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Platform Independent, Higher-Order, Statically
Checked Mobile Applications

Dean Kramer, Tony Clark, and Samia Oussena

Abstract—There is increasing interest in establishing a pres-
ence in the mobile application market, with platforms including
Apple iPhone, Google Android and Microsoft Windows Mobile.
Because of the differences in platform languages, frameworks,
and device hardware development of an application for more
than one platform can be a difficult task. In this paper we
address this problem by the creation of a mobile Domain Specific
Language (DSL). Domain analysis is carried out using two case
studies, leading to the identification of basic requirements for
the language. The language is defined as an extension of a λ-
calculus in terms of an operation semantics and a type system.
The language is a contribution to the understanding of mobile
applications since it precisely defines the essential properties
offered by a range of mobile application technologies, and can
form the basis for a single language that can target multiple
platforms.

Index Terms—Domain Specific Languages, Mobile Computing,
Platform-Independence

I. INTRODUCTION

TODAY, the penetration of modern smart phones is vastly
increasing with over 172 million smart phones shipped

worldwide in 2009 [1], and with the emergence and successes
of sources for consumers to install third party applications
opens a new market for developers to reach consumers. How-
ever, developing an application for multiple mobile platforms
can incur different obstacles including differences in develop-
ment tools available, different languages, platform constraints
and availability of software libraries.
Difficulties in producing software for more than a single

platform has been evident for many years outside of the mobile
realm. For decades, software portability has been a concern
during development, mainly due to very large spectrum of
different CPU Instruction Set Architectures (ISA) and by the
large variety of Operating Systems in use. Recently this has
become less of an issue, largely due to factors including the
decrease in CPU ISAs, the dominance of a limited number
of operating systems, and to commonly used languages in-
cluding Java. Since the mobile market is relatively immature,
there are large differences in implementation languages and
development environments used for different applications and
technology platforms.
Software porting and cross platform development remains

the most common method for multi-platform development.
For large software companies this is not an issue, but for
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smaller commercial mobile application businesses this presents
a problem. Firstly, each mobile platform has a different
implementation language and therefore each developer needs
to be multi-lingual or a company needs to set up multiple
development teams for each product. Secondly, businesses
must invest in multiple types of testing equipment for the
different platforms. These factors lead to an economic driver
for technology that can help to deliver mobile applications
over families of target platforms.

A. Outline of Paper
The outline of this paper is as follows: section II describes

the background to mobile application development; section
III outlines current approaches to multiplatform methods and
defines our contribution; section IV describes two case studies
that we have implemented for a company and which leads
to the identification of the domain features for our language;
section V defines the syntax of the language and gives a simple
example application; section VI defines how the language ex-
ecutes; finally section VII analyses the language and describes
our current and future implementation strategies.

II. BACKGROUND AND RELATED WORK

A Software Development Kit (SDK) provides the envi-
ronment for developing applications through the use of li-
braries, emulators, and debuggers and is the basis for the
development of the majority of current mobile applications.
However an unfortunate drawback of SDKs is that they
are platform dependant: Apple provides an Xcode SDK
(http://developer.apple.com/devcenter/ios) that includes an in-
terface builder, an iPhone simulator and development envi-
ronment; the Android SDK comes as an eclipse plug-in, and
includes a software emulator; the Windows Phone provides
a specialised version of the Microsoft Visual Environment;
Blackberry and Symbian also provide different SDK plat-
forms. This variance in terms of specific platforms greatly
increases the costs of developing mobile applications to be
accessible in a variety of devices. In order to reduce these
costs, various frameworks have been proposed in order to
produce cross-platform applications.

A. Frameworks
The DIMAG Framework [2] was developed for automatic

multiple mobile platform application generation. This was
accomplished by creating a declarative definition language
which is comprised of 3 distinct parts; firstly a language
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DIMAG-root, which provides references to the definitions for
workflow and user interface in the application; secondly the
language State Chart eXtensible Markup Language (SCXML)
defines the workflow by the definitions of states, state tran-
sitions, and condition based actions; and finally DIMAG-UI
language based on MyMobileWeb’s IDEAL language using
CSS to control the user interface.The main shortcomings of
this method is that it relies on server-side code generation
and download. The other difference with our work is that
applications developed in this framework are interpreted using
a virtual machine.
Other frameworks include XMLVM [3], [4] developed

at San Francisco State University and created to support
byte-code cross-compilation and avoid source-code translation
through the use of a tool chain. This tool chain currently trans-
lates Java Class files and .Net executable to XML documents,
which then can be output to Java byte code/.NET CIL or to
JavaScript and Objective-C. This tool chain was firstly used
to cross compile Java applications to AJAX applications [5],
because of the lack of IDE support and difficulty in creating an
AJAX application. Further work to include Android to iPhone
application cross-compilation [6] was completed. API map-
ping between the two platforms was carried by the creation of
a compatibility library.
More recently, since the arrival of HTML5 and

WebKit, a number of open source and commercial
cross-platform frameworks have been proposed such as
the Appcelaterator (http://developer.appcelerator.com),
PhoneGap (http://www.phonegap.com) and Rhomobile
(http://rhomobile.com). Frameworks, which use either
JavaScript or Ruby, and therefore the resulting applications
are run in a browser. Furthermore these applications can run
offline and access the device’s full capabilities; such as a
GPS or camera; providing the same look and feel as a native
application. Although these frameworks greatly simplify the
task of implementing the mobile application, the developer is
still required to work with general web application languages
which lack specificity and efficiency in terms of mobile
applications. Furthermore, these applications suffer limited
visibility on the market due to the absence of an “official”
distribution channel.
There are several different software platforms for mobile

applications. Since commercial developers usually wish to
develop an application that can work over all platforms there
are a number of proposals for single technologies that can
target multiple platforms. A recent proposal for a DSL for
mobile applications [7] uses XText and Eclipse to imple-
ment a DSL that uses code generation techniques to target
mobile platforms. This DSL uses fixed GUI structures such
as section whereas our language leaves the collection of
external widgets as a parameter of any use of the system. It is
also not clear whether the DSL has a static type system and
its semantics is not defined independently of a translation to
a target platform.
Mobl (http://www.mobl-lang.org/) is a language that has

been designed to support mobile application development and
which targets JavaScript. It has many things in common with
our language, however the language features for describing

GUI components is fixed and the semantics is not defined
independently of the target language.
In all cases the currently available DSLs for mobile applica-

tions differ from the language presented in this article in that
they are not higher-order. By providing functions as first-class
data values, our language provides unrestricted abstraction
over mobile programs. Therefore our language can express
patterns, such as required by product lines, by parameterising
over reusable application elements. Existing languages are
also fixed in terms of the external widgets. Our language is
parameterised with respect to external widgets and they are
simply provided at the type-checking phase when they are
checked in terms of the events that they can raise.
Our language is textual and does not aim to provide a

graphical DSL that can be used to shield developers from
the technical details of application design (although it is
intended to shield application developers from the details of
mobile platforms). Another approach to DSL design involves
graphical modelling languages such as that defined in [8],
however it is not clear that such approaches can abstract from
technical details without resorting to a textual DSL at some
level.
Links [9] is a language that has been designed to support

web application development where the 3-tier architecture
is supported by a single technology. Like the technology
described here, Links supports higher-order functions and is
statically typed with respect to events and messages. Unlike
our language, Links has been designed as a complete language
with supporting tools, and indicates a possible future direction
for layering a user language on the calculus.

