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Abstract: Data merging is an essential part of ETL (Extract-Transform-Load) processes to build a data warehouse 

system. To avoid rewheeling merging techniques, we propose a Data Merging Meta-model (DMM) and its 

transformation into executable program codes in the manner of model driven engineering. DMM allows 

defining relationships of different model entities and their merging types in conceptual level. Our 

formalized transformation described using ATL (ATLAS Transformation Language) enables automatic 

generation of PL/SQL packages to execute data merging in commercial ETL tools. With this approach data 

warehouse engineers can be relieved from the burden of repetitive complex script coding and the pain of 

maintaining consistency of design and implementation. 

1 INTRODUCTION 

A Data Warehouse (DW) is a collection of 

integrated subject-oriented databases chosen to 

support the decision making process (Kimball et al, 

2002). Building a DW involves processes that 

combine data with various formats and present a 

unified view of the data, extracting data from 

different sources and cleansing inappropriate data. 

DW has become a very popular choice for many 

enterprise systems, such as business intelligence and 

more enterprise systems data needed to be added to 

the data warehouse. To support the growing 

demands of DW development, ETL (Extract-

Transform-Load) processes have supported a 

systematic framework for the extraction of the data 

from heterogeneous data sources, and its 

transformation; cleansing, converting, and loading 

them into the data warehouse. According to (March 

et al, 2007), ETL processes are not only important 

for design and maintenance of DW but also key 

contributers to the success of DW projects. Various 

approaches have been proposed in order to improve 

the ETL engineering.  

Applying Model Driven Engineering (MDE) to 

ETL processes is one of the promising approaches. 

The approach reduces the complexity of ETL design 

by decoupling data and meta-data, and improving 

communication between domain experts and 

developers through the use of graphical model 

design. It also increases productivity due to the 

reduced amount of handcrafted coding and of code 

rework at the maintenance phase. This is achieved 

by first defining an abstracted model, then 

transforming it into program codes. Thus ETL 

working codes can be derived and maintained from 

well defined ETL models, described in abstracted 

level and gradually mapped into concrete level.  

 A number of these MDE approaches have been 

proposed either as a UML extension or as their own 

graphical notation for conceptual ETL data mapping 

design (Mora1 et al, 2004), (March et al, 2007). A 

meta-model for process has also been proposed to 

apply MDE to the workflow and scheduling in DW 

(Bohm et al, 2008). Muñoz et al have proposed not 



 

just a design model, but a whole conceptual data 

integration framework (Muñoz et al, 2009). 

However most of these works address the whole 

ETL process and do not consider the problems 

which need to be addressed in each DW building 

phase. Furthermore, they have rarely demonstrated 

how to integrate industrial standards in their 

approaches. A more detailed review of previous  

works is dicusssed  in section 6.  

In this paper, we mainly focus on a model driven 

data merging approach to address problems in the 

data merging domain. Based on a real case study of 

a DW development project we propose a data 

merging system to generate executable merging 

codes from conceptual design. A Data Merging 

Meta-model (DMM) was proposed for design of 

merging models at conceptual level. Common 

Warehouse Meta-model (CWM), an industrial 

standard for data warehouse modeling, was also 

used for design of merging models at physical level 

(CWM, 2008). The proposed system provides 

transformation of DMM into CWM. By using the 

standard, it allows not to be bound to a particular 

tool but instead the use of any DW development 

environment. Through this system data warehouse 

engineers can develop a unified data schema by 

creating abstractions that help them program in 

terms of their design intent rather than the 

underlying computing environment. The executable 

data merging codes can be obtained from CWM 

merging models as ETL tool vendors provide code 

generation from CWM.  

The rest of this paper is structured as follows: 

Section 2 presents model driven data warehousing, 

providing both the general approach and ours. The 

proposed data integration framework and merging 

meta-mode are also described. Section 3 shows our 

implementation works, illustrating the system 

architecture, target meta-model, CWM and, 

transformation rules. A case study to which we 

applied the proposed model driven approach is 

introduced in Section 4. Finally related works are 

given in section 5 and conclusions in section 6. 

2 MODEL DRIVEN DATA 

INTEGRATION 

The whole data warehousing processes can be 

divided into four phases; (1) analyzing and 

understanding data in the different data sources, (2) 

preparing and collecting data into staging area, 

usually one physical platform, (3) combining data 

through data cleansing, merging, and transformation, 

which covers most ETL processes, (4) finally 

customizing data into different presentation 

according to application purposes (Rahm et al, 

2000). Through each data process, data sources are 

gradually reformatted and moved into target 

schemas. The processes can be easily executed and 

maintained by controlling data from models within a 

model driven approach. 

