
UWL REPOSITORY

repository.uwl.ac.uk

Automatic generation of data merging program codes

Kim, Hyeonsook, Oussena, Samia, Zhang, Ying ORCID: https://orcid.org/0000-0002-6669-1671 and

Clark, Tony (2010) Automatic generation of data merging program codes. In: Fifth International

Conference on Software and Data Technologies, 22-24 July 2010, Athens, Greece.

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/724/

Alternative formats: If you require this document in an alternative format, please contact:

open.research@uwl.ac.uk

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are

retained by the authors and/or other copyright owners and it is a condition of accessing

publications that users recognise and abide by the legal requirements associated with these

rights.

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk

AUTOMATIC GENERATION OF DATA MERGING PROGRAM

CODES

Hyeonsook Kim, Samia Oussena, Ying Zhang,
Model Driven Research Centre, Thames Valley University, Saint Mary’s Road, London, United Kingdom

{hyeonsook.kim, samia.oussena, ying.zhang} @tvu.ac.uk

Tony Clark
Department of Computing, Middlesex University, London, United Kingdom

tony.clark@xy.mu.edu

Keywords: Data Merging Meta-model, Data Integration, Model Driven Engineering, Model Driven Data Integration,

Automatic Model Transformation, Automatic Program Code Generation.

Abstract: Data merging is an essential part of ETL (Extract-Transform-Load) processes to build a data warehouse

system. To avoid rewheeling merging techniques, we propose a Data Merging Meta-model (DMM) and its

transformation into executable program codes in the manner of model driven engineering. DMM allows

defining relationships of different model entities and their merging types in conceptual level. Our

formalized transformation described using ATL (ATLAS Transformation Language) enables automatic

generation of PL/SQL packages to execute data merging in commercial ETL tools. With this approach data

warehouse engineers can be relieved from the burden of repetitive complex script coding and the pain of

maintaining consistency of design and implementation.

1 INTRODUCTION

A Data Warehouse (DW) is a collection of

integrated subject-oriented databases chosen to

support the decision making process (Kimball et al,

2002). Building a DW involves processes that

combine data with various formats and present a

unified view of the data, extracting data from

different sources and cleansing inappropriate data.

DW has become a very popular choice for many

enterprise systems, such as business intelligence and

more enterprise systems data needed to be added to

the data warehouse. To support the growing

demands of DW development, ETL (Extract-

Transform-Load) processes have supported a

systematic framework for the extraction of the data

from heterogeneous data sources, and its

transformation; cleansing, converting, and loading

them into the data warehouse. According to (March

et al, 2007), ETL processes are not only important

for design and maintenance of DW but also key

contributers to the success of DW projects. Various

approaches have been proposed in order to improve

the ETL engineering.

Applying Model Driven Engineering (MDE) to

ETL processes is one of the promising approaches.

The approach reduces the complexity of ETL design

by decoupling data and meta-data, and improving

communication between domain experts and

developers through the use of graphical model

design. It also increases productivity due to the

reduced amount of handcrafted coding and of code

rework at the maintenance phase. This is achieved

by first defining an abstracted model, then

transforming it into program codes. Thus ETL

working codes can be derived and maintained from

well defined ETL models, described in abstracted

level and gradually mapped into concrete level.

 A number of these MDE approaches have been

proposed either as a UML extension or as their own

graphical notation for conceptual ETL data mapping

design (Mora1 et al, 2004), (March et al, 2007). A

meta-model for process has also been proposed to

apply MDE to the workflow and scheduling in DW

(Bohm et al, 2008). Muñoz et al have proposed not

just a design model, but a whole conceptual data

integration framework (Muñoz et al, 2009).

However most of these works address the whole

ETL process and do not consider the problems

which need to be addressed in each DW building

phase. Furthermore, they have rarely demonstrated

how to integrate industrial standards in their

approaches. A more detailed review of previous

works is dicusssed in section 6.