B. Domain Specific Languages and Modelling
Domain-specific languages (DSLs) have provided the sup-

port for software development process by raising the level of
abstraction and introducing specialised viewpoints of a certain
problem space. The benefit of DSL to application development
has been described in [10], [11], [12], [13]. More recent DSLs
in other areas include [14] that concentrates on the abstraction
of web applications to lower the overall complexity of the
application and boilerplate code. Further work on this DSL led
to the creation of Platform Independent Language (PIL) [ 15].
PIL was developed as an intermediate language, to provide
a scalable method for developing for multiple platforms. A
drawback of this method is currently it lacks support for
mobile platform development.
Other efforts for making mobile application

development easier include Google Simple
(http://code.google.com/p/simple/), a BASIC dialect for
creating Android applications, and more recently the Google
App Inventor (http://appinventor.googlelabs.com/about/),
which is based on Openblocks [16] and Kawa
(http://www.gnu.org/software/kawa/). Particularly Google
App Inventor has vastly abstracted app development, but only
supports development of Android applications.
DSLs for mobile application have been limited due to a

number of factors, such as the rapid change of the devices,
the closeness of the distribution channel. However, with the
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popularity of the native-look-a-like web applications more
DSLs are starting to be developed. An earlier work in this area,
Balagtas-Fernandez have looked at the design of graphical
DSL for non-technical users [17]. This work is still at an
early stage and the tool to support the DSL is a prototype.
However, the initial survey of potential users has shown that
non-technical users would be interested in developing their
own application and would require an easy interface to do so.
More recently, Brenhs has proposed MDSD, a DSL for

iPhone. The language is more specific to data centric ap-
plications. Following from that work, they have started the
Applause project for developing DSL for iPhone, iPad and
Android (http://code.google.com/p/applause/), but this is still
not fully developed.
The SERG group defined a language named Mobl

(http://www.mobl-lang.org/) with a declarative DSL for both
the user interface and for defining the data. Although mobl is
comparable to our language there are substantial differences
since we have aimed to capture the essential features of mobile
applications through the use of: technology independence;
static typing for all features; higher-order functions; formally
defined operational semantics; widget libraries.
Our aim is for the language presented in this article to be a

formal foundation for each of the current implementations of
mobile applications DSLs.

III. MULTI-PLATFORM DEVELOPMENT AND
CONTRIBUTION

Because of the complexities in multiplatform development,
in this section we introduce three methods that could be used
to help application development for multiple platforms. Our
proposal is to select an approach based on Domain Specific
Languages.

A. Approaches to Development
Frameworks: The use of frameworks can be seen as a
method of software abstraction using common code, which
can be overridden and extended by a user. Within mobile
development, frameworks have been developed to help with
specific tasks including media playback, access to sensors
and graphic and UI manipulation. For example, the system
described in [6] has been designed to help make code bind-
ings between the different platform specific frameworks. This
method concentrates on solving all computational problems,
which can increase complexity in application development,
further becoming a hindrance to the developer.
Web Applications: A mobile web application essentially is a
regular Internet application designed to fit the average screen
sizes of most mobile devices, bringing various benefits to the
developer. Some applications that require high amounts of
processing can greatly benefit from allowing the processing to
be handled in the cloud while the device merely has to process
the UI. In addition the use of standards such as HTML and
CSS may make certain types of applications easier to develop.
Originally this approach was troublesome because of re-

liance on network connectivity for the application, which in
some situations may either not be available or not desired. Web

applications also couldn’t store local data to the web browser,
until the development of HTML5 [18]. In May 2007, Google
released a plug-in for the Firefox web browser, Google Gears
(http://gears.google.com/). This plug-in supports caching of
web applications to allow offline use, and also the ability for a
web application to store data in a local database. This idea has
been integrated into the development of HTML5, a step in the
right direction but there are still remaining issues. Firstly, web
applications in general can have shortcomings in the amount of
rich UI widgets, with animation for certain widget interaction
being increasing difficult to implement in a mobile web
application. Other problems are limitations of the web-browser
on the mobile devices, possibly leading to inconsistencies in
application functionality between different platforms because
of lack of API for using different device components (e.g.
accelerometers, vibration motors, GPS etc). Because of these
limitations and current unsolvable dependencies, the creation
of a Domain Specific Language was chosen as our solution.
Domain Specific Languages: A Domain Specific Language
(DSL) [19], [20] is primarily designed to be used in a
certain application domain (e.g. mobile, telecoms, finance),
abstracting away from the software implementation making
implementation easier. The abstraction is designed to aid
the developer and is to be contrasted with General Purpose
Languages (GPLs) whose features are not designed with any
particular domain in mind. DSLs have existed for many years.
Languages that were created for particular domains include
FORTRAN [21] used to allow direct mathematical formula,
Structured Query Language (SQL) [22] for database access
and manipulation, and Algol [23] for algorithm specification.
In recent times, the use of DSLs have been proposed and used
in different domains including the production of rich web ap-
plications [14], mashups of web applications and services [24],
and system integration [25]. Because of the complexities in
mobile development, we believe there is room for abstraction
in the development for mobile devices.

B. Problem, Proposal and Contribution
There are many different technologies for mobile-

application development. Most of these are complex and do
not separate out the application logic from the GUI implemen-
tation. Such a separation is sensible because the application
logic can usually be reused across multiple platforms while
the GUI implementation must be changed. Furthermore, most
technologies for mobile-application development are event
driven, but dynamically match event-handlers with the events
when they are raised. Our claim is that the quality of devel-
opment can be enhanced by statically checking that handlers
for all events are defined before the application is executed.
Our proposal is that the essential features of languages

for mobile application development have some characteristic
elements that can be captured in a domain specific language.
Furthermore, the language can be constructed as an extension
of the simply typed λ-calculus where the extensions are both
orthogonal and which characterise the domain. Since our
language is based on the λ-calculus it is highly expressive
in terms of being able to parameterise over the elements of an
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application and thereby encode patterns of data (e.g. reusable
widgets) and control (e.g. call-backs and event handlers).
We use an approach based on monads to contain those parts

of an application that deal with updating state (SQLite for
example). As described in [26] this supports the desirable
situation where applications can be built from composable
units. The language has a formally defined semantics that is
independent of any implementation technology and therefore
can be used as a blueprint for an implementation in any target
platform, or can be implemented directly as an interpreter.
The language uses external widgets to define platform-

specific features such as GUI elements and persistent storage.
The external widgets are fully integrated with the type system
of the language and therefore, by supplying different collec-
tions of external widgets, the language represents a family of
related development platforms. Finally, the language has a type
system that allows mobile applications to be statically checked.
In particular the events raised by GUI widgets and the device
can be checked against handlers defined in the application
before it is executed.

IV. DOMAIN ANALYSIS
A DSL is defined by performing a domain analysis [20]

on a target family of applications in order to identify the
common characteristic features. The domain analysis leads to
the design of a technology that conveniently supports these
features. Our aim is to define a language that can be used
to represent mobile applications and therefore our domain
analysis starts with the construction and analysis of two phone
applications developed as part of University business and
enterprise activities. This section describes the case studies and
then outlines the characteristic features that were identified.