In this section, we introduce general model 

driven approach with two representative methods 

and discuss our own approach which is implemented 

utilising the general approach. 

2.1 General Model Driven Approach 

Model Driven Engineering (MDE) is a software 

engineering methodology that uses models as 

primary artefacts to drive the entire development 

process through model transformations. Over the 

years model based development has gained rapidly 

increasing popularity across various engineering 

disciplines. The representative two approaches are 

presented in this section. 

2.1.1 Model Driven Architecture 

Model Driven Architecture (MDA) is the first 

initiative of MDE which uses UML as modeling 

language, OCL (Object Constraint Language) and, 

QVT (Query/View/Transformation) as model 

transformation language (OCL, 2008), (Kleppe et al, 

2003). It is launched by the Object Management 

Group (OMG) in 2001 and mainly focuses on 

forward engineering, such as producing codes from 

abstract and human-elaborated modeling diagrams, 

separating design from architecture. The design 

addresses the functional requirements whilst the 

architecture provides the infrastructure addressing 

non-functional requirements like scalability, 

reliability and performance. Decoupling design and 

architecture allows system developers to choose the 

best and most fitting models in both domains. 

 MDA uses the Platform Independent Model 

(PIM) which represents a conceptual design to 

realize the functional requirements. PIM is translated 

into one or more Platform Specific Models (PSMs) 

that a computer can run. Accordingly model 

transformations which support conversion between 

PIM and PSM are particularly important for the 

realization of MDA.  

Most software development IDEs support MDA 

by providing UML modeling and code generation 

from the UML models, but there are many critics 

that believe UML is too generic to describe domain 

specific problems. Another direction is to develop 



 

domain specific languages designed to solve 

common model transformation tasks. Indeed, this 

approach has been widely taken recently by the 

research community and software industry. As a 

result a number of model transformation languages 

have been proposed (Marcos et al, 2006), 

(Greenfield, 2004). 

2.1.2 Eclipse Modeling Framework 

Eclipse is one of the most popular IDEs, providing 

convenient pluggable architecture. It also provides a 

meta-meta-model called ecore and its own modeling 

framework for MDE (Dave et al, 2008). This 

framework generates the model development 

environment automatically. Developers can design 

their own models and transform them into target 

models once a specific domain model is designed as 

a meta-model based on ecore.  

In addition to this, there are several open source 

plug-ins that facilitate model driven development 

based on Eclipse modeling framework with various 

functionalities. For example, ATLAS Model Weaver 

(AMW) extends eclipse modeling framework for 

model to model conversion Macros, 2006). It 

enables a developer to combine different models 

together and generate a new model by establishing 

relationships between models using their weaving 

meta-model. For model transformation, it also 

provides a transformation language, called ATL, 

correspondent to QVT (Query/View/Transformation 

) of OMG (Allilaire et al, 2006). 

2.2 Our Approach  

We applied MDA to the whole data integration 

processes by designing PIM models in each DW 

development phase. PIM models then transformed 

into PSM models and real codes. Since existing ETL 

tools do not provide PIM modeling for data merging, 

we proposed a data merging PIM meta-model which 

allows conceptual design and model transformation 

into existing ETL standard. The ATLAS 

transformation language and toolkit have been used 

for the implementation of the transformation.  

2.2.1 Data Integration Framework 

It is well known that conceptual models (PIM) 

provide not only guidance on how to integrate actual 

data but also an automated generation of real code, 

ready for execution according to MDA viewpoints. 

In this context, transformations between PIMs and 

PSMs, and between PSMs and real codes are 

necessary for each modeling phase of DW. For data 

integration, it is also required to define and use 

different models for each data integration phase: 

data source model, extraction model, merging model 

and customized model. 

In general, modeling starts from the highest 

abstraction layer and descends to the concrete codes 

layer. However, most Data Source PIMs and PSMs 

can be derived from real data sources through 

reverse transformation as existing data sources have 

their own schema or structure by which PSM is 

drafted. Extraction PIMs are usually designed on the 

basis of Data Source PIMs analysis and transformed 

into PSMs and program codes in turn later. Merging 

PIMs are commonly designed after building the data 

cleansing strategy and then transformed into PSMs 

and merging execution codes. Based on unified a 

data model, Customized PIMs are also built in order 

to present data in a different way. Figure 1 outlines 

the models and their relationships in different 

abstraction levels such as different data warehousing 

phases.  

