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Abstract—Timely identification of critical nodes is crucial for
assessing network vulnerability and increasing network surviv-
ability against node failure. In this work, we propose a new
distributed algorithm for identifying critical nodes in a network.
The proposed approach is based on suboptimal solutions of
two optimization problems, namely the algebraic connectivity
minimization problem and a min-max network utility problem.
The former attempts to address the topological aspect of node
criticality whereas the latter attempts to address its connection-
oriented nature. The suboptimal solution of the algebraic con-
nectivity minimization problem is obtained through spectral
partitioning considerations. This approach leads to a distributed
solution which is less computationally expensive than other
approaches which exist in the literature and is near optimal, in the
sense that it is shown through simulations to approximate a lower
bound which is obtained analytically. Despite the generality of the
proposed approach, in this work we evaluate its performance on
a wireless ad hoc network. We demonstrate through extensive
simulations that the proposed solution is able to choose more
critical nodes relative to other approaches, as it is observed
that when these nodes are removed they lead to the highest
degradation in network performance in terms of the achieved
network throughput, the average network delay, the average
network jitter and the number of dropped packets.

I. INTRODUCTION

The identification of critical nodes is vital for accessing net-
work vulnerability and security [1]. The failure of a few critical
nodes can have an adversarial effect on network performance
varying from slight degradation in the Quality of Service up to
the complete breakdown of the network [2]. The significance of
critical nodes has been highlighted in a number of examples. In
Wireless Sensor Networks (WSNs), the energy depletion rate
is high at a few nodes rendering them critical for assessing and
improving network lifetime [3]. Likewise, the use of clustering
in WSNs introduces the risk of eavesdropping by a malicious
node on a large amount of information through the cluster-
heads, making these clusterheads critical for ensuring network
privacy [4]. Similarly, in computer networks, the penetration
of a virus can be prevented by simply taking a few critical
nodes offline, thus ensuring normal network functionality for
the rest of the network [5]. Moreover, the effect of a few critical
nodes on the overall network connectivity was highlighted

in [6], where removal of only 4% of the nodes in a Peer
to Peer Gnutella Network resulted in major fragmentation of
the whole network [7]. Finally in a wired telecommunications
network, the identification of critical nodes can aid in jamming
the network by suppressing the communication between a few
critical nodes in the network [8]. The significance of critical
nodes goes beyond computer networks to encompass other
types of networks such as the transportation network, the
power network and the water pipe network. In transportation
networks, the identification of critical junctions can aid in
forming suitable re-routes in case of an unexpected disruption
[81[9]. Similarly, the identification of critical nodes in the
power grid network is vital for avoiding network partitioning
and large area blackouts [10].

A number of algorithms have been proposed in literature
to identify critical nodes in a network. We differentiate be-
tween connection based schemes and topology based schemes.
Topology based schemes take into account only the underly-
ing topology of the considered network whereas, connection
based schemes take into account the users of the network
and their source destination paths. Examples of connection
based schemes include: the average shortest path length metric
[11][12] which calculates the average shortest path length over
all possible node destination paths, the closeness centrality
metric[13][14], which utilizes the distance of a node to every
other node in the network, the rank matrix approach [15],
which is based on the effect a node has on the rank of
the adjacency matrix of a network upon its removal and the
betweenness centrality [16][11][14] and ego centrality [17]
metrics, which assess the criticality of a node based on its
participation in forming the shortest path routes, with the
former using global information and the later taking into
account the two hop neighbours. On the other hand, examples
of topology based schemes include: the eigenvector centrality
metric [18], which uses the largest eigenvector of the adjacency
matrix, the Hybrid Interactive Linear Programming Rounding
(HILPR) algorithm [10], which analyses the effect that a
node has on the pair-wise connectivity of a network upon
its removal, the degree centrality metric [13][14] which uses
the degree of each node and algebraic connectivity based
approaches [19][20][21][22][23] which attempt to minimize



the algebraic connectivity upon node removal.

Some of these algorithms are based on intuition, whereas
others are based on mathematical abstractions of networks of
arbitrary topology and are thus characterized by properties
which can be verified analytically prior to implementation.
In this paper we adopt the latter approach and we cast the
node criticality problem in an optimization based framework.
We formulate two optimization problems: an algebraic connec-
tivity minimization problem, which addresses the topological
aspects of node criticality and a min-max aggregate utility
problem which addresses the connection oriented nature of
the node criticality. We consider suboptimal solutions for both
problems which are combined to yield the proposed criticality
identification scheme.

In order to characterize the topological notion of node
criticality, we consider a node to be critical when it contributes
mostly to keeping the network connected or alternatively when
its removal leads to a minimization of the network connec-
tivity. A popular metric which characterizes the connectivity
of a network is the algebraic connectivity. The metric was
introduced by Fiedler in [19] and is defined as the second
smallest eigenvalue of the Laplacian matrix of the network. It
has been established in a number of studies [19][24][25] that
algebraic connectivity serves as a good measure of connectivity
robustness in the sense that the smallest its value is, the
closer the network is in becoming disconnected. So, the first
optimization problem that we consider in this work is the
problem of finding the nodes which, when removed, minimize
the algebraic connectivity of the network. A basic but tedious
approach to solve the aforementioned problem is to use an
exhaustive search over all sub-graphs which result from the
removal of each node of the network. This approach assumes
knowledge of the entire network topology and can thus become
computationally expensive when dealing with large network
structures. In addition, when multiple critical nodes need to
be found the approach becomes computationally expensive
with the number of subgraphs that need to be considered
increasing combinatorially with the network size. For this rea-
son, a number of suboptimal solutions have been proposed in
literature [22]{23][20][21]. These suboptimal solutions utilize
the elements of the Fiedler vector which is the eigenvector
associated with the second smallest eigenvalue of the Laplacian
of the network. Each element of the eigenvector naturally
corresponds to a node in the network. The most popular
suboptimal node criticality metric is the aggregate squared
difference of Fiedler vector elements between neighbouring
nodes [22][23] which has been shown to approximate the
optimal solution using both analysis and simulations. Recent
advances, which allow the distributed calculation of the Fiedler
vector values [26] have enabled the distributed implementation
of the proposed criticality metric. However, the main drawback
of the distributed implementation is that a global maximisation
consensus algorithm must be employed which can be slow and
significantly increases the convergence time.