A. Case Studies
Two iPhone application case studies were created for a local

Small to Medium sized Enterprise (SME). These applications
are described in the following two sub-sections.
Tour de France (TDF2009): This application was created to
provide access to information from the 2009 series Tour De
France cycle race. Firstly the application required a method
of transferring and receiving data from an external server
for two different reasons. Firstly for the stage results, and
secondly for the general data including information about the
Teams/Riders and all the Stages involved in that year, this
helped us achieve a very small installation size. The data
communications were done via XML files parsed using the
iPhone SAX-XML Parser, one created with the static data,
and one generated every day with the current results. Inside the
stages section, fly-through videos to help illustrate the course
and terrain, large high resolution gesture controlled pictures
were incorporated. Key features of the TDF2009 are shown in
Figure 1 where a main screen provides access to the results of
current stages and to fly-through videos. The figure shows that
the application is driven by events caused by the user touching
the screen and that the application consists of different displays
(or states) consisting of a mixture of event processors (buttons)
and simple information (images, text).

Lyrical Genius: This application was created as a game,
Lyrical Genius (LG), consisting of quiz questions relating
to different lyrics in songs. This game though still using
the Apple Cocoa Framework is quite different to TDF2009
in many ways. Firstly this application does not use XML
files as persistence of data, but uses a SQ Lite database for
storing level and question data. Other features of this game
include music that is played in the background that can be
switched on/off and sound effects for if the user chooses the
correct or incorrect answer. These features require threading,
which is one issue we must consider in the DSL. The game
also includes a timer, for which the user must get a number
of correct answers within a time limit. This makes use of
threading again, and also another important area as the use of
timing can be needed in many different contexts. Features of
the application are shown in Figure 2 where a player starts at
the main screen. On choosing to play, the user is shown their
current score (accessed via the database), if they choose to
play then they are offered a difficulty level for each question.
Each question has a time-limit; the final screen is reached by
either selecting the correct lyric or when the time-out occurs.

B. Domain Features
Based on the case studies above, we can define a set of

features that the DSL must support. In the case of GUI imple-
mentation, in the iPhone and Android development Openly can
be used. Openly is a cross-platform graphics language which
supports the ability to draw 2D and 3D objects, but in this
paper we are concentrating on the platform framework for the
GUI.
Screen Size: Mobiles support only a limited size display.
This size leads to a relatively small number of GUI features,
therefore there is more scope for building these features into
a common language. The standard iPhone resolution is 480
by 320 pixel and the IPA supports a 1024 by 768 resolution.
This compares to the Android screens, which vary by hardware
vendor but resolutions range to about 480 by 800 pixel.
Apple have currently settled the differences in screen display
resolution by the use of graphic scaling. This method can seem
an effective way of allow iPhone apps to run on a IPA, but
this comes with its flaws. Graphic scaling of very small low
quality images can make them look unappealing to user. Also
II design on IPA, because of its size difference will be slightly
different than on the iPhone and will require developers to
create applications with interfaces to suit that device. This
issue leads us to conclude that the DSL should aim to abstract
as much application logic as possible away from layout details
that can be provided as platform-specific libraries.
Layout Control: Layout control is an important consideration.
Android controls layout through the use of XML files, support-
ing different layout styles. The main style types consisted of
linear, relative and absolute. Android now has now deprecated
absolute positioning, due to the fragmentation in different
hardware vendor screen resolutions (see above). This compares
to iPhone, which can do programmatic layout and XML type
interfaces using Interface Builder. Interface Builder can help
the user easily create UIs, but these layouts would be less



INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 2, NO. 1, AUGUST 2011 18

Figure 1. A tour de france mobile application showing state transitions

dynamic than programmatic ones. Like screen size, the DSL
should focus on application logic and factor out the layout
control details into external libraries.
GUI Element Containership: Both iPhone and Google An-
droid platforms use a form of GUI element containership.
In iPhone development, the emphasise is on the application
Window and it’s Views, with Subviews. These are then ’stacked’
onto each other to create anything from a simple to complex
interface. With the Android a similar model is used, except
with Views and ViewGroups. Interface control on both platform
have similarities and differences. On the iPhone, views are
normally controlled by the use of View Controllers, which are
where widget event handlers are implemented. In comparison
Android development uses Intents and Activitys. This feature
leads us to conclude that all mobile application GUIs can be
expressed in terms of a tree of widgets that manage data and
behaviour and whose detailed layout and rendering properties
can be factored into platform specific libraries.
Event Driven Applications: The applications we are targeting
are event driven. Most mobile application implementation
languages register event handlers dynamically. This method
means there is a lack of checking at compile time to prevent
an application crashing. An example of a event listener for
iPhone:

[btnMenu
addTarget:self
action:@selector(backToMenu)

forControlEvents:UIControlEventTouchUpInside];

If the action is not registered then the program might go
wrong. This is an issue in general with event driven program-
ming and in particular with mobile applications where events
can be supplied by both the platform and the user. Contextual
events such as platform orientation, GPS, and battery levels
should be handled by an application in suitable ways. This
places a desirable feature requirement on our DSL whereby
the presence or otherwise of event handlers can be detected at
compile-time.
Hardware Features: Modern day mobile devices come
equipped with many different features. These features include
microphones, accelerometers, GPS, camera, and close range
sensors. These features tend to be fairly standard in their
behaviour if they are supported by the platform. Although
many platforms have comparable hardware features, they differ
in the details of how to control and respond to them. The
DSL should allow the details of hardware to be factored out
into platform specific libraries whilst supporting the events and
controls associated with them.
Concurrency: The use of concurrency in mobile applications
is paramount. This is carried out by the use of threads, for
instance a UI thread starts with the execution of an iPhone or
Android app. Because this thread is used for the UI elements of
the application, heavy or concurrent tasks should be allocated
in its own thread. This can help avoid UI halts and a ’laggy’
experience for the user. On the iPhone platform, threads can
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Figure 2. The lyrical genius quiz application showing state transitions

be implemented in various ways including POSIX Threads
and NSThread. The difference between the two are that the
pThreads are a C/C++ library and NSThread is a Cocoa-native
thread. On Android, concurrency can be implemented through
the use of Thread Classes, just as you would do it Java.
Example of a thread in iPhone:

[NSThread
detachNewThreadSelector: @selector(playMusic)
toTarget:self withObject:nil];

Although threads are important, we are proposing a DSL for
mobile information systems rather than applications with real-
time features such as games. Therefore, it is not clear that very
fine-grain control over threads will be important. Rather, it is
likely that lightweight concurrent processes are require where
control is fairly simply in terms of thread interruption and
resumption. Furthermore, we will assume that threads can be
associated with components of an application and their control
can be integrated with application events. Therefore, the DSL
will support lightweight threads, but not necessarily provide
any special purpose features for creating and manipulating
them.
Object-Orientation:Mobile applications are typically Object-
Oriented (OO). In the iPhone the main language used is
Objective-C, though support for C++ and the non-OO C
can also be used. This compares to Android, which uses
Java, but with different libraries and uses the Dalvik Virtual
Machine (VM) instead of the Java VM, because its charac-
teristics support mobile devices more. Applications are built
by constructing new and extending existing class/object types.
The DSL should have OO features including the ability to
encapsulate state and associate methods with GUI widgets.