 

 

Figure 1: Models and Transformations between the 

models. 

Most of the data modeling tools support reverse 

engineering that automatically transforms physical 

data schema into its physical ERD model or its 

logical UML model as like they do forward 

engineering for automated transformation of PIM 

into PSM and into real code. Most of the DW 

vendors also supply ETL modeling and model 

interchange mechanism between different ETL 

platforms and BI systems by implementing the 

Common Warehouse Meta-model (CWM) 

specification. However, many researchers have 

reported that CWM is not sufficient for conceptual 

modeling since it tightly bounds to a physical layer 

(Vassiliadis et al, 2002). Furthermore, data 

processing can not be designed effectively in UML 

as it is unable to express data mapping, requiring 

defining relationships between attributes. This 

problem is solved through using a data merging met-

model for conceptual design (PIM) and transforming 

it into CWM (PSM). In our previous work, we had 

proposed the conceptual data merging meta-model 



 

and rules to support manual transformation of 

merging PIM into PL/SQL scripts (Kim et al, 2009). 

In this work, we discuss how we have implemented 

these transformation rules proposing a data merging 

system. The transformation rules have been 

extended to support automatic conversion of the 

proposed meta-model into the commercial standard 

meta-model, CWM.  

2.2.2 Data Merging 

In this paper, we concentrate on model driven data 

merging. Data merging in data warehousing includes 

combining and moving data into target schema as 

well as creation of new data schema in order to 

provide a unified view. Data schemas and data 

combing rules can model entities that describe 

attributes of each data entity and relationships of the 

entities. In particular, a data merging model must 

show how to move data from existing source data 

entities into new target data entities. Since a data 

entity is a set of data attributes, not only 

relationships between data entities but also 

relationships between data attributes should be 

addressed for data merging.  

Data merging modeling starts from investigating 

overlapped data from each data source. Once 

corresponding pairs of duplicated data are identified, 

a number of design issues lead to concerns including 

whether to preserve the duplicated data or how to 

keep data consistency between indirect references as 

well as direct ones. However, once a decision of 

how to merge the data is made, the actual merging 

can be simple repetitive routines in abstraction. The 

abstractions can be represented as three patterns; 

Join, Union, and Association. Join keeps all data 

from one leading data source and copies data, 

excluding duplicated parts with the leading one from 

the other data sources. Union combines all data from 

each data sources without discarding any data. 

Association only updates relationship constraints 

between data sources and target. They are described 

as DMType model elements in the proposed 

conceptual data merging model.    

2.2.3 Proposed Data Merging Meta-model 

We propose a Data Merging Meta-model (DMM) to 

support data merging design in the early stage of 

DW development. It describes merging models at 

conceptual level based on UML and rule description. 

A model includes model elements from different 

data sources and their relationships. These 

relationships of meta-data realize data mappings that 

describe how to move each source data to the target 

one. Figure 2 describes our DMM. 

 

Figure 2: Data Merging Meta-model. 

The root element of the model, DMModel, is 

composed of several elements; DMType, 

DMElement, and DMLink. Description of each 

element is following in Table 1. 

Table 1: DMM elements. 

DM 

Type 

A base model of DMJoin, DMUnion and 

DMAssociation, which determines the 

merging method. A data mapping rule script 

attached on the DMType specified details of 

data mapping and their order. 

DM 

Join 

A type of merging which finds a joint data set 

of all linked source elements and moves the 

data into a target element. 

DM 

Union 

Moves all data from each source elements to 

a target element according to their order. 

DM 

Associate 

Replaces association of source elements to 

the target. 

DM 

Element 

Represents model elements including both 

source and target. 

DM 

Link 

Shows relationship and directions of data 

mapping. 

DM 

Source 

Inherits DMLink to identify source elements. 

DM 

Target 

Inherits DMLink to identify a target element. 