In this work we adopt an alternative approach to obtaining
a suboptimal solution of the original algebraic connectivity
minimization problem by employing spectral partitioning con-
cepts. It is well known that the elements of the Fiedler vector

assume positive and negative values in the range [—1,1] and
that a splitting value s can be used to partition the network in
two clusters (the first cluster containing all the nodes with
corresponding Fiedler vector values less than s). Different
values of s yield different types of cuts such as bisection, ratio
cut, sign cut and gap cut [19]. The Fiedler clusters are known
to be well connected [26] and in addition it has been shown
that for various types of networks they possess the desired
property that they have nearly equal number of vertices with
minimum number of edges in-between them [25]. In this work,
based on the latter property, we consider as critical, the nodes
which lie on the boundary of the Fiedler clusters. We adopt the
sign cut approach and we thus consider as critical, the nodes
which have at least one neighbour with a corresponding Fiedler
vector value of different sign. This approach is attractive to be
implemented in a distributed manner and allows each node
to decide by itself whether it is a critical node. In addition,
we demonstrate that this approach is directly related to the
approach in [22][23] as the nodes which lie on the boundary of
the Fiedler clusters report high values of the aggregate squared
Fiedler vector value differences, which is the criticality metric
proposed therein. However, when a single critical node is
required and a maximization algorithm needs to be employed,
the proposed algorithm offers the advantage that it significantly
reduces the distributed computational complexity as the max-
imization algorithm needs to be applied only over a reduced
set of nodes, namely the ones which have the same Fiedler
vector element sign. We demonstrate through simulations the
significant reduction in convergence time achieved, and in
addition we show that the solution is near optimal, in the sense
that it approximates to a very good extent, a lower bound on the
achieved algebraic connectivity which we derive analytically.

As pointed out above, the proposed change of sign method
can lead to multiple nodes being detected as critical and so,
when a single node is required, a metric must be utilized to
decide on the most critical node among the ones which lie on
the boundary of the Fiedler clusters. In our recent work in [27],
we have adopted the metric in [22][23], however, in this work
we consider an alternative metric which takes into account the
users of the underlying network and their source destination
paths. The algebraic connectivity depends only on the topology
of the underlying network and the criticality metric must thus
be complemented to account for the intuitive notion that the
users of the network must also be taken into consideration
when assessing the criticality of a node. This complementary
information is offered by the second optimization problem that
we consider in this work. It has been well established in the
literature that the rate allocation algorithms of the network
users attempt to maximize the aggregate utility of the network
over the capacity constraints [28]. So, we consider as critical,
the nodes which, when removed degrade the network perfor-
mance to the greatest extent i.e. they minimize the maximum
of the aggregate utility function. This optimization problem
requires full network information in order to be solved and
in addition the complexity of the exhaustive search solution
increases combinatorially with the network size when multiple
nodes need to be selected. We thus derive a suboptimal solution
which identifies as critical, the nodes which maximize the



square root of the number of active connections at each node
multiplied by the aggregate input data rate. We thus combine
the suboptimal solutions of the two optimization problems
to derive the proposed criticality metric which considers as
critical the nodes which maximize the latter criticality metric
over the nodes which lie on the boundary of the Fiedler
clusters.

We evaluate the performance of the proposed criticality
metric using extensive simulations conducted on Matlab and
the Ns-3 simulator. Since the criticality metric is obtained by
combining suboptimal solutions of two optimization problems
we first establish that these suboptimal solutions are not
conservative. When a single critical node is removed, the
proposed suboptimal solutions are very close to the optimal
ones which are obtained using the exhaustive search approach.
When multiple nodes are removed the suboptimal solutions
are close to a lower bound which is obtained analytically. We
then compare the proposed metric against other metrics which
have been proposed in literature: the Betweenness Centrality
[16], the Closeness Centrality, the Degree Centrality [13], the
Hybrid Interactive Linear Programming Rounding (HILPR)
proposed in [10], the Controllability of complex networks
(Cont) in [15], the suboptimal solution of Eq (6) [20][21] and
the suboptimal solution of Eq (7) [22][23]. The evaluation is
based on the degradation in performance reported when nodes
selected using the criticality metrics under consideration are re-
moved from the network. The considered network is a wireless
ad-hoc network where the x and y coordinates of the nodes
are randomly chosen according to uniform distributions. We
establish that the proposed criticality metric outperforms the
other approaches in terms of the achieved network throughput,
the average network delay, the average network jitter and the
number of dropped packets.

The rest of the paper is organised as follows. In Section
II, we introduce the relevant mathematical framework and
formulate the considered optimization problems, in Section III,
we present the suboptimal solutions of the formulated opti-
mization problems which are combined to yield the proposed
criticality metric, in Section IV, we derive the lower bound on
the algebraic connectivity upon node removal, in Section V,
we evaluate the performance of the proposed approach using
simulations and finally in Section VI we conclude our work.

II. PROBLEM FORMULATION

The proposed method for identifying critical nodes is based
on the solution of two optimization problems: the algebraic
connectivity minimization problem and a min-max aggregate
utility problem. In this section we introduce the relevant
mathematical framework which is used to formulate these
problems mathematically and also present some of the relevant
approaches present in the literature.