Transitional Behaviour: State machine transitional behaviour
is very common in mobile device applications, and can be
found on the Android platform. Each Activity can be viewed as
a state machine that stores state and actions by the user, which
then causes transitions between different views or activities.
The DSL will need to support a state-machine view of mobile
applications.
Data Persistence: Mobile applications and increasingly per-
sisting data to physical storage between application invocation.
This data can sometimes be as simple as general settings that
the application needs, but also can also be quite complex and
including high amounts of redundancy. Modern smartphone
platforms currently have implementations of a SQLite (as in
LG above), a lightweight serverless single file database engine.
Other methods of storage can be in the forms of general
binary/object files that store serialisable objects and which is
not highly portable, and XML (as in TDF2009 above); highly
portable but requires more storage space, and also can require
large amounts of parsing which is not ideal. Therefore, whilst
mobile applications require data persistence, the format of the
persistence differs between platforms. The DSL must support
data persistence and allow the compete state of an application
to be saved between invocations; however the details of the
data format should be factored out into application-specific
libraries.
Contextual Events: Within a mobile application, not all
events are directly invoked by the user. Mobile platforms have
to deal with event invocation from a range of different sources
based on its current contextual environment. For example,
when the battery is lower on a phone normally the phone
will display a message to the user to recharge the battery.
Static Typing: type systems are used in programming
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languages as a method of controlling legal and illegal
program behaviour. Static typing differs to dynamic typing in
many ways. Firstly, static typing requires all type checking to
be carried out during run time, as opposed to dynamic typing
that requires checking at run-time. Static typing requires
explicit declaration of types unlike dynamic typing shown
below:

Static Dynamic
// static declaration
// of integer foobar
int foobar;
foobar=10;

// dynamic declaration
// and use of foobar
// simultaneously
foobar=10;

Though the use of dynamic typing may look attractive as
variable initialisation is not required, issues can arise from
mistyped variable names. With static typing, if a mistyped
variable name is used within a method, the source will not
compile, whereas using dynamic typing it will compile making
software debugging a much harder task. Therefore the DSL
should have a type system that allows as many errors to be
caught at compilation-time as possible.

C. The Mobile Application Domain: Conclusion
This section has reviewed two mobile applications and has

identified features that are common to the application domain.
We have identified the domain as including mobile information
systems: the family of applications that process information,
are event driven, use contextual information from the platform,
have relatively simple hierarchical GUIs, and use simple con-
currency. This excludes applications with sophisticated GUIs
or that require complex real-time processing, for example
games. The proposed DSL should exhibit these characteristic
features without unnecessary implementation considerations,
factoring them out into libraries, so that it can form the basis
of analysis and implementation of more practical languages
for mobile applications. The rest of this article describes the
DSL, illustrates its use with some examples, and analyses its
features.

V. MOBILE DSL
A. Overview
Although each mobile platform has a different implementa-

tion language, the key features are the same. Our hypothesis
is that we can capture the characteristic features in a single
language that forms a basis for all other mobile application
languages. In order to do so our language must be highly
expressive and contain features that support those outlined
above. A standard starting point for such a language design
is the λ-calculus which is highly expressive, flexible, supports
analysis, and is readily extended.
Our language is an extension of a λ-calculus where charac-

teristic features described above are supported as follows:
Widgets: Our language provides a special widget-definition
feature. A widget consists of state, behaviour and event
handlers. The details of how a widget is rendered and how
it runs on the particular mobile platform is outside the scope
of our language, however the application logic for each widget
is completely defined in the language.

External Widgets: The language is parameterized with re-
spect to the basic widget library that is used in any given
application. This allows issues such as screen size, layout,
hardware features and concurrency to be separated from the
application logic. The external widgets are characterized by
their type signatures that allows the application to be statically
checked.
Containment: Our language uses a simple notion of contain-
ment via widgets, records and lists to express the structure of
a mobile application GUI. Furthermore, the semantics of our
language (described below) uses the widget containment tree
as the basis for handling events.
Events: The semantics of the language is partially defined in
terms of handling a sequence of externally generated events.
An event occurs at a particular widget, for example the user
presses a button. If the widget defines a handler for the event
then the event can be processed. If the widget does not define
a handler then the search proceeds up the widget containment
tree until a suitable handler is found. Static type checking
guarantees that an event handler will be found. An event
handler is responsible for performing any state updates and
then returning a replacement widget for the receiver of the
event.
State: Each widget has local state that can be updated by
performing commands. The extent of the local state is the life-
time of the application. State that has wider extent than the
life-time of the application is accommodated by providing the
application with predefined variables, for example a database
that is shared between applications.
Types: The language has a type system defined in terms of
a relation that associates a type to each program. Our claim
is that we can construct a static type checker for this type
system.
Since the language is an extended λ-calculus, it is very ex-

pressive (although expressivity is restricted via static typing).
The extensions defined above are novel and allow characterise
features of mobile applications to be conveniently expressed.
Another novel feature of the language is the semantics that
follows a cycle, given a program prog and state that
contains update-able memory locations:

screen := empty;
while true {
command := reduce(prog);
(widget,state) := perform(command,state);
screen := replace(screen,widget);
event := wait_for_event();
prog := handle(screen,event);

}

The program prog is reduced (evaluated) to produce a
command. A command must be performed with respect to a
current state (the database) resulting in an updated state and a
widget. The first time the loop is performed, the widget must
be a home screen, otherwise widget is a replacement for
the receiver of the most recently processed event. The mobile
platform then waits until it received an event. The event is
delivered to the widget that defined an appropriate handler for
it returning the body of the handler which is a new program.
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B. Syntax
This section defines the syntax of our language. The com-

plete language that can be used to write mobile applications
is defined in V-B1. The complete language is an expression
language that evaluates to produce a value; the language of
values is defined in section V-B2. Some values are commands
as defined in section V-B3. Together, program expressions,
values and commands form the basis of the evaluation cycle
defined in the previous section. The distinction between pro-
grams and commands is required in order to know when it is
safe to perform state-updates (since in general the λ-calculus
does not enforce an order of execution) and is defined in terms
of static types.

t ::= terms
x variables
k constants

fun(xi∈[0,n]
i ) t functions

t(ti∈[0,n]
i ) applications

if t then t else t conditionals
let x = t in t locals

[ti∈[0,n]
i ] lists

{xi = ti
i∈[0,n]} records

t.x field references
get(t) memory access
loc(t) new location
set(t,t) memory update
{ t | xi ← ti

i∈[0,n] } command sequence
widget(t,t){xi = ti

i∈[0,n]}{xi = ti
i∈[0,m]} widgets

Figure 3. Term syntax

1) General Syntax: The syntax of mobile application pro-
grams is shown in Figure 3. The features of the language
are divided into: basic λ-calculus; data extensions; commands;
widgets. The basic λ-calculus consists of variables, constants,
functions and applications. Simple extensions to the calculus
include conditionals and local variables. A mobile application
needs to represent data structures and these are expressed in
terms of lists and records. For convenience we allow defini-
tions in let, records, and widget to be written f(x,y)=t
rather than f=fun(x,y)t.
Commands are used to access and store values in memory

locations. A command can allocate a new memory location
and initialise it, can access the value of a memory location
and can set it. A command sequence is a special type of term
that is used to place an ordering on the evaluation of com-
mands (execution as defined below is otherwise unordered).
Suppose that we want to create a function that allocates a two
dimensional point and provides an operation to move it:

