
UWL REPOSITORY

repository.uwl.ac.uk

MobDSL: a domain specific language for multiple mobile platform deployment

Kramer, Dean, Clark, Tony and Oussena, Samia (2010) MobDSL: a domain specific language for

multiple mobile platform deployment. In: 2010 IEEE International Conference on Networked

Embedded Systems for Enterprise Applications (NESEA), 8-9 December 2011, Freemantle,

Australia.

http://dx.doi.org/10.1109/NESEA.2010.5678062

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/722/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

MobDSL: A Domain Specific Language for
multiple mobile platform deployment

Dean Kramer
School of Computing and

Technology
Thames Valley University

London, UK W5 5RF
Email: dean.kramer@tvu.ac.uk

Tony Clark
School of Engineering and

Information Sciences
Middlesex University

London, UK NW4 4BT
Email: t.n.clark@mdx.ac.uk

Samia Oussena
School of Computing and

Technology
Thames Valley University

London, UK W5 5RF
Email: samia.oussena@tvu.ac.uk

Abstract—There is increasing interest in establishing a pres-
ence in the mobile application market, with platforms including
Apple iPhone, Google Android and Microsoft Windows Mobile.
Because of the differences in platform languages, frameworks,
and device hardware, development of an application for more
than one platform can be a difficult task. In this paper we
address this problem by the creation of a mobile Domain Specific
Language (DSL). Domain analysis was carried out using two case
studies, inferring basic requirements of the language. The paper
further introduces the language calculus definition and provides
discussion how it fits the domain analysis, and any issues found
in our approach.

Index Terms—Domain Specific Languages, Mobile Computing,
Platform-Independence

I. INTRODUCTION

Today, the penetration of modern smart phones is vastly
increasing with over 172 million smart phones shipped world-
wide in 2009 [1], and with the emergence and successes of
sources for consumers to install third party applications opens
a new market for developers to reach consumers. However,
developing an application for multiple mobile platforms can
incur different obstacles including differences in development
tools available, different language and platform constraints
and availability of software libraries. Difficulties in producing
software for more than a single platform has been evident for
many years outside of the mobile realm. For decades, software
portability used to be large concern during development,
mainly due to very large spectrum of different CPU Instruction
Set Architectures (ISA), which also wasn’t helped by the
large variety of Operating Systems in use. Nowadays though
this has become much less of an issue, largely due to many
factors including the decrease in CPU ISAs, the dominance
of a limited number of operating systems and commonly
used languages including Java. Largely though, because the
mobile market, with respect to third party applications is fairly
new, there are large differences in implementation languages
and development environments. Software porting and cross
platform development remains the most common method for
multi-platform development. For large software companies this
is not a problem, but for smaller mobile business this presents a
problem. Firstly, as most of the different platform use different
languages, there can be learning curve issue with the developer

needing to know each language and development environment.
Secondly, it will require the business to invest into more testing
equipment for the different platforms. By being able to write
once and deploy to many, this can help application be delivered
faster and more economically.

Within multi-platform development for mobile devices, we
explored different approaches that were seen as more viable,
and suitable solution to our problem.

A. Implementation Approaches

Frameworks: The use of frameworks can be seen as a
method of software abstraction using common code, which
can be overridden and extended by a user. Within mobile
development, frameworks have been developed to help with
specific tasks including media playback, access to sensors and
graphic and UI manipulation. Further on we discuss a software
framework[2], which can be used to help make code bind-
ings between the different platform specific frameworks. This
method concentrates on solving all computational problem,
which can increase complexity in application development,
further becoming a hindrance to the developer. An alternative
method includes mobile web applications.

Web Applications: A mobile web application essentially is
a regular Internet application designed to fit the average screen
sizes of most mobile devices, bringing various benefits to the
developer. Some applications that require high amounts of
processing can greatly benefit from allowing the processing
to be handled in the cloud while the device merely has to
process the UI. Other benefits of this method would be that
for some the use of HTML, CSS, and images may be easier
to develop, especially for particularly simple applications.

