

UWL REPOSITORY

repository.uwl.ac.uk

Global prevalence of Cryptosporidium spp. in cats: a systematic review and meta-analysis

Taghipour, Ali, Khazaei, Sasan, Ghodsian, Sahar, Shajarizadeh, Mina, Alfatifar, Meysam, Foroutan, Masoud, Eslahi, Aida, Tsiami, Amalia ORCID: https://orcid.org/0000-0002-1122-4814, Badri, Milad and Karanis, Panagiotis (2021) Global prevalence of Cryptosporidium spp. in cats: a systematic review and meta-analysis. Research in Veterinary Science, 137. pp. 77-85. ISSN 0034-5288

http://dx.doi.org/10.1016/j.rvsc.2021.04.015

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/7841/

Alternative formats: If you require this document in an alternative format, please contact: <u>open.research@uwl.ac.uk</u>

Copyright:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy: If you believe that this document breaches copyright, please contact us at <u>open.research@uwl.ac.uk</u> providing details, and we will remove access to the work immediately and investigate your claim.

Review

Contents lists available at ScienceDirect

Research in Veterinary Science

journal homepage: www.elsevier.com/locate/rvsc

Global prevalence of *Cryptosporidium* spp. in cats: A systematic review and meta-analysis

Ali Taghipour^{a, 1,} *, Sasan Khazaei^{a, 1}, Sahar Ghodsian^{b, 1}, Mina Shajarizadeh^{b, 1}, Meysam Olfatifar^{c, 1}, Masoud Foroutan^{d, 1,} *, Aida Vafae Eslahi^a, Amalia Tsiami^e, Milad Badri^a, Panagiotis Karanis^{f, g, 1}

^a Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

^b Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

c Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences,

Tehran, Iran

^d Abad an Faculty of Medical Sciences, Abad an, Iran

e London Geller College of Hospitality and Tourism, University of West London, St Mary's Road, Ealing, London W5 5RF, United Kingdom

^f Faculty of Medicine and University Ho spital Cologne, University of Cologne, Cologne, Germany

^g University of Nicosia, Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, 2408 Nicosia, Cyprus

ARTICLE INFO ABSTRACT Keywords: The One-Health approach highlights that the health of human populations is closely connected to the health Crypto sporidium of animals and their shared environment. Cryptosporidiosis is an opportunistic zoonotic disease considering Ca ts as global public health concern. Cats are considered as one of potential host for transmitting the Cryp-Global prevalence tosporidium spp. infection to humans. A random-effects meta-analysis model was used to estimate the over-Meta-analysis all and the subgroup-pooled prevalence of Cryptosporidium spp. across studies, and the variance between studies (heterogeneity) were quantified by l^2 index. Eighty articles (including 92 datasets), from 29 countries met eligibility criteria for analysis. The pooled global prevalence (95% CI) of Cryptosporidium spp. in cats was 6% (4-8%), being highest in Africa 14% (0-91%) and lowest in South and Central America 4% (3–7%) countries. Considering the detection methods, the pooled prevalence was estimated to be 26% (1-67%) using serological detection methods, 6% (3-10%) using coproantigen detection methods, 5% (3-7%) using molecular detection methods, and 4% (3-7%) using microscopic detection methods. The highest prevalence of Cryptosporidium spp. was found in stray cats 10% (5–17%), while pet (domestic) cats 4% (3-7%) had the lowest prevalence. These results emphasize the role of cats as reservoir hosts for human-infecting Cryptosporidium spp. Prevention and control of this zoonosis in cats should receive greater attention by health officials and health policymakers, especially in countries where risk factors and prevalence are highest.

1. Introduction

Cryptosporidium spp. are considered as an opportunistic zoonotic parasite that affects a wide range of animals including humans. The parasite primarily infects the gastrointestinal epithelium of hosts and causes diarrheal disease (Nime et al., 1976; Xiao and Cama, 2018). The first case of human cryptosporidiosis was reported by Nime et al. (1976) in a child with severe acute self-limited enterocolitis during 1970s. The infection is often self-limited among immunocompetent

persons; while, cryptosporidiosis in elderly people, malnourished subjects, and patients with immunodeficiency can lead to severe consequences, even death if left untreated (Gambhir et al., 2003; Wang et al., 2018). Based on Khalil et al. (2018) cryptosporidiosis is ranked as the fifth leading cause of diarrhea-related mortality in children under 5 years in 2016. This acute infection caused over 48.000 deaths and 4.2 million disability-adjusted life-years (DALYs) worldwide (Khalil et al., 2018). The pooled global prevalence of *Cryptosporidium* spp. infec-

* Corresponding authors.

https://doi.org/10.1016/j.rvsc.2021.04.015

Received 9 August 2020; Received in revised form 12 April 2021; Accepted 13 April 2021 0034-5288/© 2021

E-mail addresses: alitaghipor71@yahoo.com (A. Taghipour), masoud_foroutan_rad@yahoo.com (M. Foroutan).

¹ These authors have equally contributed.

tion in HIV-positive patients were determined at 14.0% (95% CI: 13.0–15.0%) using meta-analysis approach (Wang et al., 2018).

During the past years, the role of cats in the spread and transfer of Cryptosporidium spp. oocysts has been investigated (Sykes, 2013). Cats as a part of human companion providing some benefits in relation to mental health and physical well-being of the population (McConnell et al., 2011). Based on formal reports, the global number of cats is estimated approximately 700 million (220 million pets and 480 million stray cats) (https://www.carocat.eu), (Rostami et al., 2020a, 2020b). It is worth to mention that the reported populations of cats worldwide is probably underestimated and the real number is significantly higher, due to lack of registration (https://www.carocat.eu) (Rostami et al., 2020a, 2020b). Evidence suggests that pet owners have a better wellbeing status, with less visits to the physician, consume fewer drugs and have lower cholesterol levels than non-pet owners (Barker and Wolen, 2008; Beck and Meyers, 1996). Pets provide several important benefits in to humans, there are also associated with health hazards. Besides the risk of bites, scratches and allergies as the common health hazards, cats may harbor a diverse range of zoonotic parasitic infections. Thus, close contact with these pets are considered as a risk factor (Chalkowski et al., 2019; Dubey et al., 2020; Ramírez-Ocampo et al., 2017; Robertson and Thompson, 2002; Rostami et al., 2020a, 2020b).

Several studies have demonstrated the prevalence of *Cryptosporidium* spp. infection in cats. However, there is a lack of a comprehensive global estimation of the prevalence of *Cryptosporidium* spp. in the cat population. Considering the public health concern related to cats as a potential source of *Cryptosporidium* spp. infection, this meta-analysis paper provides the first comprehensive review to evaluate the pooled global prevalence of *Cryptosporidium* spp. and the related risk factors in cats.

2. Methodology

In the current systematic review and meta-analysis, we have followed the standard protocol of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to design, report and interpretation of our results (Moher et al., 2015).