1fun()
2{ { x=loc1,
3y=loc2,
4mv=fun(dx,dy)
5{ void |
6xval <- get(loc1),
7yval <- get(loc2),
8void <- set(loc1,xval+dx),
9void <- set(loc2,yval+dy) } |
10loc1 <- loc(0),

11loc2 <- loc(0) }

When the function is called it returns a record with three fields:
x, y and mv. The record is allocated by a command sequence
in lines 2-11. A command sequence has the form { t | bs
} where t is a term that constructs the return value of the
command sequence and bs is a sequence of commands. Each
command is performed in turn and produces a value that is
bound to a variable, the commands on lines 10 and 11 allocate
new memory locations, initialised to 0, and then binds them to
the variables loc1 and loc2. The variables are scoped over
the value returned by the command sequence (and mutually
recursively over each other).
The record returned by the function is defined on lines 2-9.

The record has three fields. The first two fields on lines 2 and
3 just associate the field names x and y with the allocated
memory locations. The third field called mv is defined on
lines 4-9. The move function takes two arguments dx and dy
and will move the allocated point by updating the memory
locations. To do this it must access the current contents of the
locations, add in the deltas and then update the locations. This
is done using a nested command sequence in lines 5-9.
The nested command sequence returns void on line 5. The

value of void is bound by the command sequence but is
not important since the commands are performed in order to
update the locations, not for their return value. The command
sequence accesses the current memory contents (lines 6 and
7) and then updates them (lines 8 and 9). Note that these are
performed in sequence.

Figure 5. Contacts application state machine

Finally, terms may be widgets. A widget has the form:
widget(ext,id) state handlers where ext is an
external widget reference, id is an identifier for the widget,
state is a record of state variables for the widget and
handlers is a record of functions that implement event
handlers for the widget. The external widget is a reference to
a library element that determines how to display the widget on
the mobile GUI. The external widget places requirements on
the state of the widget and handlers that must be implemented.
A widget is free to define extra state and handler elements than
those defined by its external widget.
For a widget to be correctly formed, each of the handlers

must be a function that returns a command. Furthermore, when
the command is evaluated it must return a widget. This ensures
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1{ main |
2main <- { widget(Screen,0)
3{ contacts = cloc;
4contents = table }
5{ push() =
6{ done([c]+cs) |
7cs <- get(contacts),
8c <- text.getText(),
9void <- set(contacts,[c]+cs)
10}
11} | cloc = loc([])
12},
13table <- { widget(Table,1){ elements = [[text],[store]] }{} | },
14store <- { widget(Button,2){ label = ’STORE’ }{} | }
15text <- { widget(Text,3)
16{ string = sloc }
17{ getText() = get(string),
18textChanged(t) =
19{ text | void <- set(string,t) }
20} | sloc <- loc(’’) },
21done <- { fun(cs)
22widget(Screen,4)
23{ contents =
24widget(Table,5)
25{ contents = [[contacts],[ok]] }
26{},
27contacts = widget(TextList,6){ lines = cs }{},
28ok = widget(Button,7){ label = ’OK’ }{} }
29{ push() = { main | } } | }
30}

Figure 4. An example application implementing a simple contacts database

that the execution cycle for the language works correctly.
These formation rules are enforced by the type system as
described below. Finally, a program is correctly formed when
it is a command that returns a widget whose external widget
is a screen.
Figure 5 shows an example application that implements a

simple contacts database. The application has two top-level
states: main and done. The application starts in state main
and displays a text input field and a button. Each time the text
changes in the input field, a textChanged event is received.
If the button store is pushed, then the current database of
contacts (labelled contacts) is updated and the machine
makes a transition to the state labelled done. When in the
done-state, the application displays the current list of contacts
and displays a button labelled ok. When the ok button is
pushed, the application transfers back to the main screen to
allow more contacts to be entered.
The program that implements this application is shown in

Figure 4. The program consists of a single command sequence
that returns the main screen. Each top-level command defines
a widget. For example, the main widget (lines 2 - 12) is based
on the external widget called Screen and with widget id 0.
The main screen widget has two state variables called

contacts and contents. The contents variable must
be present because the external Screen widget requires the
contents to be defined as a single sub-widget (in this case
a table on line 13). The contacts variable is used to
store a list of contacts where each contact is a string. Since
contacts will be updated, it must be a memory address that

is allocated by a command which is shown in line 11.

The main screen widget defined a single handler called
push (lines 5 - 10). A handler is a function. Events occur
on external widgets and the owning widget is checked to
see if it defines a handler with the appropriate name. In this
case the main screen contains a sub-widget called store
(line 14) that can process a push event due to its external
widget being of type Button. Since the widget does not
implement any handlers, the event will be promoted to the
most immediately containing parent widget, in this case the
table. Event promotion continues until an appropriate handler
is found, in this case it will be the definition of push in the
main screen.

Similar processing occurs when the text is changed in the
text input field defined in lines 15 - 20. In this case the
Text external widget generates a textChanged event that
is handled locally by the owning widget. When an event is
handled, the associated function is called, supplying it with
any associated arguments. In the case of changing the text, the
textChanged handler receives the text in the field as shown
on the screen. The body of a handler must be a command
that returns a widget. The commands are performed and the
returned widget becomes a replacement for the widget that
handled the event. In the case of textChanged the body of
the handler updates the contents of the string location. In
the case of push in the main widget, the command sequence
retrieves the current list of contacts (line 7), gets the contents
of the text field (line 8), updates the current contacts database
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(line 9) and calls the function done (line 6). The function
done maps a list of contacts cs to a widget that displays the
contact strings in a text list and provides a button that returns
to the main screen. Like the main widget, the push event
generated by the button on the done screen is handled by
a function defined by the top-level widget. The body of the
handler returns the main screen, therefore, pushing the OK
button returns to that screen as required.

v ::= values
x variables
k constants

fun(vi∈[0,n]
i ) t functions

[vi∈[0,n]
i ] lists

{xi = vi
i∈[0,n]} records

a addresses
get(v) memory access
loc(v) new location
set(v,v) memory update
{ t | xi ← vi

i∈[0,n] } command sequence
widget(v,v){xi = vi

i∈[0,n]}{xi = vi
i∈[0,m]} widgets

ext(k) external widgets

Figure 6. Values

2) Values: Terms have been defined in the previous section.
Terms reduce to produce values. The language of values is
a sub-language of that of terms plus addresses and external
widgets that cannot be directly denoted using terms as defined
in Figure 6. An address can only be produced by performing
a new location command and then bindings the result in a
command sequence. External widgets can only be referenced
by name.