A. Algebraic Connectivity Minimization

We consider an undirected graph G = (V, E) where |V | =n
and |E| = m are the number of nodes and edges respectively.
The existence of an edge [ € E between nodes ¢ and j defines
the " column q; of the incidence matrix A € R™*™ of the

graph such that a;; = 1, a;; = —1 and O otherwise. The
Laplacian matrix is then defined as:

m

L =AAT = ZalalT €Y
1=1

L is positive semi-definite and thus has an orthonormal basis
of real eigenvectors with corresponding real eigenvalues. It
also holds that L1 = 0 where 1 is the vector of all ones.
The latter property guarantees that at least one eigenvalue
of the Laplacian matrix is equal to zero. We rearrange the
eigenvalues of the Laplacian matrix in ascending order such
that 0 = A\; < Ay < ... < \,. The second smallest eigenvalue
1 = Ao is known as the algebraic connectivity of the graph
with the corresponding normalized eigenvector being referred
to as the Fiedler vector [19].The algebraic connectivity is
related to the connectivity of the graph as a result of the
following theorem [29].

Theorem 1. G=(V,E) is disconnected if and only if p =0

Further, the algebraic connectivity has been observed to
serve as a connectivity robustness measure in the sense that
the lower its value is, the closer the network is in becoming
disconnected. The latter property has motivated the use of the
algebraic connectivity in assessing node criticality. A node is
considered to be critical when it contributes mostly to keeping
the network connected. One may thus define as critical, the
nodes which when removed minimize the algebraic connectiv-
ity of the network. This optimization problem, referred to as
optimization problem P, is shown formally below:

P: CN =arg IIlGI‘I/l w(G(V —a)) (2)

One way of solving P when a single node is removed is
through exhaustive search. However this approach is com-
putationally expensive. In addition, when multiple nodes are
removed, the complexity of the exhaustive search solution
increases combinatorially with increasing network size. So,
people have sought suboptimal solutions which are simple
to implement in a distributed manner. The most popular
solutions are inspired from the following characterization of
the algebraic connectivity [30] using the Rayleigh quotient of
y with respect to L:

T
y Ly

7|y # 0,17y = 0} 3)
vy

If we substitute y with the normalized vector v = y/||y|| in
Eq (3) then, it can be written as:

p(L) = min{

(L) = min{v" Lv| ||v|| = 1,1Tv = 0} “4)

which can also be expressed in the form:

p(L) =min{y D (v —v;)*| o]l = 1,1T0 =0} (5)

i=1jeEN;
where N; is the set of neighbours of node ¢. The minimum
is achieved when v is the Fiedler vector of the Laplacian L.



Each Fiedler vector entry naturally corresponds to a node in
the graph. It can thus be deduced from equation (5) that the
node which contributes the most to the algebraic connectivity
is the one with the maximum sum of squared Fiedler vector
value differences with neighbouring nodesi.e 3y (v;—v; )2.
Based on this, the authors in [20], [21] have considered as
critical, the nodes which solve the following optimization
problem:

CN = arg max (v; —v;)? (6)
a%
JEN;
The variant shown below has also been proposed in [22]
and [23]

> jen; Vi(vi — vj)
1—v?

CN = arg max @)
icV

The solutions of (6) and (7) constitute suboptimal solutions
of the optimization problem P as indicated in [22]. As a result
of recent advances in the distributed calculation of Fiedler
vector values [26], these suboptimal solutions are amenable for
implementation in a distributed manner. The main drawback
of the distributed implementations, as indicated by the authors
in [22][21], is that, a maximization consensus algorithm must
be employed over the entire set of nodes present in the
relevant graph which increases significantly the computational
overhead. In this work, we offer an alternative suboptimal
solution which alleviates the aforementioned problem thus
reporting smaller convergence times.

B. Min-Max Aggregate Utility

The algebraic connectivity, which has so far been used to
assess node criticality, only takes into account the topology of
the underlying network. However, intuition suggests that apart
from the network topology, the network users also have a key
role to play when assessing the criticality of a particular node.
Nodes which are utilized by many source destination paths, or
nodes which accommodate large amounts of data traffic, can
be considered more critical than others. In this section, we
utilize the Network Utility Maximization (NUM) framework
proposed by Kelly in [31] to cast these intuitive notions in a
formal optimization based framework.

We consider a network which consists of a set of traffic
sources S and a set of links L. Each network user s € S injects
data into the network with a rate denoted by xs. The data is
transferred from its source s € S to its destination via a route
which comprises of a set of links collected in the set L(s) rep-
resenting the route. Each link [ € L is characterized by a finite
capacity ¢;. To each user zs we assign a utility function Us(z5)
which represents the satisfaction a user gets from a particular
sending rate allocation. The utility functions are assumed to
be strictly increasing, continuously differentiable and strictly
concave. The objective of the network user collaboration is
then to maximize the aggregate utility function subject to the
capacity constraints. So, a node is considered to be critical if its
removal has the greatest negative impact on the aforementioned
objective i.e. it minimizes the maximum feasible aggregate

utility function subject to capacity and feasibility constraints.
This is expressed formally below:

:CN = i Us(x 8
Q arg min max S (zs) ®)

subject to Z zs < Vi )
s:le(L(s)\L(k))
over Ty > 0 (10)

The optimization problem of Eq (8) is a mixed integer
discrete continuous problem, discrete in the minimization over
the set of nodes and continuous in the maximization over
the sending rates. One may employ the exhaustive search
approach to obtain the optimal solution when a single node
is removed. However, this approach is computationally expen-
sive and requires full network information. In addition, when
multiple nodes are removed the complexity of the exhaustive
search approach increases combinatorially with network size.
A number of algorithms have been proposed in literature
to obtain more efficient optimal and suboptimal solutions
[32][33]. In this work we offer, a suboptimal solution which
leads to a distributed, simple to evaluate node criticality metric.

III. PROPOSED ALGORITHM

In this section, we describe the proposed criticality metric
which is based on suboptimal solutions of the optimization
problems P and @) described in the previous sections. The
rationale behind the offered suboptimal solutions is explained.

