
UWL REPOSITORY

repository.uwl.ac.uk

Node criticality assessment in a blockchain network

Shyam Bazari, Aditya, Aggarwal, Akash, Asif, Waqar ORCID: https://orcid.org/0000-0001-6774-

3050, Lestas, Marios and Rajarajan, Muttukrishnan (2019) Node criticality assessment in a 

blockchain network. In: SenSys '19: The 17th ACM Conference on Embedded Networked Sensor 

Systems, 10 Nov 2019, New York, USA. 

http://dx.doi.org/10.1145/3362744.3363343

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/7508/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Node Criticality Assessment in a Blockchain Network
Aditya Shyam Bazari
Department of Computer

Engineering, Delhi Technological
University

New Delhi, India
adityabazari_bt2k16@dtu.ac.in

Akash Aggarwal
Department of Mathematical Sciences,
Indian Institute of Technology (BHU)

Varanasi, India
akash.aggarwal.mat15@itbhu.ac.in

Waqar Asif
School of Engineering and
Mathematical Sciences, City,

University of London
London, UK

waqar.asif@city.ac.uk

Marios Lestas
Department of Electrical Engineering,

Frederick University
Cyprus

eng.lm@frederick.ac.cy

Muttukrishnan Rajarajan
School of Engineering and
Mathematical Sciences, City,

University of London
London, UK

r.muttukrishnan@city.ac.uk

ABSTRACT
Blockchain systems are being rapidly integrated in various tech-
nologies, with limited work on the effect of the underlying net-
work topology on the blockchain performance. In this work, we
investigate the significance of each network node on the overall
blockchain performance. This is assessed by selecting critical nodes
according to different criticality metrics, and investigating, using
simulations, the degradation in performance incurred upon remov-
ing these nodes. The most critical nodes are the ones that incur the
greatest degradation in performance. The considered performance
metrics are the blockchain size and the packet drop rate. Criticality
metrics such as Betweennes Centrality, Closeness Centrality and
Degree Centrality are compared. It is found that the Sign Change
Spectral Partitioning approach, enhanced with Blockchain Specific
traffic flow information, is able to identify critical nodes better in
the sense that higher degradation in performance is reported upon
their removal.
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1 INTRODUCTION
With the invent of a decentralized digital currency, bitcoin, technol-
ogy and network communications today stand at a crossroads[22].
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A possible substitute for the traditional communication methodolo-
gies is the technology which underpins the bitcoin, blockchain[10].
With the potential to get as big as the Web, blockchain has emerged
as one of the key technologies that can be used to form a distributed
solution. This has thusmotivated researchers to opt for a blockchain
based architecture in fields such as the Internet of Things (IoTs)
[8][12], smart grid infrastructure [18][23] and the health-care sys-
tems [19][28].

Blockchain is a cryptographically verified, distributed ledger that
maintains a set of transaction records for the users in a network.
These transactions reflect the exchange of information among users
and are relayed across the network with the help of data flooding.
A transaction, once generated, is flooded across the network which,
upon reaching a few highly capable nodes, is verified for authen-
ticity. These highly capable nodes are referred to as miners in the
network. Miners maintain the data exchange protocol by flooding
the verified transaction blocks onto the network so that every other
node can update their ledger. Each network has multiple miners and
the one that completes the verification process at the earliest, trig-
gers the ledger update procedure. All this mechanism that defines
the blockchain architecture, is built on the underlying assumption
that the network is completely connected. This means that each
transaction is received by each miner in the same time slot and
each data flood initiated by a miner reaches all possible nodes in the
network. In reality, blockchain can have topological limitations. For
instance, a botnet attack[17] or a DDoS attack[21], on a network
has the potential to render the targeted node useless for network
communication. Moreover, if this attack succeeds in targeting the
most critical nodes in the network, thus partitioning or breaking a
chunk of it, then any transaction generated on one side to the other
might be verified by the miner due to legitimate user credentials,
but would not be able to reach the other part, hence making the
solution unviable.