2.1. Search strategy

The authors systematically explored four international databases (PubMed, Web of Science, Scopus, and Google scholar) for peerreviewed articles, released online between January 1st, 1990 and 30 May 2020, to find all publicly accessible papers that reported the prevalence of *Cryptosporidium* spp. in cats worldwide. A combination of the following search terms was applied in our literature searches as follows: "Intestinal Parasites" OR "Coccidian" OR "Opportunistic protozoa" OR "*Cryptosporidium*" OR "Cryptosporidiosis" AND "Prevalence" OR "Epidemiology" OR "Frequency" AND "Cat" OR "Feline" OR "Kitten". The authors also reviewed the references of the included articles, in order to identify further studies that might have been missed.

2.2. Eligibility criteria, study selection, and data extraction

In the first step, all published records retrieved were imported into the Endnote (version X7) reference management program and duplicate citations were removed. Then, two authors independently, reviewed the records according to the titles/abstracts and excluded irrelevant papers in relation to the aim of the review. The abstracts of all remaining citations were imported into a Microsoft Word file for further assessments in terms of inclusion criteria. Afterwards, the full-texts of all potential eligible studies were downloaded through online resources and their relevance was evaluated according to inclusion and exclusion criteria. Final eligibility and inclusion criteria were appraised and any discrepancies were resolved through discussion with the principal investigator. The papers were included in the current systematic review, should present all of the following criteria: 1) peer-reviewed original research papers, brief reports or letters to the editors which reported the prevalence of Cryptosporidium spp. in cats; 2) published online or indexed in four international databases (PubMed, Web of Science, Scopus, and Google scholar) from 1st January 1990 up to 30 May 2020; 3) the papers with full-text or abstract in English without geographical limitation; 4) precise information was available on the total sample size and positive samples; 5) those articles that employed at least one of the following methods, including microscopy, molecular, or coproantigen detection in feces and/or serology detection in serum samples. Papers were excluded papers if they didn't meet the all the above criteria or if they were narrative reviews, systematic reviews, editorials, and case reports. The data extraction was performed independently by two trained investigators and recorded using a Microsoft Excel template (2016 version; Microsoft, Redmond, WA, USA) in a blinded manner. The extracted data was carefully rechecked for accuracy. Any disagreement or inconsistency the principle investigator was consulted and resolved to reach a decision. The Microsoft Excel software template included the following variables, study characteristics (the first author's last name, publication year, study period, continent, country, and city), geographic locations (latitude and longitude), climatic conditions (mean annual rainfall, mean relative humidity, and mean annual temperature), the diagnostic methods (microscopy, molecular, coproantigen and serological methods), type of cats (pet or stray), total sample size, positive samples. If available, the data about age, gender, and the presence or absence of diarrhea were also extracted. With respect to molecular methods, the genes type of each study along with the identified species were extracted. In this study, we used several data sources to define the geographical and climatic status of different cities and areas studied (https://www.timeanddate.com/, https://en. climate-data.org/, and https://gps-coordinates.org/) (Rostami et al., 2020a, 2020b). Since there were several types of cats in the studies included, we divided cats into: (1) pet (domestic) animals: "pet, household, sheltered or domestic"; (2) stray animals: "stray, free-roaming or feral"; (3) unknown animals: "It is not clear whether the cats are domestic or stray".

2.3. Study quality assessment

The Joanna Briggs Institute (JBI) checklist was used for quality assessment of the included articles (Institute, 2014). This checklist contains ten questions with four options including, Yes, No, Unclear, and Not applicable. Briefly, a study can be awarded a maximum of one star for each numbered item. The papers with a total score of 4–6 and 7–10 points were specified as the moderate and high quality, respectively. Based on the obtained score, the authors have decided to include (4–10 points) and exclude (\leq 3 points) the papers.

2.4. Meta-analysis

In this paper, all analysis procedures were performed using the random-effects (RE) model to estimate the prevalence of *Cryptosporidium* spp. in cats worldwide, as described recently (Taghipour et al., 2020a, 2020b, 2020c, 2020d; Taghipour et al., 2021;). The global and regional prevalence rate of *Cryptosporidium* spp. was computed by 95% confidence interval [CI] in the context of continents and countries. Heterogeneity between publications was calculated using the t^2 and l^2 statistics and the values of <50%, 50%–80%, and > 80% were specified as low, moderate, and high heterogeneity, respectively (Higgins et al., 2003; Taghipour et al., 2020c). The analyses of subgroups to assess the source of heterogeneity between the selected papers were done based on geographical latitude and longitude, continent, country, climatic variables (mean relative humidity, annual temperature and annual precipitation), type of cats, age group, gender, and type of diagnostic method(s). Moreover, due to different sensitivities and specificities of diagnostic methods, we assumed that our results would be "apparent" prevalence rates, and did not represent true prevalence rates. We also used the funnel plot to check the probability of publication bias during the analysis (Egger et al., 1997; Zhang et al., 2017). We applied the Meta package (Schwarzer, 2007) for R software version 3.5.1 for the statistical analyses and a *P*-value of <0.05 was considered as significant.

3. Results

3.1. Characteristics of studies

As shown in Fig. 1, the systematic search yielded 4201 relevant articles; after removing duplicates and/or non-eligible papers, 80 publications containing 92 datasets were eligible for the systematic review and meta-analysis. The main characteristics of each study along with the references are listed in Supplementary Table 1. The results of quality assessment according to JBI for eligible studies are presented in Supplementary Table 1. All the included articles were of acceptable quality. These studies (92 datasets) provided data on 23,588 cats from 29 countries from five continents. In total, 31 data sets were available for America (9782 cats), 29 for Europe (6875 cats), 21 for Asia (4635 cats), eight for Oceania (2082 cats), and three for Africa (214 cats). Only one study was found for Greece, Russia, Slovakia, Poland, Netherlands, Norway, and Austria from Europe; Colombia and Costa Rica from America; Indonesia from Asia, Egypt, Kenya, and Nigeria from Africa. The countries with the highest number of formal reports were USA (15 datasets), Brazil (11 datasets), and Australia (8 datasets). Cryptosporidium spp. prevalence in cat populations in all 29 individual countries is listed in Table 1. Considering the diagnostic methods, 49 datasets used microscopic detection methods, 21 datasets used molecular detection methods, 17 datasets used coproantigen detection methods and five datasets used serological detection methods (Table 2). To identify potential publication bias, we used an asymmetry in funnel plot test. This test indicated that there was a significant publication bias in eligible studies (t = 4.05, df = 90, *P*-value = 0.0001, Supplementary Fig. 1).