A. Algebraic Connectivity Minimization

The proposed suboptimal solution of problem P is based
on spectral partitioning considerations. Spectral partitioning,
refers to the methodology with which a graph can be parti-
tioned into connected clusters using spectral properties of the
graph, namely the elements of the Fiedler vector. As a result
of the property 1Tv = 0 in (5) the elements of the Fiedler
vector attain both positive and negative values in the range
[—1,1]. The following theorem establishes how the Fiedler
vector elements can be used to partition the graph into clusters
which are well connected [29].

Theorem 2. Let G be a finite connected graph with N vertices
and v; be the Fiedler vector value corresponding to node 1.
Then for any s > 0:

M(s) = {i € Njvo; + 5 >0 11
the sugbraph G(s) induced by G on M (s) is connected.

A similar theorem exists for s < (. Different values of s
yield different types of cuts [29]. In this work we adopt the sign
cut approach in which case s is equal to 0. The above theorem
only establishes the connectivity of the obtained clusters.
However, a number of other results indicate that spectral
partitioning can produce cuts with a good ratio of cut edges to
separated vertices [34]. This implies that spectral partitioning
methods yield strongly connected clusters of approximately
equal size, loosely connected between them. This property



motivates the proposed solution. As we are looking for nodes
which when removed minimize the algebraic connectivity we
expect that if an edge lying in the spectral partitioning cut-set is
removed from the network, it will render the clusters even less
loosely connected thus significantly decreasing the algebraic
connectivity of the network. We thus consider as critical the
nodes whose removal will result in the removal of an edge
from the spectral partitioning cut-set. As mentioned above, in
this work we adopt the sign cut approach which partitions
the network into two well-connected clusters. All the nodes
of the first cluster have positive corresponding Fiedler vector
elements whereas, all the nodes of the second cluster have
negative Fiedler vector elements. The cut-set thus comprises of
all the edges which connect nodes with corresponding Fiedler
value elements of different sign. We thus consider as critical
the nodes which have at least one neighbouring node with a
Fiedler vector element of different sign. In mathematical terms
anode ¢ € V is critical if it satisfies:

> sign(lvi —vj]) > 0 (12)
JEN;

where sign is the sign function and v; € V' are the elements
of the Fiedler vector.

3.336230e-01

3.3362808-

3.336230e-01

Figure 1. Example network where the Fiedler values are indicated at the
corresponding nodes.

We demonstrate these concepts through the sample network
of Fig 1. The network consists of two well connected sub-
graphs. These are loosely connected between them by means
of a single link. The Fiedler vector values are calculated and
indicated on the diagram. We observe that the Fiedler vector
values corresponding to the nodes in the left-hand subgraph
have positive values, whereas, the elements corresponding
to nodes in the right-hand subgraph have negative values.
Intuition suggests that the nodes which are critical are the
ones which connect the two subgraphs via the single edge.
We observe that these two nodes have Fiedler vector values of
different signs and are thus correctly detected by the proposed
criterion of equation (12).

The question that arises is whether the proposed criterion
is indeed a suboptimal solution of the algebraic minimization
problem P in (2). In subsequent sections we demonstrate the
suboptimality using simulations. In this section we demonstrate
the suboptimality by highlighting its relation to the criticality
criterion in (6) which has been demonstrated [20] to constitute
a suboptimal solution. In particular, we show that the nodes
which are detected as being critical according to the proposed
criterion of equation (12) also report high aggregate squared

High

Fiedler Vector Values

,_
5
2

Sum of Difterence in Fiedler Vector Values

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 80O
X-Axis X-Axis

(@ (b)

Figure 2. Example network where at each node we highlight a) Fiedler vector
values, b) Difference in Fiedler vector value across the network.

Fiedler difference values ). (v; — ;) which implies that
they are also critical according to criterion (6). The analytical
verification of this observation is an open problem. This
observation is important as it suggests that the maximization
of (6) does not have to be done over the entire set of nodes but
only over the ones which have Fiedler element values of the
same sign. This can significantly reduce the implementation
complexity of (6).

To demonstrate the relationship we use the network of Fig.
2 which comprises 80 nodes. The network consists of two
well connected subgraphs loosely connected by a small set of
edges. Each node is coloured according to the magnitude of the
absolute value of the quantity under investigation. In Fig. 2(a)
we show at each node 7 the magnitude of the calculated Fiedler
element value v; whereas, in Fig. 2(b) we show the magnitude
of the aggregate squared difference value ).y (vi — v;)%.
We observe that there is a tendency for the Fiedler elements
to attain their lowest value at nodes which lie in the sign cut-
set. As we move away from the sign cut-set the Fiedler values
tend to increase. In addition, we observe that nodes which
lie in the sign cut-set tend to attain large aggregate squared
difference values. This demonstrates the relationship between
(12) and (6).

The proposed change of sign approach is amenable for
implementation in a distributed manner. Recent techniques
[26], allow the distributed calculation of Fiedler values at each
node. Then, the only thing that a node needs to do in order
to classify itself as critical is to check whether at least one
of its neighbours has a Fiedler value with a different sign
than itself. However, this approach leads to multiple nodes
being detected as critical. What if a single node needs to be
selected? Among the nodes which lie in the sign cut-set how
do we choose the one which is the most critical? In our recent
work in [27] we have chosen the node which maximizes the
sum of squared differences >,y (v; — v;)2. In this work, we
choose an alternative criterion which is based on a distributed
suboptimal solution of the problem @ in (8).