 

Using this model data merging in DW can be 

designed abstractly; an example of a simple data 

merging between two meta-data is presented in 

Figure 3. Here two school model elements from a 

student record management system and a course 

marketing system are shown respectively. They 

contain exactly the same data structure but are 

differentiated by the reference to the faculty object 

named CM_Faculty. It means that not only data 

itself, but also other things such as the object 

reference and data constraints have to be considered 

when the two elements are merged. We merged 

them using DMJoin defining UE_School as a 

leading data source and describing detailed attribute 



 

mapping as a rule shown below. This rule can be 

expressed with graphic notation such as an arrow in 

more advanced graphic editor. 

 

Figure 3: An Example of Data Merging PIM. 

The ruleCreateElment_MG_School describes 

how to map the attributes of source elements; 

UE_School and CM_School, to the target element; 

MG_School. The rule has a set of {sources, targets} 

and the targets have a set of {target element name, a 

set of attributes mapping}. Attribute mapping is 

expressed with an arrow directing from a source 

attribute to a target attribute. In this example, 

DMJoin moves only overlapped data sets of 

CM_School. If the merging type is DMUnion, it 

would move the first source element into a target 

element on the ‘insert’ basis and the others on the 

‘update and insert’ basis. All data from UE_School 

inserted into MG_School then CM_School data 

updated School_ID attribute of existing data set only 

if the same Name attribute data is found in existing 

data. As <CM_Faculty> is an object reference, not 

only data value but also an object constraint must to 

be changed. The reference object is changed from 

CM_Faculty to MG_Faculty in this example.   

3. IMPLEMENTATION  

In our approach, data merging process is launched 

by designing a conceptual merging model in DMM. 

This model is then automatically converted into a 

CWM model by executing the implemented 

transformation engine. Then the executable merging 

program is finally created through importing the 

generated CWM model into an ETL tool. In this 

section, we discussed the implementation detail 

including system architecture, CWM specification 

and, transformation rules. 

3.1 System Architecture 

We implemented a data merging system, including 
the transformation engine based on ATL toolkit and 
the engine exports generated from the CWM models 
as file format. All processes and architecture are 
illustrated in Figure 4.  

 

Figure 4: Data Merging System Architecture. 

The DMM Editor takes the DMM model as an 

input and generates the CWM model. This requires 

both the DMM meta-model and the CWM meta-

model, interpreted and deployed as ecore format. 

Based on these ecore models transformation rules 

have been implemented. The rule component of the 

Transformation Engine container consists of rules 

for mapping of DMM into CWM, the Help Context 

component comprising of the functions and utilities 

needed for type checking, condition management 

etc. Details of transformation rules are presented in 

Section 3.3.2.  

DMM Editor exports the CWM model according 

to interchangeable CWM model specification which 

DW vendors can import.  The imported model 

contains both skeletons and logics inside to execute 

data merging but is not bound with actual schemas 

of data sources. Therefore the additional work to 

bind it with physical data schemas and allow 

synchronization between them is necessary. After 

this, the merging codes are generated, deployed and 

executed into the target platform.  

3.2 Common Warehouse Meta-model 



 

CWM is a specification describing objects and 

relationships in the context of data warehousing. 

Since data warehouses pull in data from many 

different digital sources, CWM includes a 

comprehensive set of data models for data structures 

such as relational databases, flat files, and XML. 

OMG announces that MOF bridges the gap 

between dissimilar meta-models by providing a 

common basis for meta-models. Consequently, the 

models described by DMM can be interchanged with 

the models conform to CWM since both are MOF-

conformant. 

CWM was designed in line with the aim of 

providing interchange of all warehouse meta-data 

that describes all warehouse data element. This 

includes data sources, transformations, data targets, 

and all warehouse processing elements including 

scheduling, status reporting and history recording. 

Thus the meta-model specification of CWM cover 

all warehousing areas: from the foundation of data 

types and type mapping, to the management of the 

warehouse process and operation. For the entire  

meta-model, we have only referenced the parts 

related to data merging. For example, Figure 5 

shows relational meta-model of CWM to describe 

data sources and data targets. It presents the 

attributes of tables, columns and data types, and the 

relationships between them (CWM, 2008). 

 

 

Figure 5: Part of Common Warehouse Meta-model. 

3.3 Model Transformation 

MDE can be completed through constant model 

transformations from abstract level to concrete one. 

As mentioned in Section 2.1, there are several MDE 

initiatives that suggest their own meta-model and 

transformation language. (Frédéric et al, 2006) 

summarizes the main characteristics of 

representative transformation languages; QVT and 

ATL, comparing their technology and functionality 

in architectural view, to helping software developers 

compare and select the most suitable languages and 

tools for a particular problem. The reasons we 

decided to implement ATLAS architecture are: 

abundant data, steady maintenance, and support of 

transformation development toolkit, although QVT 

is considered as an industrial standard in MDA. This 

section presents ATL and the transformation of 

DMM into CWM using ATL. 