In this paper, we mainly focus on a model driven

data merging approach to address problems in the

data merging domain. Based on a real case study of

a DW development project we propose a data

merging system to generate executable merging

codes from conceptual design. A Data Merging

Meta-model (DMM) was proposed for design of

merging models at conceptual level. Common

Warehouse Meta-model (CWM), an industrial

standard for data warehouse modeling, was also

used for design of merging models at physical level

(CWM, 2008). The proposed system provides

transformation of DMM into CWM. By using the

standard, it allows not to be bound to a particular

tool but instead the use of any DW development

environment. Through this system data warehouse

engineers can develop a unified data schema by

creating abstractions that help them program in

terms of their design intent rather than the

underlying computing environment. The executable

data merging codes can be obtained from CWM

merging models as ETL tool vendors provide code

generation from CWM.

The rest of this paper is structured as follows:

Section 2 presents model driven data warehousing,

providing both the general approach and ours. The

proposed data integration framework and merging

meta-mode are also described. Section 3 shows our

implementation works, illustrating the system

architecture, target meta-model, CWM and,

transformation rules. A case study to which we

applied the proposed model driven approach is

introduced in Section 4. Finally related works are

given in section 5 and conclusions in section 6.

2 MODEL DRIVEN DATA

INTEGRATION

The whole data warehousing processes can be

divided into four phases; (1) analyzing and

understanding data in the different data sources, (2)

preparing and collecting data into staging area,

usually one physical platform, (3) combining data

through data cleansing, merging, and transformation,

which covers most ETL processes, (4) finally

customizing data into different presentation

according to application purposes (Rahm et al,

2000). Through each data process, data sources are

gradually reformatted and moved into target

schemas. The processes can be easily executed and

maintained by controlling data from models within a

model driven approach.

In this section, we introduce general model

driven approach with two representative methods

and discuss our own approach which is implemented

utilising the general approach.

2.1 General Model Driven Approach

Model Driven Engineering (MDE) is a software

engineering methodology that uses models as

primary artefacts to drive the entire development

process through model transformations. Over the

years model based development has gained rapidly

increasing popularity across various engineering

disciplines. The representative two approaches are

presented in this section.

2.1.1 Model Driven Architecture

Model Driven Architecture (MDA) is the first

initiative of MDE which uses UML as modeling

language, OCL (Object Constraint Language) and,

QVT (Query/View/Transformation) as model

transformation language (OCL, 2008), (Kleppe et al,

2003). It is launched by the Object Management

Group (OMG) in 2001 and mainly focuses on

forward engineering, such as producing codes from

abstract and human-elaborated modeling diagrams,

separating design from architecture. The design

addresses the functional requirements whilst the

architecture provides the infrastructure addressing

non-functional requirements like scalability,

reliability and performance. Decoupling design and

architecture allows system developers to choose the

best and most fitting models in both domains.

 MDA uses the Platform Independent Model

(PIM) which represents a conceptual design to

realize the functional requirements. PIM is translated

into one or more Platform Specific Models (PSMs)

that a computer can run. Accordingly model

transformations which support conversion between

PIM and PSM are particularly important for the

realization of MDA.

Most software development IDEs support MDA

by providing UML modeling and code generation

from the UML models, but there are many critics

that believe UML is too generic to describe domain

specific problems. Another direction is to develop

domain specific languages designed to solve

common model transformation tasks. Indeed, this

approach has been widely taken recently by the

research community and software industry. As a

result a number of model transformation languages

have been proposed (Marcos et al, 2006),

(Greenfield, 2004).

2.1.2 Eclipse Modeling Framework

Eclipse is one of the most popular IDEs, providing

convenient pluggable architecture. It also provides a

meta-meta-model called ecore and its own modeling

framework for MDE (Dave et al, 2008). This

framework generates the model development

environment automatically. Developers can design

their own models and transform them into target

models once a specific domain model is designed as

a meta-model based on ecore.

In addition to this, there are several open source

plug-ins that facilitate model driven development

based on Eclipse modeling framework with various

functionalities. For example, ATLAS Model Weaver

(AMW) extends eclipse modeling framework for

model to model conversion Macros, 2006). It

enables a developer to combine different models

together and generate a new model by establishing

relationships between models using their weaving

meta-model. For model transformation, it also

provides a transformation language, called ATL,

correspondent to QVT (Query/View/Transformation

) of OMG (Allilaire et al, 2006).

