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Abstract— This work reviews the state-of-the-art neuromarkers 

development for the prognosis of Alzheimer’s diseases (AD) and 

mild cognitive impairment (MCI). The first part of this study is 

devoted to reviewing the recently emerged machine learning (ML) 

algorithms based on electroencephalography (EEG) and 

magnetoencephalography (MEG) modalities. In particular, the 

methods are categorized by different types of neuromarkers. The 

second part of the review is dedicated to a series of investigations 

that further highlight the differences between these two 

modalities. Firstly, several source reconstruction methods are 

reviewed and their source-level performances explored, followed 

by an objective comparison between EEG and MEG from multiple 

perspectives. Finally, a number of the most recent reports on 

classification of MCI/AD during resting state using EEG/MEG are 

documented to show the up-to-date performance for this well-

recognized data collecting scenario. It is noticed that the MEG 

modality may be particularly effective in distinguishing between 

subjects with MCI and healthy controls, a high classification 

accuracy of more than 98% was reported recently; whereas the 

EEG seems to be performing well in classifying AD and healthy 

subjects, which also reached around 98% of the accuracy. A 

number of influential factors have also been raised and suggested 

for careful considerations while evaluating the ML-based 

diagnosis systems in the real-world scenarios. 

 
Index Terms— Alzheimer's disease; mild cognitive impairment; 

MEG; EEG; biomarkers; neuromarkers. 

 

I. INTRODUCTION 

ITH the continuous development of health care 

provisions, the life expectancy of humans has witnessed 

an increasing trend in most of the world. Take UK for instance, 

during years 2014 to 2016, the life expectancy at birth was 79.2 

years for males and 82.9 years for females, which underwent a 

slight increment (one month for male and two weeks for female) 

compared to the year range 2013 to 2015 [1]. With the 

facilitation of better health care over the years, additional 

increase of the life expectancy can be expected from the 

developing countries. However, the expanded life expectancy 

also leads to a higher chance of getting the ageing-related brain 

disorders that can have devastating effects on our daily life, 

some of which are even the direct cause of death. Undoubtedly, 

as one of the most sophisticated organs of the human beings, 

brain is the least well-explored part of the body: the reasons 

behind many brain malfunctions are still not quite clear, even 

after centuries of research [2]. Dementia, particularly the 

Alzheimer’s disease (AD), is one of such brain malfunctions 

that can potentially lead to fatal consequences, if left without 

proper treatment in time. Over 9.9 million new cases of 

dementia are diagnosed each year worldwide, which implies 

one new case every 3.2 seconds. Of all the dementia cases, 

about 60%-70% are classified as AD [3]. Unfortunately, the 

cause of the AD is rather poorly understood, around 70% of the 

risks is believed to be genetic and many of which are related to 

genes directly [3, 4]. However, there are clear visual evidences 

observed in patients who have been diagnosed with AD: the 

size and shape of their brains tend to change drastically 

compared with the healthy brains [5]. It is therefore possible to 

detect and start the diagnosis process early, hence preventing or 

at least delaying the brain from evolving to the typical AD 

stage. As the prodromal/transitional process before AD, the 

confirmation of mild cognitive impairment (MCI) has become 

a critical factor to predict the occurrence of AD in the long run 

[6]. Although MCI is considered a pre-stage of AD and other 

dementias, the gradual cognitive decline may also be directly 

caused by other factors including depression, heart disease, 

diabetes, stroke, high blood pressure and cholesterol, or it may 

coexist with these comorbidities, as has been noted in [7]. For 

instance, it has been observed that the rate of conversion from 

MCI to AD can be 10% per year [8], which point to the 

importance of devising early neuro-rehabilitation and drug-

therapy programs to treat early symptoms. 

Moreover, with the age span increasing, there is an ever-

increasing demand for professional doctors with necessary 

expertise for MCI/AD treatment. This makes it a necessity to 

deploy a fast and potentially more affordable program for the 

diagnosis of MCI and early AD. With the rapid development in 

the Machine Learning (ML) field, in particular the 
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advancements in novel implementations for big data analysis 

[9, 10], a whole category of efficient and arguably more 

accurate ML approaches for the detection of early stage AD is 

now more viable than ever before. 