B. Min-Max Aggregate Utility

We relax the strict concavity of the utility functions to
assume linear utility functions Us(zs) = zs. We consider two
approaches to obtain suboptimal solutions which are combined
to obtain the proposed criticality metric. The first approach



is via the directional derivative along the directions of rate
deductions due to link removal. Let F(z*) = ) Us(x})
denote the aggregate utility function evaluated at the optimal
sending rates at which the maximum is achieved. When a link
l € L is removed from the network then all the sources s which
utilize link  denoted by S(I) will be deprived from the ability
to send data. We thus investigate the effect of removing link
l on F by considering the directional derivative of F' along
the unit vector y; = %(z) \/%z_s' where n; is the cardinality
se

of S(1) and 4, is the unit vector along the direction z,. The
directional derivative evaluated at the equilibrium point z* is
given by

Dy'},F:y_i-Vfw::v* = (13)
1 OF 1 OF 1 OF

V0 ym oz, 7 m oen

Since the utility functions are assumed linear:

Dy F = /my (14)

Since the objective is to minimize F'(x*) links [ are sought
which maximize the directional derivative. The other approach
is by direct calculation of the reduction in F'(z*) when a link
! is removed. Due to the linear utility function assumption,
F(z*) = > x¥. When a link [ is removed, all the sources s

which utiliies link [ will be deprived from the ability to send

data. This will result in a reduction in F'(z*) by an amount

Ay = > . Since the objective is to minimize F'(z*),
seS(l

links [ are (S())ught which report the highest input data rate

Ay/. We combine the aforementioned approaches to classify

as critical the links which satisfy:

CN =arg max Vi Ayl (15)
€

Despite the fact that the discussion has so far been made
with reference to link removal, the derived criterion of equation
(15), also applies to node removal. n is the total number of
connections traversing the node, whereas Ay* is the input
data rate at the node. The dependence of the criticality metric
on n is in line with the well known betweenness centrality
criterion. The dependence on the input data rate is in line with
the intuitive notion that the more data traverses a node the
more critical it is. The input data rate at a particular node
is a quantity that can be calculated locally. The number of
active connections, however, is readily available locally only
in systems which maintain per connection states at each node.
When such per connection states are not available, estimates of
the active connections can be used instead. Such estimates can
be generated online using parameter identification techniques
proposed in literature [35].

The obtained suboptimal solutions of the two considered
optimization problems are then combined to yield the method-
ology with which the most critical node in the network is
identified. The methodology is as follows. The change of

sign approach of equation (12) is first used to identify all
the nodes which lie in the sign cut-set. Among the nodes
which lie in the sign cut-set, the most critical is the one which
maximizes the cost function of (15). The proposed approach is
amenable for implementation in a distributed manner. Recently
proposed techniques [26] allow the distributed calculation of
the Fiedler elements at each node. After the Fiedler elements
are calculated at each node, the nodes employ beacon message
exchange to share their Fiedler elements with their neighbours.
If a node detects that the sign of the Fiedler value of one of its
neighbours is different than its own sign, then it identifies itself
as lying in the sign cut-set of the network graph. All the nodes
that lie in the sign cut-set calculate the \/nAy cost of equation
(15) and initiate a blind flooding algorithm to share their cost
with all the other nodes lying in the sign cut-set. When a node
in the sign-cut set receives a cost initiated from another node in
the sign cut-set it compares the two, and if the maximum is its
own cost it identifies itself as a critical node and rebroadcasts
the maximum of the two. This approach guarantees that when
the algorithm terminates, only one critical node is left within
the network which is the one which has the highest cost among
all the nodes which lie in the sign cut-set. Note that the blind
flooding algorithm is implemented only over the nodes which
share the same Fiedler element sign. This achieves significant
savings in computation effort relative to other approaches.
Below, we show a pseudocode of the proposed method.

Algorithm 1 Distributed Critical Node Identification.

Initialization: Every node ¢ shares corresponding Fiedler
vector component to its neighbouring nodes and stores a
flag bit f; =1, set
t<0
Step 1:
if v; >0and v; <0V j € N; then
calculate AS;(t) = /n;y;. Bach node ¢ transmits
AB;(t) to its neighbours with v; > 0 and computes:
ABi(t) = maz{ABi(t), AB;(t)}j € N
else
Ji=0,
ABi(t) =0
Step 2:
if (t mod D)= 0 then
each node checks weather f; = 1 or not
Critical Node = arg mazx{AB;(t), AB;(t)} ., j € N;
else
At all nodes observing a sign change with v; > 0 and
v; < 0, set f; = 1. Each node i transmits AS;(¢) to its
neighbours with v; > 0 and computes:
ABi(t+1) = maz{ABi(t), AB; (1)} 5 € N,
if AB;(t+1) # AB;(t) then
Aﬂz(t + ].) — Aﬁl(t), t=1t+1, set fz =0
Return to Step 2

In the future we aim at finding more efficient distributed
algorithms which take into account the fact that the Fiedler
values are minimum at the nodes which lie in the sign cut-set.



IV. ANALYSIS

In this section, we derive analytically a lower bound on the
algebraic connectivity when multiple nodes are removed from
the network under consideration. This bound allows one to
evaluate how conservative our suboptimal solutions are when
multiple nodes are removed from the network.

Theorem 3. Let G = (V, E) be a graph of n nodes with
eigenvalues 0 < No < Az < ... < Ap. Then, upon removal
of w nodes from the graph, the algebraic connectivity of the
resultant graph is lower bounded by:

u3

B T L B
where

up =Y Y (v —vy), (17)

wen jeEN; i€w

by, = n(tr(A) —u2) + v/n(l —n)f(A) (18)

and
tr(A) \? tr(A)\’

with

tr (A - t’"(QA) I) = tr(A?) — w (20)

Here, A is the Laplacian matrix defined by the set of nodes
w that are being removed from the graph.