One large problem to this approach is the reliance on
network connectivity for the application, which can be in some
situations either not be available or not desired. Web applica-
tions in general can have shortcomings in the amount of rich
UI widgets, with animation for certain widget interaction being
increasingly difficult to implement in a mobile web applica-
tion. Other problems and some what linked to the previously
mentioned disadvantage from doing web based applications
is the limitations of the web-browser on the mobile devices,
possibly leading to inconsistencies in application functionality

between different platforms because of lack of APi for using
different device components (e.g. accelerometers, vibration
motors, GPS etc). One way that this can be overcome on
some mobile platforms is by creating web applications that
are run on the device, but since because of the fragmentation
in webkit implementation for application development is very
high including differences in api calls for the specific devices,
this is rather unfeasible for our goal. Because of this, the
creation of a Domain Specific Language was chosen as our
solution.

Domain Specific Languages: A Domain Specific Language
(DSL) is primarily designed to be used in a certain area/-
domain, abstracting away from the software implementation
making implementation easier. Though this abstraction is
designed to aid the developer, the language should merely
be domain complete and not be capable of solving any
computational problem making it ’Turing Complete’. DSLs
have existed for many years. Languages that were created for
particular domains include FORTRAN[3] used to allow direct
mathematical formula, Structured Query Language (SQL)[4]
for database access and manipulation, and Algol[5] for al-
gorithm specification. In recent times, the use of DSLs have
been proposed and used in different domains including the
production of rich web applications [6], mashups of web apis
and services [7], and system integration [8]. Because of the
complexities in mobile development, we believe there is room
for abstraction in the development for mobile devices.

The outline of this paper is as follows: Section 2 explores
related work, with Section 3 giving the domain analysis
introducing our two case studies. Section 4 introduces the lan-
guages with the basic Calculus, how it meets our requirements
and the architecture. Section 5 we provide some discussion
into the issues involved in our approach and finally Section 6
describing our furture work.

II. RELATED WORK

The idea of being able to deploy one application to many
platforms is far from a new one, with the work in this
section outlining a few of the approaches. When writing
cross-platform and multi-platform applications, abstraction is
needed, and this can be done via DSLs/Modelling, or alter-
nately using a software library/framework.

A. Frameworks

The DIMAG Framework[9] was developed for automatic
multiple mobile platform application generation. This was ac-
complished by creating a declarative definition language which
is comprised of 3 distinct parts; firstly a language DIMAG-
root, provides references to the definitions for workflow and
user interface in the application; secondly the language State
Chart eXtensible Markup Language (SCXML) defines the
workflow by the definition of states, state transitions, and
condition based actions; and finally DIMAG-ui language based
on MyMobileWeb’s IDEAL language using CSS to control the
user interface.

The shortcomings with this method is that it relies on
server-side code generation and download, which can preset
problems because of the inability to install application from
sources other than the manufacturers app store. The approach
described in this paper also differs in that the native-platform
executable code is not compiled directly from the DSL but
more interpreted using a virtual machine.

Other frameworks include XMLVM[10], [11] developed
at San Francisco State University, was created to support
byte-code cross-compilation and avoid source-code translation
through the use of a toolchain. This toolchain currently trans-
lates Java Class files and .Net executables to XML documents,
which then can be output to Java byte code/.NET CIL or to
Javascript and Objective-C. This toolchain was firstly used
to cross compile Java applications to AJAX applications [12],
because of the lack of IDE support and difficulty in creating an
AJAX application. Further work to include Android to iPhone
application cross-compilation[2] was completed. API mapping
between the two platform was carried by the creation of a
compatability library.

Though this method would be a feasible method of doing
apps for android and then creating native iPhone apps, it
does not address higher level programming, and with the
API mapping, further issues can occur making development
more confusing for an amateur developer. These methods
concentrate too highly on supporting all problems unlike
Domain Specific languages.

B. Domain Specific Languages and Modelling
As said earlier, DSLs can be used in abstracting the concept

to a higher level, leaving low-level boiler plate code, thus
making the software easier to write and maintain. Notable
work of [13], [14], [15], [16] have quantitative results showing
benefits of using DSLs.