2.2 Our Approach

We applied MDA to the whole data integration

processes by designing PIM models in each DW

development phase. PIM models then transformed

into PSM models and real codes. Since existing ETL

tools do not provide PIM modeling for data merging,

we proposed a data merging PIM meta-model which

allows conceptual design and model transformation

into existing ETL standard. The ATLAS

transformation language and toolkit have been used

for the implementation of the transformation.

2.2.1 Data Integration Framework

It is well known that conceptual models (PIM)

provide not only guidance on how to integrate actual

data but also an automated generation of real code,

ready for execution according to MDA viewpoints.

In this context, transformations between PIMs and

PSMs, and between PSMs and real codes are

necessary for each modeling phase of DW. For data

integration, it is also required to define and use

different models for each data integration phase:

data source model, extraction model, merging model

and customized model.

In general, modeling starts from the highest

abstraction layer and descends to the concrete codes

layer. However, most Data Source PIMs and PSMs

can be derived from real data sources through

reverse transformation as existing data sources have

their own schema or structure by which PSM is

drafted. Extraction PIMs are usually designed on the

basis of Data Source PIMs analysis and transformed

into PSMs and program codes in turn later. Merging

PIMs are commonly designed after building the data

cleansing strategy and then transformed into PSMs

and merging execution codes. Based on unified a

data model, Customized PIMs are also built in order

to present data in a different way. Figure 1 outlines

the models and their relationships in different

abstraction levels such as different data warehousing

phases.

Figure 1: Models and Transformations between the

models.

Most of the data modeling tools support reverse

engineering that automatically transforms physical

data schema into its physical ERD model or its

logical UML model as like they do forward

engineering for automated transformation of PIM

into PSM and into real code. Most of the DW

vendors also supply ETL modeling and model

interchange mechanism between different ETL

platforms and BI systems by implementing the

Common Warehouse Meta-model (CWM)

specification. However, many researchers have

reported that CWM is not sufficient for conceptual

modeling since it tightly bounds to a physical layer

(Vassiliadis et al, 2002). Furthermore, data

processing can not be designed effectively in UML

as it is unable to express data mapping, requiring

defining relationships between attributes. This

problem is solved through using a data merging met-

model for conceptual design (PIM) and transforming

it into CWM (PSM). In our previous work, we had

proposed the conceptual data merging meta-model

and rules to support manual transformation of

merging PIM into PL/SQL scripts (Kim et al, 2009).

In this work, we discuss how we have implemented

these transformation rules proposing a data merging

system. The transformation rules have been

extended to support automatic conversion of the

proposed meta-model into the commercial standard

meta-model, CWM.

2.2.2 Data Merging

In this paper, we concentrate on model driven data

merging. Data merging in data warehousing includes

combining and moving data into target schema as

well as creation of new data schema in order to

provide a unified view. Data schemas and data

combing rules can model entities that describe

attributes of each data entity and relationships of the

entities. In particular, a data merging model must

show how to move data from existing source data

entities into new target data entities. Since a data

entity is a set of data attributes, not only

relationships between data entities but also

relationships between data attributes should be

addressed for data merging.

Data merging modeling starts from investigating

overlapped data from each data source. Once

corresponding pairs of duplicated data are identified,

a number of design issues lead to concerns including

whether to preserve the duplicated data or how to

keep data consistency between indirect references as

well as direct ones. However, once a decision of

how to merge the data is made, the actual merging

can be simple repetitive routines in abstraction. The

abstractions can be represented as three patterns;

Join, Union, and Association. Join keeps all data

from one leading data source and copies data,

excluding duplicated parts with the leading one from

the other data sources. Union combines all data from

each data sources without discarding any data.

Association only updates relationship constraints

between data sources and target. They are described

as DMType model elements in the proposed

conceptual data merging model.

2.2.3 Proposed Data Merging Meta-model

We propose a Data Merging Meta-model (DMM) to

support data merging design in the early stage of

DW development. It describes merging models at

conceptual level based on UML and rule description.

A model includes model elements from different

data sources and their relationships. These

relationships of meta-data realize data mappings that

describe how to move each source data to the target

one. Figure 2 describes our DMM.

Figure 2: Data Merging Meta-model.

The root element of the model, DMModel, is

composed of several elements; DMType,

DMElement, and DMLink. Description of each

element is following in Table 1.

