleral spur (**P<0.01, * 494

P<0.05). 495

496

Fig4. Schlemm's Canal changes in different accommodation states. A&D: Typical 497 OCT image of the Schlemm's Canal and trabecular meshwork in the -6D 498

accommodation state; B&E: Typical OCT image of the Schlemm's Canal and 499

500	trabecular meshwork i	in the relaxation	state; C&F: Typical	OCT image of the
				0

- 501 Schlemm's Canal and trabecular meshwork in the cycloplegia state; (Scale bar for A-
- 502 C=500 μ m, D-F has the larger view with a scale bar=200 μ m). G-I: Statistical graph
- of SCA, SCL and SCW in different accommodation states (**P<0.01). J-L: Shows the
- 504 SCA, SCL and SCW changes correlated with the changes in CLT.
- 505
- 506 Fig5: Trabecular meshwork changes in different accommodation states of the eye.
- 507 A: Statistical graph of trabecular meshwork width (TMW) in different
- accommodations of the eye. B: Statistical graph of trabecular meshwork length
- 509 (TML) in different accommodations of the eye (**P<0.01).