Research into the abstraction of the development of mobile
applications by the use of a Model Driven Development
(MDD) has been much researched. The first study [17] is
to combat the difficulties for people when developing and
deploying applications on mobile devices. This includes the
development of a graphical modelling tool, which will then
transfer to a formal XML model, and then processed to code
for the specific platforms. This slightly differs from [18] which
mainly concentrated on the production of User Interfaces for
Visual Basic and embedded Visual Basic platforms by using
specific models to each platform, instead of a single model
for many platforms. The more recent DSLs in other areas
include [6] which concentrates on the abstraction of web
applications to lower the overall complexity of the application
and boilerplate code. Further work on this DSL lead to the cre-
ation of Platform Independent Language (PIL) [19]. PIL was
developed as an intermediate language, to provide a scalable
method for developing for multiple platforms. A drawback of
this method is currently it lacks support for mobile platform
development. Other efforts for making mobile application
development easier include Googe Simple1 , a BASIC dialect

1http://code.google.com/p/simple/

for creating Android applications, and more recently the
Google App Inventor2 which is based on Openblocks [20] and
Kawa3. Particularly Google App Inventor has vastly abstracted
app development, but only supports development of Android
applications.

III. DOMAIN ANALYSIS

Before designing and implementing any DSL, sufficient
domain analysis needs to be undertaken. In this section we
discuss different technologies commonly used in mobile ap-
plications, and then discuss the case studies we shall be using
for the language validation in later sections of this paper.

A. Case Studies

This language was conceived through the use of two iPhone
application case studies, that were created for a local SME.
These applications do have differing features, but essentially
do not consist of overly complicated logic and user interaction,
making them good candidates for being used in the domain
we targeting.

1) Tour de France (TDF2009): This application was cre-
ated to help support people in following the 2009 series of
Tour De France. Firstly the application required a method of
transferring and receiving data from an external server for two
different reasons. Firstly for the stage results, and secondly for
the general data including information about the Teams/Riders
and all the Stages involved in that year, this helped us achieve
a very small installation size. The data communications were
done via XML files parsed using the iPhone SAX-XML Parser,
one created with the static data, and one generated every
day with the current results. The static data was viewable by
entering the particular sections of the application. Inside the
stages section, fly-through videos to help illustrate the course
and terrain, large high resolution gesture controlled pictures
were incorporated.

Figure 1. TDF Screen Transitions

2http://appinventor.googlelabs.com/about/
3http://www.gnu.org/software/kawa/

2) Lyrical Genius: This application was created as a game
that consist of quiz questions relating to different lyrics in
songs. This game though still using the Apple Cocoa Frame-
work is quite different in many ways. Firstly this application
does not use XML files as persistance of data, but uses a
SQLite database for storing level and question data. Other
features of this game include music that is played in the
background that can be switched on/off and sound effects for if
the user chooses the correct or incorrect answer. These features
require threading, which is one issue we must consider in the
DSL. The game also includes a timer, for which the user must
get a number of correct answers within a time limit. This
makes use of threading again, and also another important area
as the use of timing can be needed in many different contexts.
Finally, though the use of Cocoa was made, with the use of
button images and background images the application was
made to not look like a conventional “apple style” iPhone
app.

Figure 2. LG Screen Transitions

B. Domain Features

Based on the case studies above, we can define a set of
features that the dsl must support. In the case of GUI imple-
mentation, in the iPhone and Android development OpenGL
can be used. OpenGL is a cross-platform graphics language
which supports the ability to draw 2D and 3D objects, but in
this paper we are concentrating on the platform framework for
the GUI.
Screen Size: mobiles support only a limited size display.
This size leads to a relatively small number of GUI features,
therefore there is more scope for building these features into
a common language. The standard iPhone resolution is 480
by 320 pixel and the iPad supports a 1024 by 768 resolution.
This compares to the Android screens, which vary by hardware
vendor but resolutions range to about 480 by 800 pixel.
Apple have currently settled the differences in screen display
resolution by the use of graphic scaling. This method can seem
an effective way to allow iPhone apps to run on an iPad, but
this comes with its flaws. Graphic scaling of very small low
quality images can make them look unappealing to the user.