3.2. Global and regional prevalence rates of Cryptosporidium spp. in cats

The pooled global prevalence of *Cryptosporidium* spp. in cats was 6% (95% CI, 4–8%; 1126/23,588), with a high heterogeneity among studies ($I^2 = 96\%$) (Table 1). With regard to continents, the prevalences were: 14% (0–91%; 54/214) in Africa; 6% (3–11%; 496/6875) in the Europe; 6% (3–9%; 190/4635) in Asia; 5% (1–14%; 72/2082) in Oceania; and 4% (3–7%; 314/9782) in America. In terms of countries, Costa Rica (14%; 1/7) in America; Scotland (38%; 211/493) in Europe; Kenya (41%; 42/103) in Africa; Iraq (13%; 40/363) in Asia exhibited some of the highest prevalence rates. In contrast, Russia (1%; 15/1261) in Europe, Canada (1%; 17/1537) in America, Indonesia (2%; 13/532) in Asia, and Nigeria (0%; 0/52) in Africa had the lowest prevalence of *Cryptosporidium* spp. in cats (Table 1).

3.3. Prevalence rates according to type of cat, age, gender, and diarrhea status

About type of cat, the highest prevalence of *Cryptosporidium* spp. was found in stray cats 10% (95% CI: 5–17%; 152/2293); while pet (domestic) cats 4% (95% CI: 3–7%; 683/15,871) had the lowest prevalence (Table 2). Eighteen datasets have reported the prevalence of *Cryptosporidium* spp. based on cat age. In subgroup analysis, the pooled *Cryptosporidium* spp. was estimated 7% (95%CI: 4–12%; 93/2304) and 3% (95% CI: 1–6%; 111/3660) in cats aged \leq 12 months and > 12 months, respectively. A positive association was observed

Fig. 1. PRISMA flow diagram describing included/excluded studies.

Table 1

Global, regional and national pooled prevalence of Cryptosporidium infection in cats.

Continent/country	Number of datasets	Total samples (n)	Infected samples (n)	Pooled prevalence (95% CI)	Hetero geneity		
					$I^{2}\%$	t ²	P-value
Global	92	23,588	1126	6 (4–8)	96	0.02	0
Europe	29	6875	496	6 (3–11)	98	0.04	P < 0.01
Italy	5	932	60	3 (0–17)	97	0.03	P < 0.01
Germ an y	4	1122	54	7 (3–33)	96	0.04	P < 0.01
Spain	3	149	8	5 (1-12)	0	0.0007	P = 0.64
Czech Republic	3	388	72	15 (0–78)	98	0.07	P < 0.01
UK	3	1557	38	3 (0-45)	97	0.04	P < 0.01
Scotland	2	493	211	38 (0-100)	100	0.2	P < 0.01
Turk ey	2	200	8	4 (0–25)	0	0.0003	0.47
Greece	1	264	18	7 (4–10)	NR ^a	NR	NR
Russia	1	1261	15	1 (1-2)	NR	NR	NR
Slovakia	1	73	3	4 (1-10)	NR	NR	NR
Poland	1	64	2	3 (0–9)	NR	NR	NR
Netherlands	1	22	1	5 (0–17)	NR	NR	NR
Norway	1	52	1	2 (0–7)	NR	NR	NR
Austria	1	298	5	2 (1–3)	NR	NR	NR
America	31	9782	314	4 (3–7)	94	0.01	P < 0.01
USA	15	6962	226	4 (2–8)	96	0.01	P < 0.01
Brazil	11	1230	64	5 (2-11)	88	0.02	P < 0.01
Canada	3	1537	17	1 (0-4)	64	0.001	0.06
Colombia	1	46	6	13 (5–24)	NR	NR	NR
Costa Rica	1	7	1	14 (0-47)	NR	NR	NR
Asia	21	4635	190	6 (3–9)	84	0.01	P < 0.01
Iraq	5	363	40	13 (2–31)	83	0.02	P < 0.01
Iran	5	590	21	4 (0–17)	90	0.02	P < 0.01
Japan	4	2028	64	4 (0-12)	77	0.008	P < 0.01
China	4	976	42	4 (2–7)	60	0.001	0.06
Thai la nd	2	146	10	6 (0–100)	82	0.01	0.02
Indonesi a	1	532	13	2 (1-4)	NR	NR	NR
Africa	3	214	54	14 (0–91)	97	0.11	P < 0.01
Egypt	1	59	12	20 (11-31)	NR	NR	NR
Kenya	1	103	42	41 (32–50)	NR	NR	NR
Nigeria	1	52	0	0 (0–2)	NR	NR	NR
Oceania	8	2082	72	5 (1–14)	93	0.03	P < 0.01
Australia	8	2082	72	5 (1–14)	93	0.03	P < 0.01

^a R: Not reported.

between *Cryptosporidium* spp. and age of ≤ 12 months (OR = 2.54; 95% CI, 1.47–4.38%). Incidence of diarrhea and gender were not correlated with infection rates. Detailed characteristics of the associated risk factors are displayed in Table 3.

3.4. Prevalence according to detection methods

In relation to detection methods, the pooled prevalence was estimated to be 26% (95% CI: 1–67%; 335/1352) using serological detection methods, 6% (95% CI: 3–10%; 157/2431) using coproantigen detection methods, 5% (95% CI: 3–7%; 143/2767) using molecular detection methods, and 4% (95% CI: 3–7%; 491/17,038) using microscopic detection methods (Fig. 2 and Table 2). Considering the molecular methods, species identification using various genes represented that *C. felis* was the most prevalent species/genotype, followed by *C. parvum* and *Cryptosporidium* rat genotype III (Supplementary Table 2).

3.5. Prevalence rates according to geographical and climatic parameters

We also conducted subgroup analyses for geographical and climate parameters, to identify possible sources of heterogeneity on the prevalence of *Cryptosporidium* spp. in cats (Table 2). About the geographical parameters, the highest prevalence rates of *Cryptosporidium* spp. were found at latitude of 11–20° (9%; 95% CI: 1–22%; 18/204) and longitude of \geq 141° (22%; 95% CI: 0–100%; 5/26) (Table 2). As shown in Table 2, the highest prevalence was observed at \leq 50% (10%; 95% CI: 5–17%; 103/1249) relative humidity and 8–14 °C (8%; 95% CI: 4–12%; 587/8291) mean temperature; while, the precipitation rates were al-

most the same (~6%) in all ranges. Also, the lowest prevalence was determined at latitude of $21-30^{\circ}$ (5%; 95% CI: 2–8%; 135/3197), longitude of $121-140^{\circ}$ (3%; 95% CI: 2–6%; 98/3303), at 51-75% relative humidity (5%; 95% CI: 3–7%; 678/18,080), \leq 7 mean temperature (1%; 95% CI: 0–3%; 27/2323), and \geq 1001 mean annual precipitation (4%; 95% CI: 1–10%; 90/2505).