c ::= commands
get(v) memory access
loc(v) new location
set(v,v) memory update
{ t | xi ← ci

i∈[0,n] } command sequence

Figure 7. Commands

3) Commands: Commands deal with allocating, accessing
and updating memory locations. The command sub-language
is defined in Figure 7. A command can be thought of as a
function that maps state (in implementation terms, a database)
to a value and a new state. Some commands do not change the
state, but return a useful value, others do not return a useful
value but cause a change to the state, and some do both. By
modelling commands as functions from states to states and
values, we force a program to be organized in such a way as
to implement sequences of commands by threading the state
through the commands as we shall see in section V-C below.
Programming languages that are used to implement mobile

applications often provide blocks containing local variables
and commands. Suppose that we want to implement a cell that
manages a memory location that can be updated. The function
mkCell is a command sequence that allocates a memory
location cloc and returns a record with two fields: c (the

memory location); change (a function that sets the location
contents and returns the previous value). The function change
implements a command that accesses the contents v of the
location and sets the value:

mkCell(contents) = {
{ c = cloc,

change(n) = { v | v <- get(cloc),
void <- set(cloc,n) }

} | cloc <- loc(contents) }

The code above is implemented by the following Java class:

class Cell {
Object c;
change(Object n) {

Object v = c;
c = n;
return v

}
}

C. Types

α, β ::= types
X type variables
λX.α type abstractions
α[α] type instantiations
α+ β type alternatives
bool,int,str type constants

α
i∈[0,n]
i → a function types

[α] list types
{xi : αi

i∈[0,n]} record types
loc(α) location types
state→(α,state) command types
ω(α,α){xi : αi

i∈[0,n]}{xi : αi
i∈[0,m]} widget types

ξ{xi : αi
i∈[0,n]}{xi : αi

i∈[0,m]} external types

Figure 8. Types

Evaluation of programs relies on the following properties:
• A mobile program is a command that processes a state
which is a local database for the application. A program
is therefore a function from states to states.

• A mobile program must define the correct state compo-
nents for the widgets it displays. For example, a button
must have a label and a text field must be associated with
a memory address that can be updated with changes to
the text as it is typed.

• The GUI of a mobile application is a hierarchically or-
ganized tree of widgets. Not all combinations of widgets
are legal, for example a table may not contain screens.

• A GUI program must return a widget of type Screen
at the top-level.

• A mobile program must define handlers for all the events
that can occur when the user interacts with the GUI
or when the underlying mobile device changes state
(orientation, battery charge levels, GPS, etc).

• A mobile application must specify a state transition
when an event occurs. The transition must specify a
replacement for the widget that receives the event.



INTERNATIONAL JOURNAL OF DESIGN, ANALYSIS AND TOOLS FOR CIRCUITS AND SYSTEMS, VOL. 2, NO. 1, AUGUST 2011 24

Each of the properties listed above should be checked before
the program is executed. Most mainstream mobile application
languages only support checking a sub-set of these properties.
For example, event handlers are usually registered dynamically
which means that not all events may have an appropriate
handler defined at run-time.
Our language has a static type system that checks all of

the properties listed above. All values have types represented
using the type language in Figure 8.
Type variables, type abstraction, type instantiation and type
alternatives are used to implement parametric polymorphism
to allow, for example, functions over lists of several value
types. In particular we need to be able to define widgets, for
example Table, that are generic with respect to their contents.
Type constants, function, list and record types are standard.

The memory address containing a value of type α is of type
loc(α). A command must process the application’s local
database. The type of a command is state→(α,state)
where α is the type of the value returned by the command. The
type is intended to imply a function from states to states such
that command lists must be ordered by combining functions.
This construction is exactly how monads are encoded in
functional programming languages.
Widgets have a type that encodes the type of their external

widget, the type of their identifier, the type of their state
variables and the type of their handlers. An external widget
has a type that defines the requirements on the state, methods
and the events that are produced.
A type relation for the language is defined in Figure 9. The

relation has the form: Γ � t : α where Γ is a type judgement
mapping variables to types, t is a term and α is an associated
type. A command is a term with the following type:
Γ � t : state → (α, state)

and a program is a command where α is the following type:
ω(Screen, int){contents = β, . . .}{...}

for some appropriate widget type β and associated handlers.
Since the types of generated events are encoded in the ex-
ternal widget types and the types of handlers are statically
determined in a program, it is possible to statically check that
all events have an appropriate handler, i.e. that no event will
be lost.

D. Events
An important feature of many programming languages is

the ability to catch errors as early as possible. Programming
language types are used to prevent incorrect data being sup-
plied to operations. Languages with dynamic typing leave type
checking to run-time whereas static typing allows a program
to be checked before it is executed.
Our language has a type system as described in 9 that is

intended to be statically checked. Although no type checker
is presented here, the type relation is relatively standard and
therefore we claim that a static type checker for the language
is straightforward.
In addition, the language has been designed to allow events

that can be raised by widgets to be statically matched against
handlers. This feature is unusual amongst languages that

events(α+ β) = events(α) ∪ events(β)
events(bool)=∅
events(αi∈[0,n]

i → α) = ∅
events([α])=events(α)

events({xi : αi})=
⋃

i∈[0,n]

events(αi)

events(loc(α))=events(α)
events(state→(α,state))=∅
events(ω(α,_)_{xj : βj

j∈[0,n]}{xi : αi
i∈[0,n]})=

(events(α)∪
⋃

j∈[0,n]

events(βj)-{xi : αi
i∈[0,n]}

events(ξ_{xi : αi
i∈[0,n]})={xi : αi

i∈[0,n]}

Figure 10. Widget events

support event driven GUIs and this section describes how the
checking is performed.
A mobile program is a command that returns a widget of

the following type: ω(Screen, int){contents = β, . . .}{...} for
some widget type β. This type represents a tree of widgets
rooted at a screen. The sub-trees and leaves of the tree are
widgets that can raise events when the user interacts with them
or when the state of the underlying mobile platform changes.
The semantics of the language allows the handlers for events
to be defined by either the widget that raises the event or a
containing parent widget. Therefore, to check that handlers are
defined for each event that can be raised by a program, it is
necessary to construct the set of outstanding events for each
widget in the tree. This is defined in Figure 10 such that a
program p:α is well formed when events(α)=∅.

VI. EXECUTION
The execution of terms in the language occurs on a hypo-

thetical virtual machine whose states consist of terms, memory
states, and a sequence of events. The machine executes by
performing a sequence of steps that reduce the term with
respect to the memory and the input events. The execution
is performed in a particular order so that the expressive
properties of the higher-order language are preserved even
though an application performs side-effects with respect to
the state and event stream. Preservation is important in order
that the mobile applications can take advantage of higher-
order features including parameterisation over all language
features (for patterns, product lines etc) and first class func-
tions (continuations, control abstractions). Execution occurs in
the following sequential phases:
1) reduction of a term to a command.
2) performing a command with respect to a state to produce
a widget and an updated state.

3) replacing the receiver of the most recent event with the
widget.

4) handling the event by calling a function that produces a
new term.