Also UI design on the iPad, because of its size difference
will be slightly different than on the iPhone. This will require
developers to create applications with interfaces to suit that
device.
Layout Control: layout control is an important consideration.
Android controls layout through the use of XML files, sup-
porting different layout styles. The main style types consisted
of linear, relative and absolute. Android now has deprecated
absolute positioning, due to the fragmentation in different
hardware vendor screen resolutions (see above). This compares
to iPhone, which can do programmatic layout and prebuilt
XML type interfaces using Interface Builder. Interface Builder
can help the user easily create UIs, but these layouts would
be less dynamic than programmatic ones.
GUI Element Containership: both iPhone and Google An-
droid platforms use a form of GUI element containership.
In iPhone development, the emphasise is on the application
Window and it’s Views, with Subviews. These are then ’stacked’
onto each other to create anything from a simple to complex
interface. With the Android a similar model is used, except
with Views and ViewGroups. Interface control on both platform
have similarities and differences. On the iPhone, views are
normally controlled by the use of View Controllers, which are
where widget event handlers are implemented. In comparison
Android development uses Intents and Activitys. Example of
a ViewController interface for iPhone:

@interface AboutViewController : UIViewController

Event Driven Applications: largely the applications we are
targeting are event driven. In implementation, registering
methods for event handler is done dynamically, not statically.
This method means there is a lack of checking at compile
time to prevent an application crashing. An example of a event
listener for iPhone:

[btnMenu addTarget:self action:@selector(backToMenu)
forControlEvents:UIControlEventTouchUpInside];

Hardware Features: modern day mobile devices come
equipped with many different features. These features include
microphones, accelerometers, GPS, camera, and close range
sensors. These features tend to be fairly standard in their
behaviour if they are supported by the platform. The use of
these features is done using the platform specific framework.
Concurrency: the use of concurrency in mobile applications
is paramount. This is carried out by the use of threads, for
instance a UI thread starts with the execution of an iPhone or
Android app. Because this thread is used for the UI elements of
the application, heavy or concurrent tasks should be allocated
in its own thread. This can help avoid UI halts and a ’laggy’
experience for the user. On the iPhone platform, threads can
be implemented in various ways including POSIX Threads
and NSThread. The difference between the two are that the
pThreads are a C/C++ library and NSThread is a Cocoa-native
thread. On Android, concurrency can be implemented through
the use of Thread Classes, just as you would do it in Java.
Example of a thread in iPhone:

[NSThread detachNewThreadSelector:
@selector(playMusic) toTarget:self withObject:nil];

Object-Orientation: mobile development also is done using

Object-Oriented (OO) languages. In the iPhone the main
language used is Objective-C, though support for C++ and the
non-OO C can also be used. This compares to Android, which
uses Java, but with different libraries and uses the Dalvik
Virtual Machine (VM) instead of the Java VM, because its
characteristics support mobile devices more. Applications are
built by constructing new and extending existing class/object
types.
Transitional Behaviour: state machine transitional behaviour
is very common in mobile device applications, and can be
found on the Android platform. Each Activity can be viewed as
a state machine that stores state and actions by the user, which
then causes transitions between different views or activities.

The language itself is not designed to be an approach for
multi-platform deployment in all types of mobile applications,
but more designed to support a particular domain/area. The
type of applications this language is designed to support are
applications not requiring extensive user-interaction, but are
driven by data stored in a external server.

C. The Mobile Application Domain

In the first part of this section we discussed different
implementation technologies used in mobile application devel-
opment. Furthermore with the case studies described many of
the technologies were used and will be required in the DSL.
In the DSL there should be ability to produce applications
similar to the case studies, but not be capable of solving every
computational problem.

IV. MOBDSL

Largely, programming languages are made up of two basic
concepts, the syntax or the actual expressions that are compiled
or interpreted, and the semantics that bring meaning of the
language. In this section, this will be explained with the
inclusion of the underlining calculus and examples to help
express key features. Following this code snippets of the case
studies implementations will be given with explaination.

A. A Mobile Application Calculus

E ::= expressions
V variables

| let V = E in E local defs
| letrec V = E in E recursive defs
| fun(V...V).E | E(E, ...E) funs, apps
| {V = E; . . . ;V = E} | E.V records, ref
| [E, . . . , E] lists
| widget(V)EE widgets
| if E then E else E choice

Figure 3. Calculus Definition

The basic calculus for the mobile applications language is
shown in figure 3. It is based on the λ-calculus extended with
widgets for managing mobile application components. The
formal semantics of the language is out of the scope of this

paper, however the operational semantics reduces expressions
in the normal way until a widget is encountered. A widget
names an external library feature that is displayed on the
device and selects a handler based on events raised by the
device platform. The rest of this section describes the key
features.