In recent years, several reports have emerged in the 

community using algorithms based on ML to discover 

biomarkers that are related to brain anatomical or functional 

characteristics, drug-treatment efficacy, disease mechanisms or 

general malfunctions of the brain. In a typical ML approach, 

usually features are explored to discover most critical diverging 

patterns among MCI/AD and healthy control subjects: the 

decision-making process of such classification/recognition only 

takes up a few seconds, which has therefore become one of the 

most appealing advantages over any human doctor. Another 

advantage of the ML approach is the efficiency of an expert 

system: given enough data, the system can be trained to learn 

incredible amount of information in a rather short period of time 

(the system training typically may take minutes to a few days 

maximum); whereas to train a qualified neurologist/clinician 

often needs years of hard working and internships. The ML-

supported program can potentially reduce the cost of diagnosis 

considerably. 

A number of clinical modalities have been developed to 

study dynamical changes of brain activity and also have 

demonstrated critical application for detecting and monitoring 

changes in brain disorders. These techniques can be routinely 

integrated into the ML framework. Among the frequently used 

neuroimaging modalities, electroencephalography (EEG) and 

magnetoencephalography (MEG) have been used to evaluate 

brain functional and connectivity changes in AD/MCI 

detections. A number of documented reviews/surveys have 

addressed the diagnosis of Alzheimer’s diseases and MCI using 

EEG/MEG from different angles. For example, the EEG and 

MEG based source connectivity analysis techniques focusing 

on AD were reviewed in [11]; using MEG as a putative 

biomarker for AD prediction/detection was reported in [12]; the 

MEG and its general analysis techniques are covered in [13]; a 

critical review specifically devoted to the EEG and ERP 

biomarkers of Alzheimer’s disease was proposed in [14]; one 

recent survey paper introduced various preclinical biomarkers 

for identifying AD and MCI based on EEG/MEG in detail from 

the medical/clinical perspective [15]. 

Biomarkers can be broadly categorized into two major types: 

pathophysiological and topographical markers. The indicators 

for brain amyloidosis and tautopathy, such as amyloid tracer 

PET scans, T-tau and P-tau, are considered pathophysiological, 

whereas these changes are accompanied by neuronal and 

synaptic atrophy, leading to brain metabolic and connectivity 

cascades that can be quantified using topographical markers 

such as DTI, fMRI, FDG-PET and M/EEG [16]. It is worth 

mentioning that for topographical markers, the M/EEG-based 

neuromarkers are good indicators for neurophysiological 

evaluation of the disease status and its progression process, 

however, they may not be quite effective for diagnostic 

purposes. Unlike the deposition of Amyloid-beta (Aβ) 1-42 or 

phosphorylated Tau in the brain, M/EEG-based topographical 

neuromarkers do not directly reflect the pathophysiological 

characteristics of MCI and AD in the brain [16]. This work aims 

to address the topic from a machine learning point of view, and 

particularly, reviews the recent studies mainly on the 

topographical neuromarkers that focus on EEG/MEG recorded 

in a resting state (RS) scenario. 

Several effective neuromarkers have been tested to predict 

the MCI and diagnose the AD [16, 17, 18, 19] . For example in 

the frequency domain, the power spectral density (PSD) and 

related methods have long been one of the most frequently used 

techniques to explore effective neuromarkers in EEG/MEG 

research [20, 21]. In the time domain, the analysis of functional 

connectivity has been especially useful in the study of unusual 

changes in region(s) of interest  and its communication [23]. 

For the RS M/EEG scenario, PSD-related neuromarkers are 

useful to study cortical synchronization/desynchronization, 

whereas the functional cortical/deep source connectivity is 

often evaluated by markers such as coherence, lagged linear 

connectivity and other indexes [16]. 

 Entropy is another popular statistical measure that have 

proven to be useful in neuromarkers research at the regional and 

functional connectivity level (e.g. Shannon spectral entropy 

[24], cross-approximate entropy [25] and dispersion entropy 

[26]). These methods are also often combined and implemented 

on top of other time-frequency analyses, such as the methods 

based on wavelet and empirical mode decomposition. 

The proposed neuromarkers in the literature critically rely on 

the underlying used modality. For instance, FDG-PET’s 

neuromarkers are associated with decrease/increase of 

metabolism in ROIs, possibly related to Alzheimer’s 

progression, whereas MRI is commonly used to measure brain 

atrophy, or more specifically atrophy in critical ROIs such as 

entorhinal and hippocampal areas due to its role in memory 

processes [27]. Similarly, fMRI can be used to study 

decreased/increased brain functional activity that may be 

related to changes in metabolism or atrophy. Independently, 

Tau-PET and Aβ PET’s neuromarkers can reveal those ROIs 

where tau and Aβ abnormal proteins accumulate with adverse 

effects such as synaptic and neuronal degeneration. Above 

modalities are excellent to identify affected ROIs due to its 

advantageous spatial properties, though they are much less 

relevant to study critical changes in brain oscillations.  