In the past, a lot of research has been done for the identification
of these critical nodes that have a higher influence on the network
compared to the others. These nodes gain their importance due to
the topological structure of the network. A few of the well known
approaches are Betweenness Centrality [25] which evaluates the
criticality of a node based on the number of shortest path routes
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a node participates in, Closeness Centrality [24] which takes into
account how close a node is to all other nodes in the network and
Degree Centrality [15] which uses node degree to highlight the
criticality of a node. All these approaches are known to work well in
their considered scenarios, but in a blockchain based setup, where
the accessibility of a node is of the highest priority, they tend to
misjudge the criticality of a node. In this work, we use a sign change
based spectral partitioning approach, enhanced with Blockchain
specific traffic flow information, to highlight the criticality of a
node. The proposed approach deems a node as critical if it lies in a
cutset and experiences the highest traffic flow. A cutset is defined
as a set of nodes, that observe a change in sign for the Fiedler vector
among their neighbours [2]. The proposed approach is evaluated for
change in blockchain size and packet drop ratios and it is observed
that the proposed approach outperforms existing approaches by
showing a greater reduction in blockchain size and a larger packet
drop rate upon removal of the most critical nodes from the network.

The remainder of the paper is organized as follows: Section II
explains the background, Section III presents the proposed approach
and Section IV reports the results. Conclusions are presented in
Section V.

2 BACKGROUND
Blockchain has gained immense attention in the recent times with
key focus towards intrinsic operational traits of blockchain such
as information propagation[6][7], key management[5][16], ledger
architectures[1][14][3], blockchain contracts[27][13] and consen-
sus protocols[4][20]. A blockchain network has numerous features
that constitute it’s overall functioning. Some of the most cardinal
of them are briefly explained below:

Transaction. A transaction is a message generated by a sender for
a particular receiver in the network. It contains the public key of the
sender, public key of the receiver, transmitted data and a signature.
This signature is generated by the sender with the sender’s private
key for improved security.

Block. A blockchain is a chain of data, arranged in blocks. A block
has a header which contains several components such as timestamp,
hash of the previous block, root hash of merkel tree and nonce value.
The body of a block contains all the transactions. These transactions
are verified by a miner and then appended onto the chain. Each
block is identified with a hashcode, generated using the content
inside a block. This includes the actual transactions between nodes,
the time stamp, the nonce and the hash of the previous block, thus
making it impervious to random double spending attacks as a slight
change in even a single parameter would render the block invalid.

Merkel Tree. A merkel tree is a hash based data structure, where
each leaf node contains the hash of a transactional block and each
non-leaf node contains the hash of its children nodes. A merkel
tree summarises all the verified transactions by repeatedly hashing
the data and producing a final digital fingerprint.

Timestamp. Every block of transaction has an associated times-
tamp [26]. This enhances the security of the network and ensures
that a newly created block is in line with all existing blocks, where

a new block cannot have a timestamp of a time earlier than the
ones already added.

Mining. In order to add a transaction into a blockchain, a few
nodes that have the required computational capabilities perform a
cryptographic operation, referred to as the Proof of Work, onto the
incoming transactions. This helps in validating the authenticity of
a transaction. A miner receives a small reward for this work.

Proof of Work (PoW). Proof of Work is an approach in which
miners are up against each other to add a block and receive the
compensation reward. The goal of a PoW approach is to solve the
mathematical hash, which gets more complex as the blockchain
increases in size[11].

In a blockchain based setup, a sender generates a transaction,
signs it with its private key for identification purposes and broad-
casts it across the network. Each miner waits for a predefined time
to get all the transactions that were generated in that time slot
and upon receiving them, combines them to form a block. Each
block is verified with its own hash function which also constitutes
of the hash of the previous block. A block is then mined by the
miner and upon completion, signed using the miner’s private key.
A signed block is then broadcasted into the network where each
node receiving this block adds it to its existing chain.

There are mainly two situations in which a transaction can get
rejected by the blockchain model, despite of it being genuine :

• When a transaction is triggered, it is assigned a timestamp.
During the validation of that transaction, the process checks
if the timestamp aligns with the requirement criteria of the
network, as explained above[26]. If the received timestamp
is not greater than the median of previous 11 timestamps,
the transaction is rejected as the transaction is too old to be
validated in the current time.

• The public key of all the nodes of the network are floated in
the blockchain network initially. When a node is removed
from a network possibly due to malicious attacks, it’s public
key still remains. During the validation process, the network
checks if either the sender or the receiver is null, that is, any
of the two is a dead node. If so, the transaction is refused
and not validated.