B. Domain Features Support

This section describes how the mobile calculus supports
the key features required by mobile applications. The features
are described with respect to the following example which
impliments a slightly simplified version of the quiz application
shown in figure 2:
fun(Bs,Qs,S)
letrec
main(S)=widget(Main)
{image=Bs.main}{play()=levels(S)};
levels(S)=widget(Levels)
{level=S.level;image=Bs.levels}
{menu()=main(S);level()=level(S,S.level)};
level(S,level)=widget(Level)
{level=level;image=exp.Nth(Bs.level,level)}
{play()=play(S,level);back()=levels(S)};
play(S,level)=widget(Play)
{question=nth(nth(Qs,level),nth(S.Qis,level))}
let is=S.Qis in
let i=nth(is,level)
in {answer()=play(S.Qis:=(is[level]:=i+1,level));

timeout()=main(S)}
in main(S)

The definition contains examples of the general calculus
features: function definition and application; (recursive) local
definitions; records; lists; basic values. The quiz is defined as a
function with three arguments: Bs a record of jpeg background
images, Qs a list of question lists, each question is a string;
S a record of the current state of the player containing the
current player-level and the number of questions attempted by
the player at that level.
Displays: a display element is defined as a widget. In the quiz
example, Main, Levels, Level and Play are all widgets.
A widget consists of a name, its state and event handlers. The
name refers to an external platform specific library component
that expects to be supplied with the state and which can raise
any of the named events. For example, Main expects to be
supplied with an image (indexed in Bs) and can raise an event
play that causes a transition to the Levels widget.
Events: each widget has handlers. When an event occurs, it is
supplied to the widget on which it occurs. If it is handled there
then that widget is responsible for returning a replacement
widget. Otherwise the event is passed up the container tree.
Events can be re-raised. The handler for an event must return
a widget that is used as a replacement for the receiver on the
physical platform. For example, when Main receives a play
event it returns a Levels widget that is viewed by the user
as a transition from one screen to the next.
Hardware Features: built-in widget types. If a platform does
not support a type then this will raise a type-error at compile-
time.
Containership: not all widgets need to correspond to visible
screen elements; some are used as containers to group widgets.

However, all widgets can receive, process and raise events.
Concurrency: each widget is active in its own thread. The
following widget is a container of two media players both of
which will start independently and either of which may raise
a terminated event where the container is replaced with
an empty container (i.e. either player terminates the other):

widget(Container){contents=[
widget(Player){media=’media1’;state=’play’}{},
widget(Player){media=’media2’;state=’play’}{}]}{
terminated(mediaPlayer)=

widget(Container){contents=[]}{}}

Object-Orientation: the state of a widget is a record that
can contain both data (widget attributes) and functions (widget
methods).
Transitional Behaviour: each widget is a state machine that
handles events by making a state transition to a new widget
that defines a replacement for the receiver.

C. Proposed Architecture

To help implement this DSL for use on multiple platforms,
an architecture for making applications platform-independent
needed to be defined shown in fig 4. In the proposed ar-
chitecture, essentially there are 3 tiers: (1) the application,
written and compiled using the DSL; (2) the DSL specific
engine, and implemented libraries; (3) the running platform,
be that Java, C#.NET, Android or iOS (iPhone). For each of
the target platforms, the virtual machine will comprise of two
major parts. Firstly there will the platform libraries (MobLib)
which will contain the specific platform api calls. This library
will contain the callable display, interface, and underlining
methods of that platform. Secondly the engine, that will run
the compiled code and make the appriopriate platform calls
using the the bundled platform library set.

Figure 4. Proposed Architecture

V. DISCUSSION

Attempting to make the development on mobile platforms is
far from an easy task, and in most cases different approaches
come with their advantages, and their disadvantages. With
the DSL and the creation of virtual machines on targeted
platforms, one particular benefit would be the avoidance of
application installation source lock-in, which is applicable to
the many users of iPhones/iPads. Though with lock-in can

come increased security for end-users through the use of
application validation by that platform vendor, and can also be
seen as a method to allow that vendor to decide on the types of
applications it believes are right for that user/device. Through
the creation and use of a VM and downloadable programs (in
the form of DSL program definitions), this can be overcome
after the user has the VM installed on their device. This though
does mean that the VM needs to be downloaded from the
appstore in the first place, which is highly unlikely because of
Apple’s stance on VM development. Other examples of this
issue occurring includes the failed attempt by Sun Microsys-
tems to create and make available a iPhone version of the Java
VM, which includes JavaME, a branch of Java designed for
mobile and embedded devices. If there was the ability to run
a VM on an iPhone/iPad, development of these applications
will no longer require a certain platform, as the tools will be
operable in multiple desktop platforms.