4. Discussion

Over the years, zoonotic transmission of various species of Cryptosporidium spp. and the role of animals as reservoir for human infection are important issues in medical and veterinary practices (Hunter and Thompson, 2005; Ryan et al., 2014). Cats are considered as one of the potential reservoirs for human-infecting Cryptosporidium spp. According to our results, the prevalence of Cryptosporidium spp. with the serological, coproantigen, molecular and microscopic detection methods were estimated at 26%, 6%, 5% and 4%, respectively (Table 2). One of the most important reasons for the difference in prevalence is that each of the studied methods has its own sensitivity and specificity (Elsafi et al., 2013). Traditionally, light microscopy using specific staining techniques is one of the methods to diagnose Cryptosporidium spp. infection (Robinson and Chalmers, 2020; Taghipour et al., 2019). Since cats shed only low numbers of oocysts (around 10³ and 10⁴ oocyst/g of feces), this technique may not be very sensitive in cats (Mekaru et al., 2007; Weber et al., 1991; Webster et al., 1996). In addition to its low sensitivity, this method needs an experienced scientist due to oocysts similarity to bacteria or yeasts in stool samples (Ukwah and Ezeonu, 2013). Although serological techniques are more sensitive than the mi-

Table 2

Sub-group analysis of the prevalence of Cryptosporidium based on geographical location, climate variables, diagnostic methods and type of cat.

Variable/sub-groups	Number of datasets Total samples (n) Infected samples (n) Pooled prevalence (95% CI) He		Hetero	Heterogeneity			
					I ² (%)	t ²	P-value
Lotitudo							
	F	761	60	0 (0, 22)	06	0.06	D < 0.01
0-10	5	/01	02	8 (0-33)	90	0.00	P < 0.01
11-20	4	204	18	9 (1-22)	65	0.07	0.04
21-30*	15	3197	135	5 (2-8)	88	0.01	P < 0.01
31-40°	36	10,819	412	6 (4-8)	94	0.01	P < 0.01
41–50°	17	2518	161	5 (2-10)	95	0.02	P < 0.01
≥51°	15	6089	338	6 (1–15)	99	0.06	P < 0.01
Latitude (N&S)							
North	72	19,732	949	6 (4-8)	96	0.02	0
South	20	3856	177	6 (2–10)	93	0.03	P < 0.01
Longitude							
0–20°	26	5202	455	6 (3–12)	98	0.05	P < 0.01
21-40°	4	1687	87	14 (0–50)	98	0.06	P < 0.01
41–60°	21	2285	118	6 (3–9)	87	0.02	P < 0.01
61–80°	7	2425	83	4 (1–9)	91	0.01	P < 0.01
81–100°	6	3678	109	7 (2–17)	98	0.01	P < 0.01
101–120°	19	4982	171	4 (2–6)	91	0.01	P < 0.01
121–140°	7	3303	98	3 (2-6)	58	0.003	0.003
≥141°	2	26	5	22 (0–100)	67	0.04	0.08
Longitude (W&E)							
West	38	11,931	569	6 (3–9)	97	0.03	P < 0.01
East	54	11,657	557	6 (4-8)	93	0.02	P < 0.01
Humidity (%)							
<50	12	1240	103	10 (5-17)	80	0.02	P < 0.01
51 75	59	12 0 80	678	5(3,7)	05	0.02	P < 0.01
51-/5	30 22	10,000	245	5(3-7)	93	0.02	P < 0.01 P < 0.01
2/0	22	4239	545	0 (2-12)	90	0.04	<i>I</i> < 0.01
Mean temperature (°C)							
26≤	8	1266	86	7 (1-20)	95	0.04	P < 0.01
21-25	7	1148	59	5 (1-10)	91	0.01	P < 0.01
15–20	40	10,560	367	5 (3–7)	93	0.01	P < 0.01
8–14	31	8291	587	8 (4–12)	98	0.04	P < 0.01
≤7	6	2323	27	1 (0–3)	51	0.002	0.07
Precipitation (mm)							
0–250	20	4378	202	6 (3–10)	93	0.02	P < 0.01
251–500	36	9458	393	6 (3–9)	96	0.03	P < 0.01
501–750	23	6801	414	6 (3–11)	98	0.03	P < 0.01
751–1000	2	446	27	6 (0-21)	0	0.0003	0.53
≥1001	11	2505	90	4 (1–10)	84	0.02	P < 0.01
Diagnostic methods							
Microscopic methods	40	17.038	401	4 (3-7)	94	0.02	P < 0.01
Mologular methods		17,030	142	= (3-7)	76	0.02	P < 0.01
Concention methods	17	2/0/	143	5(3-7)	<i>/</i> 0	0.003	P < 0.01
	17	1600	137	0(3-10)	90	0.01	P < 0.01
annunonuorescence assay (IFA)	1J 2	1002	110	6 (0 2E 0)	74.30	0.41	0
"Enzyme mikeu mimunosorbent as sa y (ELISA)	э 1	U1/ 122	44 0	0 (0-35.9)	90.82 0	3.35	1
"Kapid im munochroma tographic as say	1	132	2	1.5 (0-5.9)	0	0 11	1
Seroiogical methods	5	1352	335	20(1-07)	99	0.11	P < 0.01
Immunofluorescence as say (IFA)	2	393	250	59.8 (28.3–84.8)	97.2	0.8	U
"Enzyme linked immunosorbent as say (ELISA)	3	959	85	8.9 (5–15.4)	83.5	0.2	0.002
Type of cat							
Strav cats	15	2293	152	10 (5–17)	89	0.03	P < 0.01
Pet (Domestic) cats	58	15.871	683	4 (3–7)	96	0.03	P < 0.01
Unknown (mixed)	26	5424	351	10 (5–17)	96	0.06	P < 0.01

NR: Not reported.

^a Subgroup of different diagnostic methods for coproantigen methods.

 $^{\rm b}$ Subgroup of different diagnostic methods for serological methods.

croscopic methods, high costs, false-positive reactions and no differentiation of active infection from past infection are considered as disadvantages (Doing et al., 1999; Frost et al., 2004). They have limited use to identify parasites in a clinical environment and are mainly used to study overall exposure of a population or understanding dynamics of infections. The results of the serological prevalence are higher than the other three methods, which may be due to false-positive reactions with other pathogens. The use of coproantigen detection tests has helped to

Table 3

Risk factors of Cryptosporidium infection among cats.

Risk factors	Number of datasets	Variables	Total samples (n)	Infected samples (n)	Pooled prevalence (95% CI)	OR (95%CI)	OR Heterogeneity		
							$I^{2}\%$	$ au^2$	P-value
Diarrhea	14	With diar rhea	896	64	7 (3–12)	1.38 (0.78–2.45)	33	0.50	0.11
		Without diar rhea	2734	174	5 (2–10)				
Gender	14	Male	1657	128	7 (4–11)	0.99 (0.66–1.46)	14	0.20	0.30
		Fema le	1766	122	8 (4–13)				
Age	18	$\leq 12 \text{ months}$	2304	93	7 (4–12)	2.54 (1.47-4.38)	6	0.49	0.38
		> 12 months	3660	111	3 (1-6)				