Due to its excellent temporal resolution and intrinsic 

properties, EEG/MEG are much better positioned to study the 

brain dynamical changes, and many techniques can be directly 

borrowed from other areas to study the neuronal 

communication phenomena, such as Hidden Markov Model 

from signal processing [28] and deep learning from artificial 

intelligence [29]. However, MEG arguably possess certain 

advantages over other modalities: Compared to EEG, 1) the 

helmet of the MEG machine usually contains large number of 

sensors (a typical MEG machine could have more than 300 

sensors), whereas EEG high density montages are limited to 

under 200 sensors with the burden of increased hours of 

preparation to reduce the electrodes impedance and guarantee 

the signal quality; 2) The magnetic field is mostly unaffected 

by the scalp which otherwise has negative filtering effects over 

the EEG signal; therefore source reconstruction analyses are 
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potentially more accurate for MEG data. As opposed to fMRI 

and PET, 3) MEG signals may offer real-time data analysis and 

monitoring of brain dynamical states, and thanks to the high 

density of the sensor montage, the reconstructed brain activity 

in the source space may achieve a spatial accuracy as good as 

that obtained with fMRI. In sum, MEG offers the highest 

temporal resolution, and therefore facilitates much richer 

statistical analysis that may exploit directly the critical 

information contained in neuronal oscillations. 

In this paper, we review the state-of-the-art neuromarkers for 

detecting/classifying the AD and MCI. It is subsequently 

organized into three main sections. Section II is devoted to the 

review of numerous neuromarkers in diagnosing the AD and 

MCI, which is further divided into four subsections for specific 

topics on different types of features. In Section III, we focus on 

addressing the problem from a comparative point of view. The 

M/EEG reported findings at sensor- and source-level analysis 

are firstly contrasted, followed by a systematic analysis of EEG 

and MEG results on MCI/AD classification, with particular 

interest in discussion of the most relevant results on resting state 

M/EEG for MCI/AD classification. Conclusions and discussion 

are presented in Section IV. 

II. NEUROMARKERS FOR MCI AND AD DETECTION 

The neuromarkers for MCI and AD detection/classification 

are reported in this section. Accurately diagnosing AD has been 

an active research topic for the past several decades; despite its 

vague cause, many effective neuromarkers were proposed in the 

literature to identify the presence of such brain mal-functioning. 

However, the development of the features within the machine 

learning scope is still underway, as the neuromarkers reported 

so far do not provide adequate specificity and sensitivity values 

for application in clinical practice. In addition, most of the 

reported neuromarkers are based on studies using a relatively 

small number of samples, and that critically affect the 

reproducibility of these studies. Even though in some reports, 

the cross-validation or other techniques only showed a small 

error, there is a risk of overfitting due to using the data obtained 

from small number of participants [28, 29]. The typical 

neuromarkers are discussed below under four broad categories. 

2.1 Time-domain neuromarkers 

One of the most intuitive ways for the neuromarker 

extraction is to find the informative features in the time domain 

directly. Mamani et al. [17] reported experiments using the 

grand average P450 event-related potential (ERP) as the feature 

for a three-class classification problem: 15 AD patients, 20 MCI 

subjects and 26 normal controls participated in the data 

collection experiments using a 32-channel EEG cap. Subjects 

were instructed to perform a series of visual-based working 

memory tasks. The independent component analysis was 

employed for automatic noise removal; the nonparametric 

Kruskal Wallis test is adopted to measure the cluster correction 

and 5% significance level were used to test the difference 

amongst the three classes; these classes were analysed using the 

conventional k-mean clustering algorithm. While performing 

the working memory tasks, it was found that the fronto-centro-

parietal electrodes captured the most distinctive ERP signals for 

the three-class classification. 