Proof: We use the eigenvalue decomposition of L =
QDQT where D = Diag(0,Aa,....., A,) is the diagonal
matrix of ascending eigenvalues and () is an orthogonal matrix
with corresponding eigenvectors of L in its columns. The
eigenvalues of a Laplacian matrix L can be found using
Lv = M\v, therefore, in this expression we substitute L to get
[36]:

(QDQ")v; = Aju; 21

Where v; is the linear combination of the eigenvectors
corresponding to the j** eigenvalue A; of L. The removal of
w nodes from the network reduces D by a factor uu” where
w = QTH and H is the incidence matrix defined by the set
of nodes being removed [37]. Thus we have:

Q(D —uwum)QTv; = Aju; (22)
We know from [38] that, the eigenvalues of Eq (22) can be

obtained by solving D — uu” — I for the determinant of the
matrix, where [ is the identity matrix [38]:

det(D —uu® —\I) =0 (23)

det(D — X)det(I — (D — XI) " tuu™) =0 (24)

Eq (24) can be reduced to [38]:

A=A 1- ——1=0 25
[ (-3 5 29

This shows that, the eigenvalue of Eq (22) can be computed
by finding the roots of the secular equation:

n
u?

L 26
i=1 Ni = A 20

1=

We solve Eq (26) for the the eigenvalue A of the network that
results after the removal of w node from the network. Here,
we know that up = 0 and uz = 3, ., > icn, iew (Vi — V))-
Therefore we have:

2 n 2

Us U3
=1 v 27
Ny — A zz:; N — A @7

This can be re-arranged into:

2
Us

IREEDYIRTIPEY
According to the eigenvalue interlacing theorem, the alge-

braic connectivity of network that results from the removal of
a node is bounded by 0 < Ay < Ag [39].

Theorem 4. Let X be a graph with n vertices and let Y be
obtained by removing a vertex from X then [39]:

Aie1 (L(X) < Ai(L(Y)) < Ai(L(X))

A= Ag (28)

We use Theorem 4 along with the observation in Eq (28),
that the LHS is a decreasing function whereas the RHS is an
increasing function of )\, therefore we obtain the lower bound
of \ by using the appropriate substitution of A = Ag > Aq.
This gives us:

u3
A> Ay — _
=1+ iz i/ (A2 — An)
From [40] we know that > , u? < b,,, thus we approxi-
mate » ., u? with the difference b,, — u3 to obtain the final
expression of Eq (16), where:

(29)

by, = n(tr(A) —u2) + /n(l —n)f(A) (30)
and f(A) is:

oo (3= S - (o= "0V

In Eq (31) the square of the matrix can be avoided by using
Eq (32) [40].

2 2
tr (A — W(QA)I) = tr(A?) — @ (32)

Here tr(A2%) = ||AH§ and ||A||f is the Frobenius matrix
norm of A. ]



V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
criticality metric using simulations conducted on Matlab [41]
and on the Network Simulator (Ns-3) [42]. We first assess
how conservative the suboptimal solutions are with reference
to the posed optimization problems, and we then evaluate the
ability of the proposed method to choose the most critical
nodes in the network. The criticality of a fixed number of
nodes is assessed by evaluating the degradation in performance
achieved when these nodes are removed from the network. We
conduct a comparative study to investigate the performance
of the proposed metric against other approaches that exist
in literature such as the Betweenness Centrality [16], the
Closeness Centrality, the Degree Centrality [13], the exhaustive
search approach, the Hybrid Interactive Linear Programming
Rounding (HILPR) metric proposed in [10], the controllability
of complex networks (Cont) approach in [15], the suboptimal
solution of Eq (6) which we refer to as the Sum Squared
Difference approach (SSD) [20][21], the suboptimal solution
of Eq (7) which we refer to as the Normalized Sum Squared
Difference approach (NSSD) [22][23] and our previously pro-
posed approach which we refer to as Spectral Partitioning for
Node Ceriticality approach (SPNC) [27]. Our simulation results
indicate that the suboptimal solutions are not conservative and
that the proposed criticality metric chooses the most critical
nodes in the network as it achieves the greatest degradation in
performance when these nodes are removed.

A. Algebraic Connectivity Suboptimality

In this section we evaluate, using simulations conducted on
Matlab, the ability of the change of sign approach, incorporated
in the proposed metric, to serve as a suboptimal solution
of the posed algebraic connectivity minimization problem
i.e. to identify nodes which when removed achieve algebraic
connectivity values which are close to the minimum. We also
compare the change of sign approach with other approaches
which have been proposed in literature in terms of the algebraic
connectivity achieved. As our objective is to focus on the
topological aspects of the proposed criticality metric we do
not account for network users. To find a single critical node
we first employ the change of sign approach to find the set of
nodes which lie in the sign cut-set and among these we find
the one which maximizes the \/n; parameter. The parameter
ny at a particular node [ is found by calculating the number
of times the node [ participates in the shortest path, among all
shortest paths between all possible source destination pairs.

We consider an area of 1000 x 1000m? in which we
randomly deploy 100 nodes. The = and y coordinates of the
nodes are drawn from a uniform random distribution. The
nodes employ wireless communication to form a wireless ad
hoc network. In order to evaluate the performance of the
considered criticality metrics as a function of the transmission
radius of the nodes, we consider transmission radius values
in the range 100m to 200m. To avoid random fluctuations
due to single simulation run, simulations were conducted for
20 different network topologies and the results were then
averaged.
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Figure 3. Algebraic Connectivity versus the trasnsmission radius when: a) &
b) a single node is removed from the network, c¢) & d) five nodes are removed
from the network.

In Fig 3a & 3b, we show the algebraic connectivity of
the aforementioned network as a function of the transmission
radius when only one node, the most critical in the network,
is removed. In each case we remove a node using a different
criticality metric. We compare the proposed change of sign
approach against the exhaustive search approach, the between-
ness centrality, the closeness centrality, the degree centrality,
the HILPR, the Cont,the SSD and the NSSD. Note that when
a single node is removed the optimal algebraic connectivity
value can be found using the exhaustive search approach
i.e. the algebraic connectivity is calculated when each node
is removed from the network and the minimum among all
calculated values is recorded.