identify Cryptosporidium spp., especially in farm animals (Cirak and Bauer, 2004). This immunodiagnostic method is an alternative, complementary and/or confirmatory test to coprological oocyst detection under the microscope. It is based on the detection of anti-Cryptosporidium spp. antibodies and/or coproantigens released by the parasite (Papini and Verin, 2019). Coproantigenic tests can be helpful, when it is difficult to detect Cryptosporidium spp. microscopically. Hence, one of the most important advantages of coproantigen assays is the ability to detect cryptic, asymptomatic and chronic/intermediary infections (Van den Bossche et al., 2015). Immunofluorescent assay (IFA) is consider for many veterinarian researchers as a gold standard for detection of Cryptosporidium spp. oocysts in cats and dogs (Ballweber et al., 2009; Scorza et al., 2011); whereas enzyme linked immunosorbent assay (ELISA) are not routinely used for veterinary clinicians for detection of feline cryptosporidiosis (Bowman and Lucio-Forster, 2010; Cirak and Bauer, 2004). The use of ELISA results in false positives but IFA for detection of feline cryptosporidiosis is highly sensitive in comparison with other diagnostic techniques (Avinmode and Fagbemi, 2011). In addition, false positives using IFA are not common as with the use of commercial ELISA since they rely on the morphological detection of the oocysts and the fluorescent staining (Ayinmode and Fagbemi, 2011; Ballweber et al., 2009). Molecular techniques are considered superior for the detection and differentiation of Cryptosporidium spp. at the species/genotype levels (Robinson et al., 2020). The main advantage of molecular methods is higher sensitivity and specificity, along with easier interpretation (Robinson et al., 2020). In this regard, the pooled prevalence obtained by molecular methods (5%) can be considered as "true" prevalence.

In the sequencing results of this meta-analysis research, *C. parvum* and *Cryptosporidium* rat genotype III are the second most common species infecting cats after *C. felis. C. parvum* is the most common species in various hosts and it can be transmitted from different sources to cats (Berahmat et al., 2017). In the analysis of the subgroup based on the type of cats, the prevalence of *Cryptosporidium* spp. in stray cats were higher than that in pet (domestic) cats. Stray cats are freely scattered in the environment and easily access to other animals (e.g. ungulates) or contact with environmental sources (e.g. consumption of oocyst contaminated water and food). They can be considered as an important reservoir of *Cryptosporidium* spp. (Hatam-Nahavandi et al., 2019; Javanmard et al., 2020).

By considering the prevalences of infection in different continents, the highest rate was reported from Africa but only three studies have been conducted in Africa and therefore cannot be decisive. Infection rates in Oceania, America, Asia and Europe were relatively low. The variation in infection rates of different geographical areas may be due to a variety of reasons, including climatic variation, animal husbandry methods, parasite control measures, Human Development Index (HDI), and the use of different diagnostic methods in different areas (Jagai et al., 2009; Taghipour et al., 2020c; Yoder and Beach, 2010). The need for further studies and more attention to *Cryptosporidium* spp. infection in cats in these countries is evident (Table 1). On the other hand, most studies based on molecular analysis have been conducted in developed countries, where laboratory tools are more accessible compared to those in developing countries (Gil et al., 2017). Therefore, access to modern molecular tools with high sensitivities and specificities can be one of the reasons for the low infection rate in developed countries.

In the present meta-analysis, we observed a higher *Cryptosporidium* spp. prevalence in cats aged ≤ 12 months, female gender and cats suffering from diarrhea; however, these differences were only significant in cats aged ≤ 12 months. One of the reasons for the higher prevalence of infection in younger animals may be related to the underdeveloped immune system for acquisition of *Cryptosporidium* spp. infection (Paul et al., 2010; Tzannes et al., 2008). The clinical signs caused by this parasite are generally associated with malnutrition and diarrhea in cats, which can lead to animal death, if left untreated (Goodwin and Barsanti, 1990; Tzannes et al., 2008). In this regard, clinical signs such as weight loss, fever, loss of appetite and watery diarrhea in kitten should be noted, which can prevent the transmission of infection to high-risk groups by timely diagnosis and treatment of sick cats.

The study shows a heterogeneity in prevalence of *Cryptosporidium* spp. with geographic and climate parameters. Climatic conditions and geographical locations have major effect on survival of oocysts (Jagai et al., 2009; Sterk et al., 2013). It is well known that the survival rate of *Cryptosporidium* spp. oocysts is higher in areas with higher humidity and warmer climate in soil, while the survival rate is lower in colder climates (Jagai et al., 2009). Nevertheless, comparisons of prevalence rates between regions based on climatic conditions should be made with caution, since there are several confounding factors, notably different management practices.

The strengths of the present meta-analysis include a comprehensive literature search, rigorous methodology, large sample size, defined clear inclusion and exclusion criteria, studies from different countries and continents, different subgroup analysis and quality assessment. However, the present systematic review and meta-analysis has certain limitations, including (1) although a comprehensive search of the available peer-reviewed literature has been undertaken and included a large number of studies that had assessed the prevalence of Cryptosporidium spp. in cats; (2) the lack of published information on the prevalence of Cryptosporidium spp. in cats from many low and middle-income countries; (3) lack of risk factors (i.e. age and gender) and clinical signs (i.e. gastrointestinal disorders) in most studies; (4) finally, the fact that most included studies applied only a single fecal/serum sample for detection and diagnosis of the parasite. The meta-analysis results may not reflect the true prevalence, and the reported numbers are apparent prevalence. Nevertheless, the report is close to the true Cryptosporidium spp. prevalence in cats from a global perspective.

In conclusion, despite some of the above limitations, the systematic review and meta-analysis study provides a comprehensive and useful overview of the *Cryptosporidium* spp. prevalence in cats worldwide. It becomes evident that there is a considerably burden of *Cryptosporidium* spp. in cats (6%). The results also show that *C. felis* followed by *C. parvum* were the main species found in cats. This information can be taken into consideration by the health policymakers, physicians, veterinarians, and cats' owners to implement measures to reduce the incidence of this parasite. Veterinarians can inform their clients of this parasite and advise them for the clinical significance of *Cryptosporidium* spp., the infection risks from cats to humans, particularly if their clients or other members of the household are immunosuppressed. People