Table 1: DMM elements.

DM

Type

A base model of DMJoin, DMUnion and

DMAssociation, which determines the

merging method. A data mapping rule script

attached on the DMType specified details of

data mapping and their order.

DM

Join

A type of merging which finds a joint data set

of all linked source elements and moves the

data into a target element.

DM

Union

Moves all data from each source elements to

a target element according to their order.

DM

Associate

Replaces association of source elements to

the target.

DM

Element

Represents model elements including both

source and target.

DM

Link

Shows relationship and directions of data

mapping.

DM

Source

Inherits DMLink to identify source elements.

DM

Target

Inherits DMLink to identify a target element.

Using this model data merging in DW can be

designed abstractly; an example of a simple data

merging between two meta-data is presented in

Figure 3. Here two school model elements from a

student record management system and a course

marketing system are shown respectively. They

contain exactly the same data structure but are

differentiated by the reference to the faculty object

named CM_Faculty. It means that not only data

itself, but also other things such as the object

reference and data constraints have to be considered

when the two elements are merged. We merged

them using DMJoin defining UE_School as a

leading data source and describing detailed attribute

mapping as a rule shown below. This rule can be

expressed with graphic notation such as an arrow in

more advanced graphic editor.

Figure 3: An Example of Data Merging PIM.

The ruleCreateElment_MG_School describes

how to map the attributes of source elements;

UE_School and CM_School, to the target element;

MG_School. The rule has a set of {sources, targets}

and the targets have a set of {target element name, a

set of attributes mapping}. Attribute mapping is

expressed with an arrow directing from a source

attribute to a target attribute. In this example,

DMJoin moves only overlapped data sets of

CM_School. If the merging type is DMUnion, it

would move the first source element into a target

element on the ‘insert’ basis and the others on the

‘update and insert’ basis. All data from UE_School

inserted into MG_School then CM_School data

updated School_ID attribute of existing data set only

if the same Name attribute data is found in existing

data. As <CM_Faculty> is an object reference, not

only data value but also an object constraint must to

be changed. The reference object is changed from

CM_Faculty to MG_Faculty in this example.

3. IMPLEMENTATION

In our approach, data merging process is launched

by designing a conceptual merging model in DMM.

This model is then automatically converted into a

CWM model by executing the implemented

transformation engine. Then the executable merging

program is finally created through importing the

generated CWM model into an ETL tool. In this

section, we discussed the implementation detail

including system architecture, CWM specification

and, transformation rules.

3.1 System Architecture

We implemented a data merging system, including
the transformation engine based on ATL toolkit and
the engine exports generated from the CWM models
as file format. All processes and architecture are
illustrated in Figure 4.

Figure 4: Data Merging System Architecture.

The DMM Editor takes the DMM model as an

input and generates the CWM model. This requires

both the DMM meta-model and the CWM meta-

model, interpreted and deployed as ecore format.

Based on these ecore models transformation rules

have been implemented. The rule component of the

Transformation Engine container consists of rules

for mapping of DMM into CWM, the Help Context

component comprising of the functions and utilities

needed for type checking, condition management

etc. Details of transformation rules are presented in

Section 3.3.2.

DMM Editor exports the CWM model according

to interchangeable CWM model specification which

DW vendors can import. The imported model

contains both skeletons and logics inside to execute

data merging but is not bound with actual schemas

of data sources. Therefore the additional work to

bind it with physical data schemas and allow

synchronization between them is necessary. After

this, the merging codes are generated, deployed and

executed into the target platform.

3.2 Common Warehouse Meta-model

CWM is a specification describing objects and

relationships in the context of data warehousing.

Since data warehouses pull in data from many

different digital sources, CWM includes a

comprehensive set of data models for data structures

such as relational databases, flat files, and XML.

OMG announces that MOF bridges the gap

between dissimilar meta-models by providing a

common basis for meta-models. Consequently, the

models described by DMM can be interchanged with

the models conform to CWM since both are MOF-

conformant.

CWM was designed in line with the aim of

providing interchange of all warehouse meta-data

that describes all warehouse data element. This

includes data sources, transformations, data targets,

and all warehouse processing elements including

scheduling, status reporting and history recording.