Other advantages of a VM would also include the decrease
in application size. This is because all the libraries and
methods that are needed for any app to run are stored in the
VM, and the applications are merely application definitions,
leading to much smaller sizes and faster downloading times for
the user. This smaller size will be also seen as an advantage to
the developer through a higher abstraction, as this DSL is not
targeted as producing every single type of mobile applications,
but more a select type of applications similar to the two case
studies above.

VI. CURRENT STATE AND FURTHER WORK

The calculus language has been prototyped as an interpreter
in Java and the next step is to develop a mobile Virtual
Machine (VM) for platforms including Android and iPhone.
Because of the policies in place regarding VM development
for the iPhone discussed earlier, the VM may not be accepted
by Apple to be on the App-Store. One method of possibly
getting around the issues with the App-store policy on VM
development, could be incorporating the XMLVM [11] and
instead of following a VM approach, use a compilation ap-
proach for iPhone/iPad.

Because of the problems that can occur from dynamic event
and event handler association, we hope to implement a type
checking system. In iPhone applications, certain UI classes in
the UIKit framework can create events, which the developer
then can associate and link with a particular event handler.
At compile time, these associations are not checked, and can
cause an application to hang and crash if and when that event
handler does not exist or meet the requirements of the event.
By the use of a type checking system, this can be avoided
thus preventing the developer from making such a mistake
in the first place. Part of a type checking system has been
prototyped currently, and we hope in the future this feature
will be complete.

Other areas of future work include the ability to connect to
external services. This ability, will be intended as an abstract
method of connecting to RSS/XML feeds including a method
for parsing the documents. Because of the nature of the

language, we intend the implementation of this abstraction to
be in a widget.

REFERENCES

[1] H. J. De La Vergne, C. Milanesi, A. Zimmermann, R. Cozza, T. H.
Nguyen, A. Gupta, and C. Lu, “Competitive landscape: Mobile devices,
worldwide, 4q09 and 2009,” tech. rep., Gartner, 2010.

[2] A. Puder and I. Yoon, “Smartphone cross-compilation framework for
multiplayer online games,” Mobile, Hybrid, and On-line Learning,
International Conference on, vol. 0, pp. 87–92, 2010.

[3] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller,
R. A. Hughes, and R. Nutt, “The fortran automatic coding system,” in
IRE-AIEE-ACM ’57 (Western): Papers presented at the February 26-
28, 1957, western joint computer conference: Techniques for reliability,
(New York, NY, USA), pp. 188–198, ACM, 1957.

[4] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query
language,” in SIGFIDET ’74: Proceedings of the 1974 ACM SIGFIDET
(now SIGMOD) workshop on Data description, access and control,
(New York, NY, USA), pp. 249–264, ACM, 1974.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis,
H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van
Wijngaarden, and M. Woodger, “Report on the algorithmic language
algol 60,” Commun. ACM, vol. 3, no. 5, pp. 299–314, 1960.

[6] D. M. Groenewegen, Z. Hemel, L. C. Kats, and E. Visser, “Webdsl: a
domain-specific language for dynamic web applications,” in OOPSLA
Companion ’08: Companion to the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications,
(New York, NY, USA), pp. 779–780, ACM, 2008.

[7] E. Maximilien, H. Wilkinson, N. Desai, and S. Tai, “A domain-specific
language for web apis and services mashups,” in Service-Oriented
Computing – ICSOC 2007 (B. Krämer, K.-J. Lin, and P. Narasimhan,
eds.), vol. 4749 of Lecture Notes in Computer Science, pp. 13–26,
Springer Berlin / Heidelberg, 2010.

[8] M. Shtelma, M. Cartsburg, and N. Milanovic, “Executable domain
specific language for message-based system integration,” in Model
Driven Engineering Languages and Systems (A. Schürr and B. Selic,
eds.), vol. 5795 of Lecture Notes in Computer Science, pp. 622–626,
Springer Berlin / Heidelberg, 2009.