3.3.1 ATLAS Transformation Language 

ATL provides both the language for description 

of model transformations and the toolkit for 

execution of the model transformations. The 

architecture for ATL toolkit is shown in Figure 6. It 

was developed on the top of Eclipse platform, 

aiming to offer ways to produce a set of target 

models from a set of source models. Source meta-

model and target meta-model should first be defined 

subsequently target instance model is generated 

from input source model using ATL. The 

transformation rule between source model and target 

should be written in ATL language.  

 

 

Figure 6: ATLAS Toolkit Architecture. 

ATL language is used to create an ATL module 

that describes and executes transformation in the 

toolkit. Besides its header, an ATL module is 

composed of a set of ATL rules. Each rule defines 

the way of transforming an input element into a 

target element. A rule is composed of an InPattern 

and OutPattern. The InPattern declares a typed 

variable that corresponds to the rule input element. 

During the execution of the ATL transformation this 

variable corresponds to the source element currently 

being matched. The OutPattern declares a typed 

variable which corresponds to the rule output 

element. The OutPattern also specifies a set of 

Binding elements. A Binding describes how a given 

feature (an attribute or a reference) of the target 

element is initialized. This initialization must be 



 

specified as an OCL expression (Allilaire et al,  

2006). 

3.3.2 DMM2CWM Transformation 

Converting DMM into CWM means that 

DMElements are mapped to a relational data 

element. For example, source DMElement references 

existing data table, whilst a target DMElement 

creates new data schema. The full description of 

transformation rule is listed in Table 2. 

Table 2: Transformation Rule. 

DM 

Model 
Transformation Rule 

DMEle

ment 

-If DMElement is connected with 

DMSource link, generate a reference to an 

existing table.  

- If DMElement is connected with 

DMTarget link: create new table schema 

including primary key and foreign key 

constraints. 

-If an attribute of DMElement is not a 

primitive type, change table constraints on 

foreign key to reference a proper element. 

DMUni

on 

-Create data mappings as much as the 

number of DMSource links.  

-According to the mapping order in rule 

script, each data mapping from a source to a 

target is transformed into each attribute 

connection between source and target 

elements in turn. 

- If attributes of source and target are not of 

the same type, insert data type change 

function before mapping data.    

DMJoin 

-Create a data mapping using joiner entity 

to merge source elements 

-From rule script, joining conditions and 

mapping sequence are determined.  

DMAsso

ciation 

-Change target table schema. 

-Update target table schema to reference a 

source table with foreign key constraint. 

DMLSo

urce/D

MTarget 

- No correspondent transformation. Just 

indicate whether a linked DMElement is a 

source element or a target one. 

 

To automate this model transformation, we 

implemented a transformation module using ATL. 

At first we created both input and output ecore 

models from DMM and CWM in UML. These ecore 

models are recognized as meta-models of input and 

output respectively, for the transformation. Then the 

transformation rules in Table 2 were implemented in 

ATL language as partly shown in Figure 7. 

DMElement is converted into Table element, 

DMType to Transforamtion element, and An 

Assocation to Link element, for example. Once an 

input merging model is designed, the correspondent 

output model is generated automatically by 

executing this transformation in the ATL runtime 

toolkit.   

 

 

Figure 7: DMM to CWM Transformation. 

4 A CASESTUDY 

We have applied the model driven data integration 

approach to a data warehouse development project 

in Thames Valley University. Different data sources 

from current university systems (such as the library 

system, student administration, or e-learning) have 

been integrated into the data warehouse system to 

provide a unified data view for a personalised 

student academic intervention system, based on data 

mining. In the project we have collected 3 years 

institutional historical data to build a DW and to 

predict individual student performance and dropout 

rate. As well as the suitability of the course or 

module for student intervention. The details of the 

case study were introduced in (Kim et al, 2009). 

Based on the case study, we designed our DMM 

meta-model, and applied the model and its model 

transformation to the case study experimentally. In 

this section, we demonstrate our data merging 

approach throughout the example of merging two 

school data entities in Figure 3. The model in Figure 

3 was entered into DMMtoCWM transformation 

engine and then the output CWM model was 

generated by the engine. The converted CWM is 

shown in Figure 8. According to the 

ruleCreateElment_MG_Faculty, UE_School element 

and CM_School are mapped to MG_School. 