Thus the meta-model specification of CWM cover

all warehousing areas: from the foundation of data

types and type mapping, to the management of the

warehouse process and operation. For the entire

meta-model, we have only referenced the parts

related to data merging. For example, Figure 5

shows relational meta-model of CWM to describe

data sources and data targets. It presents the

attributes of tables, columns and data types, and the

relationships between them (CWM, 2008).

Figure 5: Part of Common Warehouse Meta-model.

3.3 Model Transformation

MDE can be completed through constant model

transformations from abstract level to concrete one.

As mentioned in Section 2.1, there are several MDE

initiatives that suggest their own meta-model and

transformation language. (Frédéric et al, 2006)

summarizes the main characteristics of

representative transformation languages; QVT and

ATL, comparing their technology and functionality

in architectural view, to helping software developers

compare and select the most suitable languages and

tools for a particular problem. The reasons we

decided to implement ATLAS architecture are:

abundant data, steady maintenance, and support of

transformation development toolkit, although QVT

is considered as an industrial standard in MDA. This

section presents ATL and the transformation of

DMM into CWM using ATL.

3.3.1 ATLAS Transformation Language

ATL provides both the language for description

of model transformations and the toolkit for

execution of the model transformations. The

architecture for ATL toolkit is shown in Figure 6. It

was developed on the top of Eclipse platform,

aiming to offer ways to produce a set of target

models from a set of source models. Source meta-

model and target meta-model should first be defined

subsequently target instance model is generated

from input source model using ATL. The

transformation rule between source model and target

should be written in ATL language.

Figure 6: ATLAS Toolkit Architecture.

ATL language is used to create an ATL module

that describes and executes transformation in the

toolkit. Besides its header, an ATL module is

composed of a set of ATL rules. Each rule defines

the way of transforming an input element into a

target element. A rule is composed of an InPattern

and OutPattern. The InPattern declares a typed

variable that corresponds to the rule input element.

During the execution of the ATL transformation this

variable corresponds to the source element currently

being matched. The OutPattern declares a typed

variable which corresponds to the rule output

element. The OutPattern also specifies a set of

Binding elements. A Binding describes how a given

feature (an attribute or a reference) of the target

element is initialized. This initialization must be

specified as an OCL expression (Allilaire et al,

2006).

3.3.2 DMM2CWM Transformation

Converting DMM into CWM means that

DMElements are mapped to a relational data

element. For example, source DMElement references

existing data table, whilst a target DMElement

creates new data schema. The full description of

transformation rule is listed in Table 2.

Table 2: Transformation Rule.

DM

Model
Transformation Rule

DMEle

ment

-If DMElement is connected with

DMSource link, generate a reference to an

existing table.

- If DMElement is connected with

DMTarget link: create new table schema

including primary key and foreign key

constraints.

-If an attribute of DMElement is not a

primitive type, change table constraints on

foreign key to reference a proper element.

DMUni

on

-Create data mappings as much as the

number of DMSource links.

-According to the mapping order in rule

script, each data mapping from a source to a

target is transformed into each attribute

connection between source and target

elements in turn.

- If attributes of source and target are not of

the same type, insert data type change

function before mapping data.

DMJoin

-Create a data mapping using joiner entity

to merge source elements

-From rule script, joining conditions and

mapping sequence are determined.

DMAsso

ciation

-Change target table schema.

-Update target table schema to reference a

source table with foreign key constraint.

DMLSo

urce/D

MTarget

- No correspondent transformation. Just

indicate whether a linked DMElement is a

source element or a target one.

To automate this model transformation, we

implemented a transformation module using ATL.

At first we created both input and output ecore

models from DMM and CWM in UML. These ecore

models are recognized as meta-models of input and

output respectively, for the transformation. Then the

transformation rules in Table 2 were implemented in

ATL language as partly shown in Figure 7.

DMElement is converted into Table element,

DMType to Transforamtion element, and An

Assocation to Link element, for example. Once an

input merging model is designed, the correspondent

output model is generated automatically by

executing this transformation in the ATL runtime

toolkit.

Figure 7: DMM to CWM Transformation.