3 PROPOSED APPROACH
In a blockchain environment, the underlying network topology
plays a vital part in defining node characteristics. In an ideal sce-
nario, a successful miner would be the one that is capable of receiv-
ing all possible transactions in a particular time window with the
smallest delay factor. This means that if two miners are on the same
network, the one receiving all transactions at the earliest would
have an edge over the other. The second miner might not receive
all transactions due to network losses or might receive one after the
defined time window expires. A time window is referred to as a slot
of time in which a miner expects to receive all transactions. Once
received, they are mined to form a block. These network losses
could be caused due to a compromised/faulty node in the network
whereas, the delay in packet reception could be caused due to a
bottleneck in the network. In order to eliminate these issues, it is
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vital to identify these critical nodes in time, which can have drastic
affects on the performance of a blockchain network.

Considering the architecture of a blockchain setup, this work
exploits the spectral partitioning approach proposed in our pre-
vious work [2] and compliments it with new features pertinent
to a blockchain setup. It helps in identifying critical nodes in the
network with the help of a sign change approach. The proposed
approach works by calculating the Fiedler vectors for all nodes in
the network and then forming a cutset based on the change in sign
that is observed [9]. Fiedler vector values hold both positive and
negative signs, these signs help identify two partions of the net-
work. The proposed approach, identifies these nodes which have
neighboring nodes with different Fiedler vector sign and labels
them as part of a cutset. These nodes represent the bottleneck of
the network and removal of all such nodes would lead the network
partitioned [2]. Nodes belonging to this cutset have precedence
over each other based on the traffic flow patterns that they are
observing. In a blockchain setup, network traffic flows to and from
a miner so a node belonging to the cutset, that also experiences the
maximum traffic flow, is deemed as the most critical node in the
network. We formally define the spectral partitioning approach as
follow:

Let a simple un-directed graphG = (V ,E) consist of a vertex-set
V and an edge-set E where |V| = n and |E| =m. The adjacency matrix
A is a n ×n matrix in which each row and column corresponds to a
vertex ofG . Any element, ai j , of this matrix represents the number
of edges between vertex i and vertex j . For a graphG , the matrix A
would be symmetric about the main diagonal and ai j would have
value of either 1 or 0. The diagonal matrix D = diaд(d1, . . . ,dn )
is the degree matrix, elements of which are the degree of all the
vertices of the G. For any element dii of matrix D, i represents the
vertex in the graph and the absolute value of dii is the degree of
that particular vertex. Any other element of matrix D, di j would
have a value of 0, where i , j.

For aforementioned graphG the Laplacian matrix L, is define as:

L = D −A (1)

The diagonal elements li j of L are therefore equal to the degree of
vertexvi and off-diagonal elements li j are −1 if vertexvi is adjacent
to vj and 0 otherwise.

Eigenvalues and eigenvectors provide an insight into the connec-
tivity of the graph. Let for anymatrixA if there is vectorX ∈ Rn , 0
such that

AX = λX

for some scalar λ, then λ is called the eigenvalue of A with corre-
sponding eigenvector X . So the eigenvalues of the Laplacian matrix
L are arranged in ascending order such that 0 = λ1 ≤ λ2 ≤ · · · ≤ λn .
The multiplicity of zero in the eigen values represent the number
of disconnected components of a network [9]. The second smallest
eigen value µ(G) = λ2 represents the algebraic connectivity of the
network. Smaller the algebraic connectivity the closer the network
is in becoming disconnected. After getting a second smallest eigen
value λ2 the corresponding eigen vector ®v = (v1, . . . ,vn ) is the
Fiedler vector of matrix L. The Fiedler vector has both positive
and negative entities. Elements with different signs represent con-
nected subgraphs which are poorly connected with each other. So
the Fieldler values help in identifying those sections of the graph,

removal of which, can potentially split the network into two, also
known as the cutset. In a network, the nodes of this cutset S are
hence crucial in the overall functioning. For any vertexv , if the sign
of the Fiedler value of at least one of its neighbours is different than
its own sign then it is included in the cutset S . Nodes inside the
cutset S are evaluated for criticality based on the traffic flow T (x)
that they observe ∀x ∈ S . The optimization problem originating
from this can be defined as:

P : CN = argmax
x ∈S

T (x) (2)

Such that S = argmin
α ∈V

µ(G(V − α))