Study		Prevalence	95% CI
Microscopy			
Arai et al. 1990 Japan	2	0.04	(0.09: 0.06)
Mumbriet al. 1991 Sectional		0.08	0.05: 0 12]
Svobodova et al. 1994 Czech Republic		0,06	0.01; 0.11]
Katsumata et al. 1998 Indonesia		0.02	(0.01; 0.04]
Kirkpattick 1998 USA		0.00	[0.00; 0.01]
Sargent et al. 1998 Australia Abdel-Makseud and Almred 1999 Fgypt		0,20	0,12; 0 32]
Hill et al. 2000 USA	<u> </u>	0.02	[0.01; 0.05]
Spain et al. 2001 USA McGlode et al. 2003 Australia		0.04	[0.02: 0.07]
Cirak and Bauer 2004 Germany	-	0.01	0.00: 0.051
Cox et al. 2005 Australia Al-Mashali 2007 Inte		0,41	[0,16; 0.25] (0.04: 0.141
Rambezzi et al. 2007 Italy	—	0.24	(0.19: 0.31)
Adams et al. 2008 Australia	<u>-</u>	0.01	[0.01: 0.18]
Tzannes et al. 2008 UK	ă	0,01	0.01;0.03]
Graceneu et al. 2009 Spain		0,04	[0.01; 0.13]
Overgaanse et al. 2009 Netherlands Yamanaata et al. 2009 Jaman	-	0.05	(0.01: 0.22)
Gow et al. 2009 UK	-	0,00	0.00:0.061
Balirani et al. 2011 Iran		0,08	[0,01; 0,21]
Lenes et al. 2012 Brazil		0.04	0.04: 0.18]
Arijos et al. 2013 Brazil		0.11	[0.07: 0.26]
Greece et al. 2013 Brazil Hornes et al. 2013 Canada		0.00	0.00:013
Hadi and Faraj 2014 Iraq	-	0.10	[0.05; 0.19]
Al-Aredhi 2015 Iraq History et al. 2015 Austria	.	0.02	(0.01: 0.09)
Villeneuve et al. 2015 Canada	ă	0.01	0.01: 0.02]
Gemuri et al. 2016 Brazil	—	0,06	[0,04] 0.08]
Mirzeghavarai et al. 2016 Iran Niuguna et al. 2017 Kenya		0.18	[0,10; 0,31] [0,32: 0,50]
Raue et al. 2017 Germany		0.02	[0.02: 0.01]
Wyrosafiek et al. 2017 USA Definite al. 2017 Janu	-	0.07	0.03: 0 141
Alves et al. 2018 Brazil	T	0.22	(0.13: 0.36]
Hassan and Barzinji 2018 Iraq		0.27	(0.17: 0.41)
Moreira et al. 2018 Brazil Kiluse et al. 2018 Tinkey		0.01	[0.03: 0.33] [0.01: 0.08]
Homoyouni et al. 2019 Iran	—	0,01	0,00;0.02]
Kurnosava et al. 2019 Russia	<u>.</u>	0.01	[0.01; 0.02]
Latif et al. 2020 Iraq		0.32	[0.15: 0.51]
Nagamori et al. 2020 LSA		0.00	10:00:0.001
Terrico et al. 2020 Brazil Random effects model	-	0,00	[0,00; 0.02] 10.03: 0.071
Heterogeneity: $\vec{F} = 94\%_0$, $\tau^2 = 0.0274$, $\rho < 0.01$			Inter and
C			
Ciproantigens Cira's and Bauer 2004 Germany		0,50	[0,22; 0.40]
Nutter et al. 2004 USA	-	0.07	[0.04; 0.12]
Ballweber 2009 USA Paoletti et al. 2011 Italy		0.12	[0.09; 0.17] [0.00; 0.02]
Scorza et al. 2011 Costa Rica		0.14	0.03: 0 51]
Typnes et al. 2011 Norway Magneticity at al. 2012 Italia		0,02	0.00;0.10]
Queen et al. 2012 USA	8	0.02	(0.01: 0.05)
Horpes et al. 2013 Canada	-	0.02	[0.01: 0.03]
Scorza et al. 2014 LK Slapeta et al. 2015 Australia	-	0.17	0.12:0.24
Lucio et al. 2017 Spain		0.09	[0.03; 0.23]
Gillet al. 2017 Spain Kesteranles et al. 2017 Greene		0.05	(0.02: 0.13)
Tagt/sch et al. 2018 USA	-	0.03	0.02: 0.07]
Sauda et al. 2019 Italy	·	0,02	0,00;0.05]
Random effects model	•	0.06	[0.03: 0.10]
Heterogeneity: $\vec{F} = 80\%_{0} c^{2} + 0.0170_{0} \rho < 0.01$			
Molorthan			
McGlade et al. 2003 Australia		0,10	[0.04; 0.23]
Santin et al. 2006 Colombia Nechineli al al. 2004 Insta		0.13	(0.06: 0.26)
Sabshin et al. 2012 USA		0.15	0.09: 0 23
Sotiriadou et al. 2013 Germany	-	0,05	0.01; 0.25]
Keompapong et al. 2014 Thailand	-	0.02	[0.01; 0.20]
Mancianti et al. 2014 Italy	-	0.02	0.01: 0.06]
Li et al. 2015 China Vara et al. 2015 Asserblis	-	0.04	0.01: 0.13
he et al. 2016 Japan	• • •	0.01	0.01; 0.04]
Xu et al. 2016 China	<u>=</u>	0.04	(0.02: 0.08)
Kvac et al. 2017 Csech Republic Kvac et al. 2017 Shevakia	-	0.05	0.01:0111
Kvac et al. 2017 Poland		0,01	0.01; 0.11]
Alves et al. 2018 Brazil Kiline, et al. 2018 Turkey		0.08	[0.02: 0.19]
Li et al. 2019 China	a	0.06	[0.01: 0.09]
Li et al. 2019 China Misana et al. 2019 Decidi	-	0.02	0.01:0.04
Terrico et al. 2020 Brazil		0,00	[0,00; 0.03]
Random effects model	•	0.05	0.03: 0.07
Hereageneity: $P = 76\%_{0} c^{2} + 0.0056_{0} p \le 0.01$			
Scrology			
Svobodova et al. 1994 Czech Republic		0,43	0.35; 0.51]
Lappin et al. 1997 USA	÷ *	0.15	[0.05; 0.79]
McReynolds et al. 1979 LNA		0.00	0.06:011]
Random effects model		0,05	[0,01; 0.09] [0,01; 0.671
Heterogeneity: $I^2 = 99\%_0$, $\tau^2 = 0.1146$, $\rho < 0.01$		0.20	Toron and t
Paulom effects model		0.07	10.04/ 0.001
Heterogeneity: $J^{*} = 98\%$, $\tau^{*} = 0.0290$, $p = 0$		0.06	[n:n4; n:n8]
Test for subgroup differences: $\chi_j^2 = 4.76$, df = 3 (p = 0.19)	9 9.2 9.4 9.6 8.8 1		
	(revalence (r. + confidence interval)		

Fig. 2. Forest plot of the prevalence of Cryptosporidium infection in cats worldwide, based on detection methods.

should practice good sanitation and hygiene to reduce environmental contamination with infectious oocysts that may be shed by their pets. We recommend further investigations to enhance knowledge on the prevalence and genetic diversity of *Cryptosporidium* spp. in cats worldwide to guide the development of appropriate public health interventions.

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rvsc.2021.04.015.

Authors' contributions

All authors contributed to study design. ATa contributed to all parts of the study. ATa and SK contributed to study implementation. MO, MF, AVE and MB collaborated in the analysis and interpretation of data. ATa, PK, SG, MS and AT collaborated in the manuscript writing and revision. All the authors commented on the drafts of the manuscript and approved the final version of the article.

Funding

This research did not receive any specific grant from funding agencies in public, commercial, or not-for-profit sectors.

Competing interests

None declared.

Ethical approval

None required.

Acknowledgements

We thank the scientists and personnel of the Medical Parasitology Department in Tarbiat Modares University of Medical Sciences, Tehran, for their collaboration.