The first time the sequence is performed, there is no receiver
therefore step 3 produces a screen. On subsequent iterations,
the term produced in step 4 is used in step 1. The rest of this
section describes each of the phases in turn.
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T-VAR
Γ[x �→ α] � x : α

T-PAR Γ � t : λX.α
Γ � t : α[X �→ β]

T-TRUE
Γ � true : bool

T-FALSE
Γ � false : bool

T-FUN
Γ[xi �→ αi]

i∈[0,n] � t : α

Γ � fun(x
i∈[0,n]
i )t : α

i∈[0,n]
i → α

T-APP

Γ � t : α
i∈[0,n]
i → α

Γ � ti : αi forall i ∈ [0, n]

Γ � t(t
i∈[0,n]
i ) : α

T-IF

Γ � t1 : bool
Γ � t2 : α
Γ � t3 : α

Γ � if t1 then t2 else t3 : α
T-LET

Γ � t1 : α
Γ � t2[x �→ α] : β

Γ � let x = t1 in t2 : β

T-REC
Γ � ti : αi forall i ∈ [0, n]

Γ � {xi = ti
i∈[0,n]} : {xi : αi

i∈[0,n]} T-REF
Γ � t : {xi : αi

i∈[0,n]}
Γ � t.xk : αk

T-LIST
Γ � t

i∈[0,n]
i : α

Γ � [t
i∈[0,n]
i ] : [α]

T-GET
Γ � t : loc(α)

Γ � get(t) : state → (α, state)

T-LOC Γ � t : α
Γ � loc(t) : state → (loc(α), state)

T-SET

Γ � t1 : loc(α)
Γ � t2 : α

Γ � set(t1, t2) : state → (α, state)

T-MON

Γ[xi �→ αi] � ti : state → (αi, state) forall i ∈ [0, n]
Γ[xi �→ αi

i∈[0,n]] � t : α

Γ � {t | xi = ti
i∈[0,n]} : state → (α, state)

T-WID

Γ � t1 : ξ{xi : αi
i∈[0,k]}r

Γ � t2 : α
Γ � ui : αi forall i ∈ [0, n]
Γ � wi : βi forall i ∈ [0,m]

Γ � widget(t1, t2){ti = ui
i∈[0,n]}{ti = wi

i∈[0,m]}
: ω(ξ{xi : αi

i∈[0,k]}r, α){ti : αi
i∈[0,k], ti : αi

i∈[k+1,n]}{ti : βi
i∈[0,m]}

T-EXT
Γ[k �→ ξ] � ext(k) : ξ

T-OPT-1 Γ � t : α
Γ � t : α+ β

T-OPT-2
Γ � t : β

Γ � t : α+ β

Figure 9. The type system for the mobile application language

A. Term Reduction
Figure 11 shows the definition of an evaluation relation

that reduces a term to a value or normal form. The relation
is a small-step semantics for the language meaning that its
reflexive, transitive closure →∗ defines an execution trace for
any given term. Notice that the relation does not impose any
unnecessary execution ordering on a composite term.

B. Performing Commands
A command is a particular type of term that acts as a

function from states to values and states. A state is a mapping
from memory addresses to values and a command may access
the contents of an address, update the contents of an address
or both. In all cases a command returns a value, but in some
cases the value is irrelevant because the command is being

used for its side effect on the state. Figure 12 defines a relation:
Σ � c ⇒ v,Σ′ where Σ is a state before the command c is
performed to produce the value v and the resulting state Σ ′.
There are three atomic commands and a command sequence.
The atomic commands are: get which accesses a memory
location but does not change the state, loc which allocates
a new memory location and returns it; set which updates a
memory location (and returns the old value which is usually
ignored).
A command sequence has the form { t | x1 <- c1,

x2 <- c2, ..., xn <- cn } where each command
from cn down to c1 is performed in turn. The results of the
commands are bound to the associated variables in parallel
which means that the bindings are mutually recursive whilst
command execution is in sequence. The result of the command
sequence is the value produced by the body t in the context
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R-APP-1 t → t′

t(ti=1...n
i ) → t′(ti=1...n

i )
R-IF-2

if true then t1 else t2 → t1

R-IF-2
if false then t1 else t2 → t2

R-LET-1
t1 → t′1

let x = t1 in t2 → let x = t′1 in t2

R-LET-2
let x = v in t → t[x �→ v]

R-APP-2
tk → t′k

t(t
i∈[0,k−1]
i , tk, t

j∈[k+1,n]
j )

→ t(t
i∈[0,k−1]
i , t′k, t

j∈[k+1,n]
j )

R-LIST
tk → t′k

[t
i∈[0,k−1]
i , tk, t

j∈[k+1,n]
j ]

→ [t
i∈[0,k−1]
i , t′k, t

j∈[k+1,n]
j ]

R-REC
tk → t′k

{xi = ti
i∈[0,k−1], xk = tk, xj = tj

j∈[k+1,n]}
→ {xi = ti

i∈[0,k−1], xk = t′k, xj = tj
j∈[k+1,n]}

R-REF-1 t → t′

t.x → t′.x
R-REF-2

{xi = ti
i∈[0,n]}.xk → tk

R-LOC t → t′

loc(t) → loc(t′)
R-GET t → t′

get(t) → get(t′)

R-SET-1
t1 → t′1

set(t1, t2) → set(t′1, t2)
R-SET-2

t2 → t′2
set(t1, t2) → set(t1, t

′
2)

R-APP-3
fun(xi=1...n

i )e(vj=1...n
j )

→ e[xi �→ vi
i=1...n]

R-IF-3
t1 → t′1

if t1 then t2 else t3
→ if t′1 then t2 else t3

R-WID-1
t1 → t′1

widget(t1, t2){xi = ti
i∈[0,n]}{xi = ti

i∈[0,m]}
→ widget(t′1, t2){xi = ti

i∈[0,n]}{xi = ti
i∈[0,m]}

R-WID-2
t2 → t′2

widget(t1, t2){xi = ti
i∈[0,n]}{xi = ti

i∈[0,m]}
→ widget(t1, t

′
2){xi = ti

i∈[0,n]}{xi = ti
i∈[0,m]}

R-WID-3
tk → t′k

widget(t1, t2){xi = ti
i∈[0,k−1], xk = tk, xi = ti

i∈[k+1,n]}{xi = ti
i∈[0,m]}

→ widget(t1, t2){xi = ti
i∈[0,k−1], xk = t′k, xi = ti

i∈[k+1,n]}{xi = ti
i∈[0,m]}

R-WID-4
tk → t′k

widget(t1, t2){xi = ti
i∈[0,n]}{xi = ti

i∈[0,k−1], xk = tk, xi = ti
i∈[k+1,m]}

→ widget(t1, t2){xi = ti
i∈[0,n]}{xi = ti

i∈[0,k−1], xk = t′k, xi = ti
i∈[k+1,m]}

R-MON
tk → t′k

{t | xi = ti
i∈[0,k−1], xk = tk, xj = tj

j∈[k+1,n]}
→ {t | xi = ti

i∈[0,k−1], xk = t′k, xj = tj
j∈[k+1,n]}

Figure 11. The evaluation rules for the mobile application language

of the variable bindings.

C. Event Handling
An event consists of a name n, a widget identifier i and some

argument values v{j∈[0,n]}
j . The event occurs with respect to

a widget w somewhere on the current screen ws. The most
deeply nested enclosing parent w’ of w (where parent is a
reflexive transitive relation) that defines a handler named n is
selected to handle the message:
i, n � ws ⇒ w′

where the event handling relation is defined in Figure 13. In
order for no event to be lost we need the following proposition
to hold:

Proposition 1. If Γ � ws : α and events(α) = ∅ then w′ �= ε.