[9] P. Miravet, I. Marín, F. Ortín, and A. Rionda, “Dimag: a framework
for automatic generation of mobile applications for multiple platforms,”
in Mobility ’09: Proceedings of the 6th International Conference on
Mobile Technology, Application & Systems, (New York, NY, USA),
pp. 1–8, ACM, 2009.

[10] A. Puder, “A code migration framework for ajax applications,” in
Distributed Applications and Interoperable Systems, 6th IFIP WG 6.1
International Conference, DAIS 2006, Bologna, Italy, June 14-16, 2006,
Proceedings (F. Eliassen and A. Montresor, eds.), vol. 4025 of Lecture
Notes in Computer Science, pp. 138–151, Springer, 2006.

[11] A. Puder, “An xml-based cross-language framework,” in On the Move
to Meaningful Internet Systems 2005: OTM 2005 Workshops, OTM
Confederated International Workshops and Posters, AWeSOMe, CAMS,
GADA, MIOS+INTEROP, ORM, PhDS, SeBGIS, SWWS, and WOSE
2005, Agia Napa, Cyprus, October 31 - November 4, 2005, Proceed
(R. Meersman, Z. Tari, P. Herrero, G. Méndez, L. Cavedon, D. Martin,
A. Hinze, G. Buchanan, M. S. Pérez, V. Robles, J. Humble, A. Albani,
J. L. G. Dietz, H. Panetto, M. Scannapieco, T. A. Halpin, P. Spyns,
J. M. Zaha, E. Zimányi, E. Stefanakis, T. S. Dillon, L. Feng, M. Jarrar,
J. Lehmann, A. de Moor, E. Duval, and L. Aroyo, eds.), vol. 3762 of
Lecture Notes in Computer Science, pp. 20–21, Springer, 2005.

[12] A. Puder, “A cross-language framework for developing ajax applica-
tions,” in PPPJ ’07: Proceedings of the 5th international symposium on
Principles and practice of programming in Java, (New York, NY, USA),
pp. 105–112, ACM, 2007.

[13] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis,
D. P. Oliva, T. Sheard, I. Smith, and L. Walton, “A software engineering
experiment in software component generation,” in ICSE ’96: Proceed-
ings of the 18th international conference on Software engineering,
(Washington, DC, USA), pp. 542–552, IEEE Computer Society, 1996.

[14] J. Gray and G. Karsai, “An examination of dsls for concisely represent-
ing model traversals and transformations,” in HICSS ’03: Proceedings
of the 36th Annual Hawaii International Conference on System Sciences

(HICSS’03) - Track 9, (Washington, DC, USA), p. 325.1, IEEE Com-
puter Society, 2003.

[15] D. Batory, J. Thomas, and M. Sirkin, “Reengineering a complex ap-
plication using a scalable data structure compiler,” in SIGSOFT ’94:
Proceedings of the 2nd ACM SIGSOFT symposium on Foundations of
software engineering, (New York, NY, USA), pp. 111–120, ACM, 1994.

[16] J. R.M. Herndon and V. Berzins, “The realizable benefits of a language
prototyping language,” IEEE Transactions on Software Engineering,
vol. 14, pp. 803–809, 1988.

[17] F. T. Balagtas-Fernandez and H. Hussmann, “Model-driven development
of mobile applications,” in ASE ’08: Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing, (Washington, DC, USA), pp. 509–512, IEEE Computer Society,
2008.

[18] J. Stocq and J. Vanderdonckt, “A domain model-driven approach for
producing user interfaces to multi-platform information systems,” in
AVI ’04: Proceedings of the working conference on Advanced visual
interfaces, (New York, NY, USA), pp. 395–398, ACM, 2004.

[19] Z. Hemel and E. Visser, “Pil: A platform independent language for retar-
getable dsls,” in Software Language Engineering, Second International
Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009, Revised
Selected Papers (M. van den Brand, D. Gasevic, and J. Gray, eds.),
vol. 5969 of Lecture Notes in Computer Science, pp. 224–243, Springer,
2009.

[20] R. V. Roque, “Openblocks: an extendable framework for graphical
block programming systems,” Master’s thesis, Massachusetts Institute
of Technology. Dept. of Electrical Engineering and Computer Science.,
Massachusetts, USA, 2007.