The first thing to note is that, as expected, the algebraic
connectivity increases monotonically as the transmission radius
increases. The other thing to note is that at almost all trans-
mission range values, the proposed change of sign approach,
manages to yield the smallest algebraic connectivity value
which is surprisingly very close to the optimal value calculated
using the exhaustive search approach. This demonstrates that
the proposed suboptimal solution is not conservative in the
sense that it yields algebraic connectivity values which are
close to the optimal. We next conduct a similar evaluation
study when 10 nodes are removed from the network. When
multiple nodes are removed the exhaustive search approach
becomes computationally expensive, so in order to evaluate the
suboptimality of the proposed approach we compare it with the
lower bound calculated in section IV. The results are shown
in Fig 3c & 3d. The results indicate that all criticality metrics
report similar algebraic connectivity values which are close
to the lower bound. This again demonstrates the fact that the
proposed suboptimal solution is not conservative.



B. Network Utility Maximization Suboptimality

The main objective of this set of simulation experiments is
to evaluate how conservative the proposed criticality metric
is in solving the min-max optimization problem (8). Since a
suboptimal solution is proposed, it is crucial to evaluate the
degree with which the metric identifies nodes which when re-
moved lead to aggregate utility functions which are close to the
optimal. The optimal cost function is found by employing an
exhaustive search approach i.e. the maximum aggregate utility
is calculated, when each node is removed from the network
and the minimum is found among all values calculated. We
consider logarithmic utility functions which are common in
the literature. In our simulation experiments we consider an
area of 100 x 100m where we deploy 50 nodes with the x
and y coordinates drawn from a uniform random distribution.
Each node is characterized by a transmission radius of 30m. At
each time instant, a particular number of users inject data into
the network along specific data routes. We vary the number of
users from 5 to 20 and the reported results are averaged over
50 experiment repetitions, in order to decrease the inaccuracies
due to the random nature of the setting. As the proposed
criticality metric incorporates the number of users traversing
the node which is related to the betweenness centrality metric,
we compare the proposed approach not only with the optimal
but also with the betweenness centrality metric. For each
considered number of users, we remove a single node from the
network according to the criticality metric under consideration,
and we record the maximum aggregate utility of the resulting
network. In order to appreciate the level of the cost function
reduction achieved we also indicate the maximum aggregate
utility value prior to node removal which we refer to as the
original network. The incorrect selection of the critical node is
reported as the maximum network utility, which in the consid-
ered scenario will be a node that creates a bottleneck for the
network and thus bounds the maximum aggregate utility, such
a node upon removal will render the network with a higher
aggregate utility. The results are shown in Fig. 4. We observe
that the proposed criticality metric yields smaller maximum
aggregate utility values than the betweenness centrality metric
which are close to the optimal values. This demonstrates the
near optimality of the proposed solution.

C. Computational Complexity

It has been established in section III that the proposed
change of sign approach is related to the sum of squared
differences approach of equation (6) in the sense that nodes
which lie in the sign cut-set report high sum of squared
difference values. However, the main benefit of our approach is
that the maximization algorithm does not have to be performed
over the entire node set but only over the nodes which report
the same sign of the Fiedler value element. In order to
demonstrate, the significant reduction in computational effort
achieved we compare the proposed algorithm in 1 against the
maximization consensus algorithm proposed in [22] in terms
of the computational time required for the algorithm to reach
an equilibrium. In the simulation experiments that we conduct,
we deploy nodes in an area of 1000 x 1000m? with their 2 and

y coordinates drawn from a uniform distribution. In order to
evaluate the computational effort for different node densities
and network sizes we consider number of node values in the
range 100 to 1000. Each node is assumed to have a fixed
transmission radius of 250m. The computational time for the
two approaches as a function of the number of nodes is shown
schematically in Fig. 5. We observe that the proposed approach
is able to achieve significant reductions in the computational
time. These reductions become larger with increasing network
size.

—#— Max Utility

900 % - Exhaustive Search

Betweenness Centrality

800 =3 - original Network

- - Proposed
2

g

Aggregate Network Utlity

5 10 15 20
Number of Nodes
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when critical nodes are selected using various approaches.
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Figure 5. Computational time versus the number of nodes for the proposed
approach and the maximization consensus algorithm of [22].

D. Network Centric Evaluation

Having established the suboptimality of the proposed so-
lutions, and the significant reduction in implementation com-
plexity achieved, in our final set of experiments we evaluate
the performance of the proposed criticality metric in a more
realistic network scenario. We conduct the simulation exper-
iments on the Ns-3 Simulator [42] and evaluate the network
performance using network centric performance criteria such
as the total network throughput, the average per packet delay,
the average per packet jitter and the total number of packets
dropped. In all the simulations we compare the performance
of the proposed metric against metrics such as, Between-
ness Centrality, Closeness Centrality, Degree Centrality, Hy-
brid Interactive Linear Programming Rounding (HILPR), the
Controllability of complex networks (Cont),the Sum Squared
Difference (SSD) approach, the Normalized Sum Squared
Difference (NSSD) approach and the previously proposed
Spectral Partitioning for Node Criticality (SPNC) approach
[27].
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Figure 6. Time evolution of network throughput for the original network,

and when a) & b) A single node, ¢) & d) 10% of the most critical nodes
are removed according to betweeness centrality, closeness centrality, degree
centrality, Hybrid Interactive Linear Programming Rounding (HILPR), the
Controllability of complex networks (Cont),the Sum Squared Difference (SSD)
approach, the Normalized Sum Squared Difference (NSSD) approach and the
Spectral Partitioning for Node Criticality (SPNC) approach.

The evaluation was conducted on an area of 1500 x 1500m2,
where 100 wireless adhoc network nodes were placed using a
uniform random distribution. Each node was equipped with a
802.11b transceiver with a transmit power of 7.5dbm. 15% of
them had an option of transmitting at a power 1.5 X 7.5dbm [4]
thus forming long range communication links. The degradation
in signal strength as a function of the distance covered was
represented by the Friss loss propagation model. A randomly
selected set of 20 source/sink pairs initiate the communication
in the network by transmitting packets at a rate of 2.048Kb/s
each. Packet based transmission was assumed with the packet
size set to 64byte packets. Routing paths within the network
are formed using the OLSR (Optimized Link State Routing)
protocol [43]. All measurements are obtained in the interval
100 — 300 seconds after the start of the simulation. This
provides sufficient time for the OLSR algorithm to converge to
its equilibrium state. The degradation in network performance
is evaluated after 10% of the most critical nodes are removed
from the network. This process is repeated 10 times with the
results averaged to decrease the stochastic uncertainty of the
obtained results.