References

- Ayinmode, A., Fagbemi, B., 2011. Cross-reactivity of some *Crypto sporidium* species with *Crypto sporidium parvum* coproantigen in a commercial ELISA kit. Niger. Vet. J. 32, 1–4.
- Ballweber, L. R., Panuska, C., Huston, C. L., Vasilopulos, R., Pharr, G. T., Mackin, A., 2009. Prevalence of and risk factors associated with shedding of *Crypto sporidium felis* in domestic cats of Mississippi and Alabama. Vet. Parasitol. 160, 306–310.
- Barker, S.B., Wolen, A.R., 2008. The benefits of human-companion animal interaction: a review. J. Vet. Med. Educ. 35, 487–495.
- Beck, A.M., Meyers, N.M., 1996. Health enhancement and companion animal ownership. Annu. Rev. Public Health 17, 247–257.
- Berahmat, R., Spotin, A., Ahmadpour, E., Mahami-Oskouei, M., Rezamand, A., Aminisani, N., Ghojazadeh, M., Ghoyounchi, R., Mikaeili-Galeh, T., 2017. Human cryptosporidiosis in Iran: a systematic review and meta-analysis. Parasitol. Res. 116, 1111–1128.
- Bowman, D.D., Lucio-Forster, A., 2010. Cryptosporidiosis and giardiasis in dogs and cats: veterinary and public health importance. Exp. Parasitol. 124, 121-127.
- Chalkowski, K., Wilson, A.E., Lepczyk, C.A., Zohdy, S., 2019. Who let the cats out? A global meta-analysis on risk of parasitic infection in indoor versus outdoor domestic cats (*Felis catus*). Biol. Lett. 15, 20180840.
- Cirak, V.Y., Bauer, C., 2004. Comparison of conventional coproscopical methods and commercial coproantigen ELISA kits for the detection of *Giardia* and *Cryptosporidium* infections in dogs and cats. Berl. Münch Tierärztl. Wochenschr. 117, 410–413.
- Doing, K.M., Hamm, J.L., Jellison, J.A., Marquis, J.A., Kingsbury, C., 1999. False-positive results obtained with the Alexon ProSpect Cryptosporidium enzyme immunoassay. J. Clin. Microbiol. 37, 1582–1583.
- Dubey, J.P., Cerqueira-Cezar, C.K., Murata, F.H.A., Kwok, O.C.H., Yang, Y.R., Su, C., 2020. All about toxoplasmosis in cats: the last decade. Vet. Parasitol. 283, 109145.

Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis

detected by a simple, graphical test. BMJ 315, 629-634.

- Elsa fi, S.H., Al-Ma qa ti, T.N., Hussein, M.I., Adam, A.A., Hassan, M.M.A., Al Zahrani, E.M., 2013. Comparison of microscopy, rapid immunoassay, and molecular techniques for the detection of *Giardia lamblia* and *Crypto sporidium parvum*. Parasitol. Res. 112, 1641–1646.
- Frost, F.J., Muller, T.B., Calderon, R.L., Craun, G.F., 2004. Analysis of serological responses to *Crypto sporidium* antigen among NHANES III participants. Ann. Epidemiol. 14, 473–478.
- Gambhir, I.S., Jaiswal, J.P., Nath, G., 2003. Significance of Cryptosporidium as an aetiology of acute infectious diarrhoea in elderly Indians. Tropical Med. Int. Health 8, 415–419.
- Gil, H., Cano, L., de Lucio, A., Bailo, B., de Mingo, M.H., Cardona, G.A., Fernández-Basterra, J.A., Aram buru-Aguirr e, J., López-Molina, N., Carmena, D., 2017. Detection and molecular diversity of *Giardia duodenalis* and *Crypto sporidium* spp. in sheltered dogs and cats in Northern Spain. Infect. Genet. Evol. 50, 62–69.
- Goodwin, M., Barsanti, J., 1990. Intractable diarrhea associated with intestinal cryptosporidiosis in a domestic cat also infected with feline leukemia virus. J. Am. Anim. Hosp. Assoc. 26, 365–368.
- Hatam-Nahavandi, K., Ahmadpour, E., Carmena, D., Spotin, A., Bangoura, B., Xiao, L., 2019. *Cryptosporidium* infections in terrestrial ungulates with focus on livestock: a systematic review and meta-analysis. Parasit. Vectors 12, 453.
- Higgins, J.P., Thompson, S.G., Deeks, J.J., Altman, D.G., 2003. Measuring inconsistency in meta-analyses. BMJ 327, 557–560.
- Hunter, P.R., Thompson, R.A., 2005. The zoonotic transmission of *Giardia* and *Crypto sporidium*. Int. J. Parasitol. 35, 1181–1190.
- Institute, J.B., 2014. Joanna Briggs Institute reviewers' Manual. 2014 edition The Joanna Briggs Institute, Australia.
- Jagai, J.S., Castronovo, D.A., Monchak, J., Naumova, E.N., 2009. Seasonality of cryptosporidiosis: a meta-analysis approach. Environ. Res. 109, 465–478.
- Javanmar d, E., Mirsam adi, E.S., Olfatifar, M., Ghasemi, E., Saki, F., Mirjalali, H., Zali, M.R., Karanis, P., 2020. Prevalence of *Cryptosporidium* and *Giardia* in vegetables in Iran: a nineteen-years meta-analysis review. J. Environ. Health Sci. Eng. 1–13. https://doi.org/10.1007/s40201-020-00493-w.
- Khalil, I.A., Troeger, C., Rao, P.C., Blacker, B.F., Brown, A., Brewer, T.G., Colombara, D.V., De Hostos, E.L., Engmann, C., Guerrant, R.L., Haque, R., Houpt, E.R., Kang, G., Korpe, P.S., Kotloff, K.L., Lima, A.A.M., Petri, Jr., W. A., Platts-Mills, J.A., Shoultz, D.A., Forouzanfar, M.H., Hay, S.I., Reiner, Jr., R.C., Mokdad, A.H., 2018. Morbidity, mortality, and long-term consequences associated with diarrhoea from *Cryptosporidium* infection in children younger than 5 years: a meta-analyses study. Lancet Glob. Health 6, e758–e768.
- McConnell, A.R., Brown, C.M., Shoda, T.M., Stayton, L.E., Martin, C.E., 2011. Friends with benefits: on the positive consequences of pet ownership. J. Pers. Soc. Psychol. 101 (6) p.1239.
- Mekaru, S. R., Marks, S. L., Felley, A.J., Chouicha, N., Kass, P.H., 2007. Comparison of direct immunofluorescence, immunoassays, and fecal flotation for detection of *Cryptosporidium* spp. and *Giardia* spp. in naturally exposed cats in 4 Northern California animal shelters. J. Vet. Intern. Med. 21, 959–965.
- Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., Group, P.-P., 2015. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4, 1.
- Nime, F.A., Burek, J.D., Page, D.L., Holscher, M.A., Yardley, J.H., 1976. Acute enterocolitis in a human being infected with the protozoan *Cryptosporidium*. Gastroenterol 70, 592–598.
- Papini, R.A., Verin, R., 2019. Giardia and Cryptosporidium in red foxes (Vulpes vulpes): screening for coproantigens in a population of Central Italy and minireview of the literature. Maced Vet Rev 42, 101–106.
- Paul, M., King, L., Carlin, E.P., 2010. Zoonoses of people and their pets: a US perspective on significant pet-associated parasitic diseases. Trends Parasitol. 26, 153–154.
- Ramírez-Ocampo, S., Cotte-Alzate, J.D., Escobedo, Á.A., Rodríguez-Morales, A.J., 2017. Prevalence of zoonotic and non-zoonotic genotypes of *Giardia intestinalis* in cats: a systematic review and meta-analysis. Infez. Med. 25, 326–328.
- Robertson, I.D., Thompson, R.C., 2002. Enteric parasitic zoonoses of domesticated dogs and cats. Microbes Infect. 4, 867–873.
- Robinson, G., Chalmers, R.M., 2020. *Cryptosporidium* diagnostic assays: microscopy. In: Cryptosporidium. Springer, pp. 1–10.
- Robinson, G., Elwin, K., Chalmers, R.M., 2020. *Crypto sporidium* diagnostic as says: molecular detection. In: Cryptosporidium. Springer, pp. 11–22.
- Rostam i, A., Riahi, S. M., Fallah Om rani, V., Wang, T., Hofmann, A., Mirzapour, A., Foroutan, M., Fakhri, Y., Macpherson, C. N.L., Gasser, R. B., 2020a. Global prevalence estimates of *Toxascaris leonina* infection in dogs and cats. Pathogens 9, 503.
- Rostam i, A., Sepidarkish, M., Ma, G., Wang, T., Ebrahimi, M., Fakhri, Y., Mirjalali, H., Hofmann, A., Macpherson, C.N.L., Hotez, P.J., Gasser, R.B., 2020b. Global prevalence of *Toxocara* infection in cats. Adv. Parasitol. 109, 615–639.
- Ryan, U., Fayer, R., Xiao, L., 2014. Crypto sporidium species in humans and animals: current understanding and research needs. Parasitology 141, 1667–1685.