4 A CASESTUDY

We have applied the model driven data integration

approach to a data warehouse development project

in Thames Valley University. Different data sources

from current university systems (such as the library

system, student administration, or e-learning) have

been integrated into the data warehouse system to

provide a unified data view for a personalised

student academic intervention system, based on data

mining. In the project we have collected 3 years

institutional historical data to build a DW and to

predict individual student performance and dropout

rate. As well as the suitability of the course or

module for student intervention. The details of the

case study were introduced in (Kim et al, 2009).

Based on the case study, we designed our DMM

meta-model, and applied the model and its model

transformation to the case study experimentally. In

this section, we demonstrate our data merging

approach throughout the example of merging two

school data entities in Figure 3. The model in Figure

3 was entered into DMMtoCWM transformation

engine and then the output CWM model was

generated by the engine. The converted CWM is

shown in Figure 8. According to the

ruleCreateElment_MG_Faculty, UE_School element

and CM_School are mapped to MG_School.

DMJoin is mapped into Joiner operation as well. The

platform we used is Oracle Warehouse Builder.

Figure 8: An Example of Data Merging PSM.

Once PSM is imported into ETL tool, each

model has to be bound with actual data table

manually. Through this process the actual data type

is determined and additional conditions and logics

can be added. Then executable codes are derived

from the PSM. The following script in Figure 9

shows a part of PL/SQL packages which is

generated from Oracle Warehouse Builder.

Figure 9: An Example Merging Code

5 RELATED WORKS

Several researches have been proposed to overcome

the challenges in designing of data integration in the

context of MDE. In this section, we present a brief

discussion about some relevant approaches.

In (March et al, 2007), MD2A (Multi

Dimensional Model Driven Architecture) is

suggested as an approach for applying the MDA

framework to one of the stages of the DW

development: multidimensional (MD) modeling.

The authors defined MD PIM, MD PSM and

necessary transformations. Although the suggested

framework and models covers formalized MDDI,

the designed models do not properly address data

merging.

For conceptual modeling of data mapping,

(Vassiliadis et al, 2002) suggests an ETL mapping

model with their own graphic notation. on the other

hand, (Mora1, Vassiliadis, and Trujillo, 2004)

extends UML to model inter-attribute mapping at the

attribute level. A conceptual model can be identified

with a PIM in the context of MDA since it describes

the necessary aspects of the application

independently of the platform on which it will be

implemented and executed (Kleppe et al, 2003).

Although both of works presents the mapping

between data source and target in different levels of

granularity, they do not cover linking to PSM which

is usually transformed from PIM.

 (Muñoz et al, 2009) proposes the model-driven

generation and optimization of integration tasks

using a process-based approach. The approach

models data integration process in high abstraction

level in order to raise portability and lower

maintenance effort. Although it provides modeling

whole integration process rapidly, it does not

consider details of each integration process

modeling such as data mapping.

Furthermore, several automated data merging

approaches are also researched in order to reduce

human intervention for data merging through

extraction of combined meta-data from source data

or source meta-data in (Konigs, 2005) and (Embley

et al, 2004). Particularly, (Fabro et al, 2008) and

(Marcos et al, 2006) describes semi-automated

model transformation using matching

transformations and weaving models which can be

applied on generation of merging model as well.

6 CONCLUSIONS

In this paper, we have presented a data merging

system that aims to provide consistency between

design, implementation, and automatic codes

generation through creating abstract models in the

early stage of a project. Physical models and

executable codes from the abstracts will be

generated. Through model transformation into

CWM, the proposed conceptual modeling does not

become isolated from the commercial systems,

instead it shows a possibility to be extended and

integrated with the existing industrial standards. The

proposed meta-model and merging system was

evaluated through a case study in Thames Valley

University. A graphic modeling tool is being

developed, with the aim to improve user interface

through the conversion of rule scripts into graphic

notations.