The handler w′.n → fun(x
i∈[0,n]
i )t is supplied with the

argument values and the result of the handler must be a
command c as required by the following type constraint on
the program:

Proposition 2. If w′.n → fun(x
i∈[0,n]
i )t is a handler then
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E-WID-1
0 ≤ k ≤ n

i, xk � ω(ξ, i)s{xi = vi
i∈[0,n]} ⇒

ω(ξ, i)s{xi = vi
i∈[0,n]}

E-WID-5

i, yk � vk ⇒ ε forall i ∈ [0, n]
x �= yj forall j ∈ [0,m]

i, yk � ω(ξ, j){xi = vi
i∈[0,n]}{yj = wj

j∈[0,m]} ⇒ ε

E-WID-3

i, x � vk ⇒ v
i �= j, v �= ε, 0 ≤ k ≤ n

i, x � ω(ξ, j){xi = vi
i∈[0,n]}h ⇒ v

E-WID-4

i, yk � vk ⇒ ε forall i ∈ [0, n]
0 ≤ k ≤ m

i, yk � ω(ξ, j){xi = vi
i∈[0,n]}{yj = wj

j∈[0,m]} ⇒
ω(ξ, j){xi = vi

i∈[0,n]}{yj = wj
j∈[0,m]}

E-WID-2
x �= xi forall i ∈ [0, n]

i, x � ω(ξ, i)s{xi = vi
i∈[0,n]} ⇒ ε

E-LIST-1
i, n � vk ⇒ ε forall i ∈ [0, n]

i, n � [v
i∈[0,n]
i ] ⇒ ε

E-LIST-2
i, n � vk ⇒ v v �= ε&0 ≤ k ≤ n

i, n � [v
i∈[0,n]
i ] ⇒ v

E-REC-1
i, n � vk ⇒ ε forall i ∈ [0, n]

i, n � {xi = vi
i∈[0,n]} ⇒ ε

E-REC-2
i, n � vk ⇒ v v �= ε&0 ≤ k ≤ n

i, n � {xi = vi
i∈[0,n]} ⇒ v

E-ATOM
isAtom(v)

i, n � v ⇒ ε

Figure 13. Event handling

C-GET
Σ[α �→ v] � get(α) ⇒ v,Σ

C-LOC
Σ � loc(v) ⇒ α,Σ[α �→ v] new(α,Σ)

C-SET
Σ[α �→ v] � set(α, v′) ⇒ v,Σ[α �→ v′]

C-MON

Σi � ci[xj �→ vj ]
j∈[0,n] ⇒ vi,Σi+1 forall i ∈ [0, n]

t[xj �→ vj ]
j∈[0,n] →∗ v

Σ0 � {t | xi = ci}i∈[0,n] ⇒ v,Σn+1

Figure 12. Command processing

Γ � w′.n : α
i∈[0,n]
i → state → (β, state)

Therefore since t[xi �→ vi]
i∈[0,n] →∗ c when c is performed

with respect to the current state Σ the result is a widget v
and a new state Σ � c ⇒ v,Σ′. Finally, the screen ws is
modified by replacing w’ with v to produce a new display:
ws[v/w

′] (where the substitution operation _[_/_] is defined
on the equality of terms. Therefore we have formally specified
the loop defined in section V-A.

VII. ANALYSIS
A. Use as an Intermediate Language
The language proposed in this article is a tool that can

be used to analyse domain specific languages that support
mobile applications. It is not intended to directly support
mobile applications in its own right, in that sense it is a mobile
application calculus. The calculus is executable, and therefore
can be used as an intermediate language as shown in Figure 14
where the architecture consists of 3 tiers: (1) the application,
written and compiled using a DSL; (2) the DSL specific
engine and appropriate libraries; (3) the running platform,

Java, C#.NET, Android or iOS (iPhone). For each of the
target platforms, the engine will comprise of two major parts.
Firstly there will the platform libraries (MobLib) that contain
the specific platform API calls. This library will contain the
callable display, interface, and underlining methods of that
platform. Secondly the engine, that will run the compiled code
and make the appropriate platform calls using the the bundled
platform library set.

Figure 14. Proposed architecture

Other languages that are used for event-driven systems
include the pi-calculus and state-charts. The language pre-
sented in this article is different in that it incorporates external
widgets into the calculus in a type safe way and includes state
via a built-in monad-like mechanism in order that it is a DSL
for reactive applications.
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B. Implementation Options
Attempting to develop for mobile platforms is a challenging

task, and in most cases different approaches come with their
advantages, and their disadvantages. With the DSL and the
creation of virtual machines on targeted platforms, one partic-
ular benefit would be the avoidance of application installation
source lock-in, which is applicable to the many users of
iPhones/iPads. Through lock-in comes increased security for
end-users through the use of application validation by that
platform vendor; this can be seen as a method to allow that
vendor to decide on the types of applications it believes are
right for that user/device.
A VM and downloadable programs (in the form of DSL

program definitions), this can be overcome after the user
has the VM installed on their device. This requires the VM
needs to be downloaded onto the mobile platform; a situation
that some vendors take steps to prevent. For example, Sun
Microsystems attempted to make available a iPhone version
of the Java VM, which includes JavaME, a branch of Java
designed for mobile and embedded devices; unfortunately
this was blocked. If there was the ability to run a VM on
an iPhone/iPad, development of these applications will no
longer require a certain platform, as the tools will be operable
in multiple desktop platforms. Other advantages of a VM
would also include the decrease in application size and faster
download times.
An alternative approach to mobile applications involves the

use of web-browser technologies such as JavaScript, HTML5
and CCS. These are particularly attractive since an application
is portable across many different devices and the introduction
of new features in these technologies makes it possible to offer
many of the features of native applications. The architecture
described in Figure 14 can be used with these technologies in
order to offer abstraction through a domain specific solution.

C. Current State and Further Work
The calculus language was initially described in [27] and

has been prototyped as an interpreter in Java and used to
implement a number of simple applications including a simple
address book and a mobile platform adjacency notification ap-
plication. The next step is to develop a mobile Virtual Machine
(VM) for platforms including Android and iPhone. Because of
the policies in place regarding VM development for the iPhone
discussed earlier, the VM may not be accepted by Apple to be
on the App-Store. One method of possibly getting around the
issues with the App-store policy on VM development, could
be incorporating the XMLVM [3] and instead of following a
VM approach, use a compilation approach for iPhone/iPad, or
targeting JavaScript.
Because of the problems that can occur from dynamic event

and event handler association, we hope to implement a type
checking system. In iPhone applications, certain UI classes
in the UIKit framework can create events, with the developer
then can associate and link with a particular event handler.
At compile time, these associations are not checked, and can
cause an application to hang and crash if and when that event
handler does not exist or meet the requirements of the event.

A type checker will be needed to detect situations where event
handlers are not implemented. The type checker has been
implemented and has been shown to work correctly with a
number of example applications. A next step is to provide
the consistency and completeness of the type system and to
integrate it with software engineering tools such as XText on
Eclipse.
Other areas of future work include the ability to connect

to external services. This will take the form of a method of
connecting to RSS/XML feeds including a method for parsing
the documents. Features such as external connectivity can be
implemented as external widgets that integrate seamlessly with
the language presented here.
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