Fig. 1 illustrates the working principles of the proposed approach.
Each node calculates its corresponding Fiedler vector value and
shares it with the neighbouring nodes. These nodes evaluate these
values and identify themselves as critical nodes if they see a change
in sign among their neighboring nodes. These values are repre-
sented as node labels in Fig. 1. Nodes in the cut set then observe
traffic flow through them for the identification of the most critical
nodes in the network. Removal of these nodes would have severe
affects on the network. They would result in both, packet drops due
to node removal and packet drop due to timestamp expiration. Lets
consider the removal of node B in the considered scenario. In the
former case, if node A generates a transaction for node B it reaches
the miner X who evaluates the validity of the transaction and drops
it due to non existing node B. In the later case, the removal of node
B would redirect all traffic through node C which would create a
bottleneck and thus result in timestamp expiration. Transactions
will reach miners across the cutset with a delay thus reporting a
time earlier than the acceptable time window. This results in packet
drops due to time stamp expiration. Furthermore, removal of all
nodes from the cutset would render the network partitioned into
clusters thus increasing packet drops. This will have adverse affects
on the size the blockchain, where a miner would not be able to see
any transactions being made on the other side of the network.

Figure 1: Representation of the Blockchain Model

4 SIMULATION AND RESULTS
In this section, we evaluate the performance of the proposed ap-
proach against existing approaches namely, betweenness centrality,
closeness centrality, degree centrality and randomnode removal in a
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blockchain based environment. We report the change in blockchain
size, increase in packet drop due to node removal and increase
in packet drop due to hop limit. In this simulation setup, due to
simulation environment limitations, a hop count was used instead
of timestamp, where the upper limit for acceptable time window is
represented as hop limit. The proposed approach was also evalu-
ated for variable network density, variable hop limit and varying
number of miner.

We consider a network of a 1000 nodes interconnected using
the uniform random distribution generating a 1000 transactions
between randomly selected senders and receivers. An evaluation is
made after each iteration where an iteration covers a random set
of transaction. Each iteration is upper bounded by 100 transactions.
The results reported in this section are an average of 50 random
network topologies.

In the first set of simulations, we evaluate blockchain outcomes
for varying hop window with fixed edge probability p. We assign
p = 10% and evaluate for hop window h of 2, 3, 4, 5, 10, 15 & 20. We
assume having a single miner in this simulation for better illustra-
tion of the effect of hop window.We remove this assumption in later
simulation setups for illustrating the scalability of the approach.
We remove 10% nodes belonging to the cutset upon each iteration
and evaluate results. This is repeated until the entire cutset has
been removed.

Fig. 5 reports that as hop window is increased from 2 to 20 the
packet drop due to hop count decreases as shown in Fig. 4. This is
merely due to increase in acceptable hop count window, where a
transaction is valid even after covering a longer path, thus rendering
most transactions valid. Results also indicate a linear increase up
till approximately 20 iterations after which packet drops reports
no significant change. This is mainly due to the limitation on total
number of transactions which is kept to a 1000. The increase in
packet drop due to hop count reduces the size of the blockchain
as reported in Fig. 2. Packet drop due to null transactions show a
similar result for all hop windows due to similarity in the number
of nodes that are removed.

In the second set of simulations, we evaluate the outcome for
varying edge probabilities with fixed hop window. We assign h = 4
and evaluate for edge probabilities, p of 2%, 6%, 10%, 15% & 20%.
These simulations are conducted on a single miner framework for
better illustration of the effects of network density. We remove 10%
nodes belonging to the cutset upon each iteration and evaluate
results. This is repeated until the entire cutset has been removed.

Fig. 9 reports that as the edge probability of the network is in-
creased from 2% to 20%, the packet drop due to hop count decreases
as shown in Fig. 8. This is due to the increase in network density,
consequently resulting in more number of connections amongst the
nodes. The increase in inter-node connectivity reduces the number
of hops required to reach from sender to receiver. Fig. 7 highlights
the packet drop due to null transactions increases. This can be ac-
counted for by considering the cutset size. In every simulation, the
nodes are being removed until the cutset is completely empty. For a
denser network, the cutset size is larger, given the increased connec-
tivity amongst the nodes. Hence, more nodes are being removed for
denser network. As a result, the null nodes in the network increases,
thereby increasing the packet drops due to null transactions. These
drops collectively affect the blockchain size, but the drops due to