We first compare the performance of the proposed approach
against the metrics under consideration in this paper for the
network throughput that is achieved. The throughput of a
network is defined as the total number of packets delivered to
their destinations within the network per unit time. The main
goal of any network configuration is to maximize the achieved
throughput. In Fig 6a, 6b and Fig 6¢, 6d we show the achieved
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Figure 7. Time evolution of the per packet delay for the original network,
and when a) & b) A single node, ¢) & d) 10% of the most critical nodes
are removed according to betweeness centrality, closeness centrality, degree
centrality, Hybrid Interactive Linear Programming Rounding (HILPR), the
Controllability of complex networks (Cont), the Sum Squared Difference
(SSD) approach, the Normalized Sum Squared Difference (NSSD) approach
and the Spectral Partitioning for Node Criticality (SPNC) approach.

throughput after a single and 10% of the most critical nodes are
removed from the network respectively. We observe that the
proposed approach reports the highest decrease in the achieved
throughput relative to the approaches that already exist in
literature. This demonstrates that the proposed algorithm is
successful in identifying the most critical nodes of a network.
The decrease in average throughput observed at certain periods
of time is due to the long range link which have a higher
transmitter power compared to the rest of the nodes in the
network. The increase in power enables them to cover a larger
distance for relaying data and thus reserve a larger portion
of the network, increasing the probability of collision in the
network. This results in a similar trend observed by the original
network and all the criticality metrics under consideration of
a decrease in throughput at around 200sec.

Next we conduct similar experiments, aiming at comparing
the proposed criticality metric against other approaches using
the average per packet delay of the network. The delay expe-
rienced by packets in transit is an important network attribute
which describes its performance. Low delays are preferable.
In wireless ad hoc networks, such as the one considered in
this study, delays are due to a number of reasons: network
congestion resulting in queuing delays, poor channel behaviour
resulting in re-transmissions and contention resulting in large
vacant medium delay times due to the CSMA/CA mechanism.
In this work, we consider the average per packet delay as
the performance metric. This is calculated by dividing the
total number of delays observed with the number of packets
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Figure 8. Time evolution of the per packet jitter for the original network,
and when a) & b) A single node, ¢) & d) 10% of the most critical nodes
are removed according to betweeness centrality, closeness centrality, degree
centrality, Hybrid Interactive Linear Programming Rounding (HILPR), the
Controllability of complex networks (Cont), the Sum Squared Difference
(SSD) approach, the Normalized Sum Squared Difference (NSSD) approach
and the Spectral Partitioning for Node Criticality (SPNC) approach.

transmitted throughout the simulation time. In Fig 7 we show
the time evolution of the average per packet delay reported in
the original network and when nodes are removed according to
approaches that exist in literature and the proposed criticality
metric. We observe that the proposed metric is able to bring
a major degradation in performance as the average per packet
delay increases significantly when nodes are removed. This
is evidence of the fact that the proposed approach is more
accurate in identifying the most critical nodes of a network.

We next consider the average per packet delay jitter as the
performance metric. This is calculated by dividing the total
delay jitter observed throughout the simulation experiment
with the total number of transmitted packets. The delay jitter
is calculated as the variation in packet reception times at
the receiver. Increasing delay jitter values indicate increasing
congestion within the network, so small delay jitter values
are preferable. In Fig 8, we show the time evolution of the
average per packet delay jitter observed in the original network
and when nodes are removed according to various criticality
metrics. We observe that the proposed metric outperforms the
other proposals as it manages to significantly increase the delay
jitter thus degrading network performance.

Finally, we consider the total number of dropped packets as
the performance metric. High number of dropped packets in
the network due to buffer overflow, is a strong indication of
congestion. When nodes are removed from the network, the
number of available paths decreases and the remaining paths
are forced to accommodate all traffic. This makes them more
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Figure 9. Time evolution of the number of dropped packets for the original
network, and when a) & b) A single node, ¢) & d) 10% of the most critical
nodes are removed according to betweeness centrality, closeness centrality,
degree centrality, Hybrid Interactive Linear Programming Rounding (HILPR),
the Controllability of complex networks (Cont), the Sum Squared Difference
(SSD) approach, the Normalized Sum Squared Difference (NSSD) approach
and the Spectral Partitioning for Node Criticality (SPNC) approach.

vulnerable to congestion. When critical nodes are removed,
congestion is expected to be more severe and the number of
dropped packets is thus higher. The results of the conducted
simulation experiments are shown in Fig 9. We observe that
during the whole simulation time the proposed scheme is able
to bring a major increase in the number of dropped packets
compared to other approaches thus making it a viable option
for identifying critical nodes in a network.

VI. CONCLUSION

In this work, we propose a new metric with which critical
nodes can be identified in computer networks. We pose the
problem in an optimization based framework and we develop
the metric by combining suboptimal solutions of two optimiza-
tion problems: the algebraic connectivity minimization prob-
lem which captures the topological aspects of node criticality
and the min-max aggregate utility problem which captures
its connection oriented nature. We show that the suboptimal
solutions are not conservative and we demonstrate through
extensive simulations the effectiveness of the proposed method
and its superiority relative to other approaches. The method
was evaluated on a wireless ad-hoc network. However, the
problem formulation has been general and it thus opens the
way for its application in other types of complex networks
such as transportation networks, biological networks and water
pipe networks. In the future, such extensions will be pursued in
parallel with the development of a more efficient distributed



algorithm that takes into account the change in the Fiedler
vector elements across the network.
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