Schwarzer, G., 2007. meta: An R package for meta-analysis. R news 7, 40–45. Scorza, A.V., Duncan, C., Miles, L., Lappin, M.R., 2011. Prevalence of selected

A. Taghipour et al.

zoonotic and vector-borne agents in dogs and cats in Costa Rica. Vet. Parasitol. 183, 178-183.

- Sterk, A., Schijven, J., de Nijs, T., de Roda Husman, A.M., 2013. Direct and indirect effects of climate change on the risk of infection by water-transmitted pathogens. Environ. Sci. Technol. 47, 12648–12660.
- Sykes, J.E., 2013. Canine and feline infectious diseases-E-BOOK. Elsevier Health Sciences.
- Taghipour, A., Javanmard, E., Haghighi, A., Mirjalali, H., Zali, M.R., 2019. The occurrence of *Cryptosporidium* sp., and eggs of soil-transmitted helminths in market vegetables in the north of Iran. Gastroenterol. Hepatol. Bed Bench 12 364.
- Taghipour, A., Bahadory, S., Khazaei, S., 2020a. A systematic review and metaanalysis on the global prevalence of microsporidia infection among dogs: a zoonotic concern. Trop. Med. Health 48, 1–10.
- Taghipour, A., Olfatifar, M., Bahadory, S., Godfrey, S.S., Abdoli, A., Khatami, A., Javanmard, E., Shahrivar, F., 2020b. The global prevalence of *Cryptosporidium* infection in dogs: a systematic review and meta-analysis. Vet. Parasitol. 281, 109093.
- Taghipour, A., Olfatifar, M., Foroutan, M., Bahadory, S., Malih, N., Norouzi, M., 2020c. Global prevalence of *Cryptosporidium* infection in rodents: a systematic review and meta-analysis. Prev. Vet. Med. 105119.
- Taghipour, A., Olfatifar, M., Rostami, A., Foroutan, M., Vasigala, V., Norouzi, M., 2020d. Intestinal parasites in hemodialysis patients from developing countries: a systematic review and meta-analysis. Hemodial. Int. 24, 12–21.
- Taghipour, A., Ghodsian, S., Shajarizadeh, M., Sharbatkhori, M., Khazaei, S., Mirjalali, H., 2021. Global prevalence of microsporidia infection in cats: a systematic review and meta-analysis of an emerging zoonotic pathogen. Prev. Vet. Med. 105278.
- Tzannes, S., Batchelor, D.J., Graham, P.A., Pinchbeck, G.L., Wastling, J., German,

- A.J., 2008. Prevalence of *Cryptosporidium, Giardia* and *Isospora* species infections in pet cats with clinical signs of gastrointestinal disease. J. Feline Med. Surg. 10, 1–8.
- Ukwah, B., Ezeonu, I., 2013. Prevalence of *Crypto sporidium* and other intestinal parasites using different diagnostic techniques in Enugu Metropolis, southeastern Nigeria. Afr. J. Microbiol. Res. 7, 1366–1370.
- Van den Bossche, D., Cnops, L., Verschueren, J., Van Esbroeck, M., 2015. Comparison of four rapid diagnostic tests, ELISA, microscopy and PCR for the detection of *Giardia lamblia*, *Cryptosporidium* spp. and *Entamoeba histolytica* in feces. J. Microbiol. Methods 110, 78–84.
- Wang, Z.D., Liu, Q., Liu, H.H., Li, S., Zhang, L., Zhao, Y.K., Zhu, X.Q., 2018. Prevalence of *Cryptosporidium*, microsporidia and *Isospora* infection in HIVinfected people: a global systematic review and meta-analysis. Parasit. Vectors 11, 28.
- Weber, R., Bryan, R.T., Bishop, H.S., Wahlquist, S.P., Sullivan, J.J., Juranek, D. D., 1991. Threshold of detection of *Cryptosporidium* oocysts in human stool specimens: evidence for low sensitivity of curr ent diagnostic methods. J. Clin. Microbiol. 29, 1323–1327.
- Webster, K., Smith, H., Giles, M., Dawson, L., Robertson, L., 1996. Detection of *Cryptosporidium parvum* oocysts in faeces: comparison of conventional coproscopical methods and the polymerase chain reaction. Vet. Parasitol. 61, 5–13.
- Xiao, L., Cama, V.A., 2018. Cryptosporidium and cryptosporidiosis. In: Foodborne Parasites. Springer, pp. 73–117.
- Yoder, J.S., Beach, M.J., 2010. Cryptosporidium surveillance and risk factors in the United States. Exp. Parasitol. 124, 31–39.
- Zhang, H.-F., Lu, Y.-W., Xie, Z.-R., Wang, K.-H., 2017. Relationship between human mutL homolog 1 (hMLH1) hypermethylation and colorectal cancer: a meta-analysis. Med. Sci. Monit. 23, 3026–3038.