0.23

Figure 2
0.23

Figure 3
0.23

Figure 4

Figure 5: Variations in hop window (2: Blockchain Size, 3:
Packet Drops due to null transactions, 4: Packet Drops due
to hop expiry)
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0.23

Figure 6
0.23

Figure 7
0.23

Figure 8

Figure 9: Variations in Graph Density (6: Blockchain Size, 7:
Packet Drops due to null transactions, 8: Packet Drops due
to hop expiry)

hop limit outweighs the drops due to null transactions, resulting in
the outcomes as reported in Fig. 6.

In the third set of simulation we compare our proposed method
with commonly used network analysis methods namely Random
Node Selection, Degree Centrality, Closeness Centrality and Be-
tweenness centrality. We assign h = 5 and p = 10%. These sim-
ulations are conducted on a single miner framework for better
illustration of the effects of network density and hop window.

We remove 10% of the most critical nodes of the network upon
each iterationwhere the number of nodes removed is upper bounded
by 2.5%, 5% and 10% of the whole network as reported in Fig. 12,
Fig.16 and Fig.20 respectively. We see that the packet drops due to
hop window is maximum for our proposed approach, followed by
Betweenness Centrality, Closeness Centrality, Degree Centrality
and Random Node Selection respectively, as reported in Fig. 12,
Fig.16 and Fig.20. The packet drops due to null transactions remain
similar for all the methods as the number of nodes removed are
same as reported in Fig. 11, Fig.15 and Fig.19. These two factors,
subsequently, affect the blockchain size, with the blockchain size
being the least for our proposed approach, followed by Betweenness
Centrality, Closeness Centrality, Degree Centrality and Random
Node Selection respectively, as reported in Fig.10, Fig.14 and Fig.18.
The proposed approach outperforms the existing approaches due to
a better selection of better nodes, which in turn creates a bottleneck
in the network, thus causing packet drops and delays. A similar
trend is observed when the percentage of network being removed
is increased from 2.5% to 10%.

In the final set of simulations, we justify the scalability of our
proposed approach with multiple miners and compare it with var-
ious network analysis approaches. We assign h = 4 and p = 10%
and average out the outcomes of 25 random network topologies.
We remove the entire cutset in the beginning of the iterations for
each network analysis method.

Fig. 22 and Fig. 23 highlight the results for 3 and 5 miners re-
spectively with the similar patterns. Our proposed method signif-
icantly outperforms the other methods as reported in Fig. 24. In
our approach, after the removal of the cutset, the entire network
gets partitioned into two parts. This results in each part separately
maintaining it’s own copy of the blockchain, inconsistent with the
other. The two blockchains run simultaneously in our proposed
method due to partition of the network but for other methods, no
such partition takes place.

5 CONCLUSION
This work proposes a node criticality analysis approach for blockch-
ain scenarios. The proposed approach leverages our previous work
on Spectral Partitioning and induces certain blockchain traffic flow
metrics to it. Attacks are simulated on the network based upon
the criticality of nodes obtained from the proposed approach and
nodes are thus removed. The effects on blockchain are compared
for various network densities and hop windows. The method is
then compared to the majorly used existing approaches, like Be-
tweenness Centrality, Closeness Centrality and Degree Centrality
based upon the extent to which communications in the network
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Figure 10
0.23

Figure 11
0.23

Figure 12

Figure 13: 2.5% of the network attacked (10: Blockchain Size,
11: Packet Drops due to null transactions, 12: Packet Drops
due to hop expiry)

0.23

Figure 14
0.23

Figure 15
0.23

Figure 16

Figure 17: 5% of the network attacked (14: Blockchain Size,
15: Packet Drops due to null transactions, 16: Packet Drops
due to hop expiry)
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Figure 18
0.23

Figure 19
0.23

Figure 20

Figure 21: 10% of the network attacked (18: Blockchain Size,
19: Packet Drops due to null transactions, 20: Packet Drops
due to hop expiry)

0.23

Figure 22: 3 miners
0.23

Figure 23: 5 miners

Figure 24: Multiple Mining Scenario

are affected. The proposed approach outperforms the existing ap-
proaches and is thus found to be better in identifying the critical
nodes.
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