 

DMJoin is mapped into Joiner operation as well. The 

platform we used is Oracle Warehouse Builder.  

Figure 8: An Example of Data Merging PSM. 

Once PSM is imported into ETL tool, each 

model has to be bound with actual data table 

manually. Through this process the actual data type 

is determined and additional conditions and logics 

can be added.  Then executable codes are derived 

from the PSM. The following script in Figure 9 

shows a part of PL/SQL packages which is 

generated from Oracle Warehouse Builder. 

 

 

Figure 9: An Example Merging Code 

5 RELATED WORKS 

Several researches have been proposed to overcome 

the challenges in designing of data integration in the 

context of MDE. In this section, we present a brief 

discussion about some relevant approaches.  

In (March et al, 2007), MD2A (Multi 

Dimensional Model Driven Architecture) is 

suggested as an approach for applying the MDA 

framework to one of the stages of the DW 

development: multidimensional (MD) modeling. 

The authors defined MD PIM, MD PSM and 

necessary transformations. Although the suggested 

framework and models covers formalized MDDI, 

the designed models do not properly address data 

merging. 

For conceptual modeling of data mapping, 

(Vassiliadis et al, 2002) suggests an ETL mapping 

model with their own graphic notation. on the other 

hand, (Mora1, Vassiliadis, and Trujillo, 2004) 

extends UML to model inter-attribute mapping at the 

attribute level. A conceptual model can be identified 

with a PIM in the context of MDA since it describes 

the necessary aspects of the application 

independently of the platform on which it will be 

implemented and executed (Kleppe et al, 2003). 

Although both of works presents the mapping 

between data source and target in different levels of 

granularity, they do not cover linking to PSM which 

is usually transformed from PIM. 

 (Muñoz et al, 2009) proposes the model-driven 

generation and optimization of integration tasks 

using a process-based approach. The approach 

models data integration process in high abstraction 

level in order to raise portability and lower 

maintenance effort. Although it provides modeling 

whole integration process rapidly, it does not 

consider details of each integration process 

modeling such as data mapping. 

Furthermore, several automated data merging 

approaches are also researched in order to reduce 

human intervention for data merging through 

extraction of combined meta-data from source data 

or source meta-data in (Konigs, 2005) and (Embley 

et al, 2004). Particularly, (Fabro et al, 2008) and 

(Marcos et al, 2006) describes semi-automated 

model transformation using matching 

transformations and weaving models which can be 

applied on generation of merging model as well. 

6 CONCLUSIONS 

In this paper, we have presented a data merging 

system that aims to provide consistency between 

design, implementation, and automatic codes 

generation through creating abstract models in the 

early stage of a project. Physical models and 

executable codes from the abstracts will be 

generated. Through model transformation into 

CWM, the proposed conceptual modeling does not 

become isolated from the commercial systems, 

instead it shows a possibility to be extended and 

integrated with the existing industrial standards. The 

proposed meta-model and merging system was 

evaluated through a case study in Thames Valley 

University. A graphic modeling tool is being 

developed, with the aim to improve user interface 

through the conversion of rule scripts into graphic 

notations.   

….  INSERT 
    /*+ APPEND PARALLEL("MG_SCHOOL") */ 
 INTO 
    "MG_SCHOOL" 
      ("SCHOOL_ID",   "NAME",   "FACULTY_ID") 
      (SELECT 
    "UE_SCHOOL"."SCHOOL_ID" "SCHOOL_ID", 
    "UE_SCHOOL"."NAME" "NAME", 
    "CM_SCHOOL"."FACULTY_ID" "FACULTY_ID" 
FROM 
    "UE_SCHOOL"  "UE_SCHOOL",  
    "CM_SCHOOL"  "CM_SCHOOL" 
WHERE  
    ( "UE_SCHOOL"."NAME" =     
      "CM_SCHOOL"."SCHOOL_NAME" )…… 



 

With this approach, data warehouse engineers 

can easily focus on data merging design being 

separated from concerns of physical environments, 

then integrate the design into ETL tool considering 

physical infrastructure at this stage. Executable 

program codes then can be derived from ETL tool 

finally. In this way, ETL design can be supported 

and well maintained systematically in model driven 

framework promising the success of DW 

development project. 
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