…. INSERT
 /*+ APPEND PARALLEL("MG_SCHOOL") */
 INTO
 "MG_SCHOOL"
 ("SCHOOL_ID", "NAME", "FACULTY_ID")
 (SELECT
 "UE_SCHOOL"."SCHOOL_ID" "SCHOOL_ID",
 "UE_SCHOOL"."NAME" "NAME",
 "CM_SCHOOL"."FACULTY_ID" "FACULTY_ID"
FROM
 "UE_SCHOOL" "UE_SCHOOL",
 "CM_SCHOOL" "CM_SCHOOL"
WHERE
 ("UE_SCHOOL"."NAME" =
 "CM_SCHOOL"."SCHOOL_NAME")……

With this approach, data warehouse engineers

can easily focus on data merging design being

separated from concerns of physical environments,

then integrate the design into ETL tool considering

physical infrastructure at this stage. Executable

program codes then can be derived from ETL tool

finally. In this way, ETL design can be supported

and well maintained systematically in model driven

framework promising the success of DW

development project.

ACKNOWLEDGEMENTS

This research has been conducted with fund of JISC

(Joint Information Systems Committee).

REFERENCES

Allilaire, F., Bzivin, J., Jouault, F., and Kurtev, I., 2006.

ATL: Eclipse Support for Model Transformation. In

Proceeding of the Eclipse Technology eXchange

Workshop (eTX) at ECOOP.

Bezivin, J., 2005. Model-based Technology Integration

with the Technical Space Concept, In Metainformatics

symposium 2005.

Bohm, M., Habich, D., Lehner, W., and Wloka, U., 2008.

Model driven development of complex and data

intensive integration processes, MBSDI 2008, CCIS

8, pp.31-42

CWM, 2008. Common Warehouse Metamodel, Object

Management Group. http://www.omg.org/technology/

documents/modeling_spec_catalog.htm

Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed

Merks, 2008. Eclipse Modeling Framework.

Addison-Wesley Professional

Embley, D.W., Xu, L., and Ding, Y., 2004. Automatic

Direct and Indirect Schema Mapping: Experiences

and Lessons Learned, SIGMOD Record, Vol. 33, No.

4

Fabro, D.D.M. and Valduriez, P., 2008. Towards the

efficient development of model transformations using

model weaving and matching transformations,

Conference of Software and Systems Modeling.

Frédéric Jouault and Ivan Kurtev, 2006. On the

Architectural Alignment of ATL and QVT

Greenfield, J., 2004. Software factories: Assembling

applications with patterns, models, frameworks and

tools. In GPCE, page 488.

Kim, H., Zhang, Y., Oussena, S., and Clark, T., 2009. A

Case Study on Model Driven Data Integration for

Data Centric Software Development, In Proceedings

of ACM First International Workshop on Data-

intensive Software Management and Mining.

Kimball, R. and Ross, M., 2002. The Data Warehouse

Toolkit, John Wiley & Sons. 2nd edition.

Kleppe, A., Warmer, J. and Bast,W., 2003. MDA

Explained. The Model Driven Architecture: Practice

and Promise. Addison-Wesley, Reading.

Konigs, A. 2005. Model Transformation with Triple

Graph Grammars. Model Transformations in

Practice Satellite Workshop of MODELS 2005.

Montego Bay, Jamaica.

Marcos, D.D.F., Jean B. and Patrick V., 2006. Weaving

Models with the Eclipse AMW plugin, Eclipse

Modeling Symposium.

MOF, 2008. Meta Object Facility, Object Management

Group. http://www.omg.org/mof.

Mora1, L.S., Vassiliadis, P., and Trujillo, J., 2004. Data

Mapping Diagrams for Data Warehouse Design with

UML, volume 3288 of Lecture Notes in Computer

Science, pp 191-204.

Muñoz, L., Mazón, J., and Trujillo, J., 2009. Automatic

generation of ETL processes from conceptual models.

In Proceeding of the ACM Twelfth international

Workshop on Data Warehousing and OLAP.

OCL, 2008. Object Constraint Language. Object

Management Group. http://www.omg.org/technology/

documents/formal/ocl.htm.

Rahm, E., and Do, H. H., 2000. Data Cleaning: Problems

and Current Approaches, Journal of IEEE Data

Engineering Bulletin, volume 23.

March, S. and Hevner, A., 2007. Integrated decision

support systems: A data warehousing perspective.

Decision Support Systems, 43(3):1031-1043.

Vassiliadis, P., Simitsis, A,. and Skiadopoulos, S., 2002.

Conceptual Modeling for ETL Process, ACM Fifth

International Workshop on Data Warehousing and

OLAP 2002.