Yu et al. [20] proposed to use permutation dis-alignment 

index (PDI) to measure the coupling strength between EEG 

series in the time domain. Data from a 16-channel EEG system 

was collected to compute this feature; 14 right-handed patients 

with a diagnosis of AD and 14 age-matched healthy subjects 

participated in the experiment. Only the middle 10 minutes of 

recordings with high confidence were preserved for feature 

extraction; it was found that the value of PDI is inversely 

correlated with the strength of functional connectivity. Coupled 

with another neuromarker namely graph index complexity 

(GIC), the combined PDI-GIC neuromarker pair (weight ratio 

2:1) achieved classification rate of 98.9%, which improved by 

6.4% compared to using only the best single marker PDI. The 

recognition performance is quite encouraging; however, the 

number of subjects involved in the study is relatively low to 

generalize well across the AD population. 

2.2 Frequency domain neuromarkers 

As a complement to the time domain analysis, frequency 

analysis captures the features from the angle of maximising the 

energy/power information. With this approach, often the time 

information of the signal is entirely sacrificed. Therefore, often 

both the time and frequency domain features were extracted for 

better representation of the signal. Hornero et al. [32] presented 

a recognition system that could discriminate AD patients from 

healthy subjects by analysing the MEG background activities. 

A number of biomarkers were employed to test the 

effectiveness of classification, including the median frequency 

and spectral entropy in the frequency domain, approximate 

entropy and Lempel-Ziv complexity in the time domain. There 

were 41 elderly subjects involved in the experiment, 20 of 

which were AD patients and the rest were healthy controls. It is 

worth mentioning that the employed MEG system contained 

only 148 channels (comparable with some EEG systems); the 

signals were segmented into epochs of 10 seconds’ length. The 

linear discriminant analysis (LDA) and a forward stepwise 

LDA with a leave-one-out cross-validation scheme were used 

for feature selection and classification. The best classification 

rate was achieved using the spectral median frequency with an 

accuracy of 75.6%. By further sequentially combining the 

second-best feature, i.e. approximate entropy, the recognition 

accuracy increased to 80.5% (80.0% sensitivity, 81.0% 

specificity). The frequency domain power spectral density as 

the biomarker played a critical role in their experiment, and it 

appears that by combining frequency domain and time domain 

features, the system performance could receive a boost. 

Using EEG modality, power-based neuromarkers have also 

been used for MCI classification. Ye et al. [21] conducted a 

series of tasks to distinguish the healthy controls and MCI 

patients using a 64-channel EEG recording system. Their 

experiments included 22 participants, half of which were MCI 

subjects. The epoch length was 2.5 seconds during 

segmentation; the relative power ratio (the ratios are obtained 

by computing the individual band powers divided by the overall 

band power) was computed for each of these epochs. According 
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to their report, theta band is the main abnormal rhythm, whereas 

no significant differences were found between the relative alpha 

powers of two groups. It is also found that the MCI subjects in 

general have higher ratios and absolute power; in particular, the 

left temporal area was found as the most affected region in the 

brain for subjects with MCI. 

Mazaheri et al. [33] investigated the topic of whether the 

subtle anomalies in EEG activity of MCI patients during a word 

comprehension task could provide the evidence of the 

conversion to AD. The research involved 25 amnestic MCI 

patients, a subset of whom developed AD within 3-years, and 

the data from 11 elderly controls were used for the comparative 

analysis. The EEG data from 19 to 32 channels was recorded at 

250 Hz; time-frequency representations of power as the 

biomarkers were calculated for each trial (1 second prior to 

word onset, and 1.5 second after). It is well known that the 

sensor-level data analysis tends to be inaccurate due to the 

problems associated with volume conduction, i.e. the nearby 

electrodes pick up activities from the same sources hence make 

the received signals mixed. The method proposed in [33], 

instead of performing source reconstruction, attempted to 

circumvent this issue by focusing on trial-by-trial negative 

correlations [24, 33], given it is unlikely that a common source 

generates a simultaneous increase and decrease in power of 

different frequencies at distant electrode sites. They employed 

LDA and SVM to verify the hypothesis through classification 

performance. The best sensitivity and specificity of 80% and 

95% respectively were achieved by SVM. In addition, a d-

prime of 2.51 was reported to highlight the separation between 

the means of the signal and the noise distributions based on 

sensitivity index [36]. 

Poil et al. [37] proposed to combine multiple EEG-based 

neuromarkers into a diagnostic classification index; in this way 

the conversion from MCI to AD may be better predicted. In 

their work, the data from 86 patients were obtained; all of the 

subjects were initially diagnosed with MCI and during 2 years’ 

period, 25 patients of which converted to AD. Together 35 

different markers were extracted (including spatial, temporal 

and spectral features), six of which from both the temporal and 

spectral domains were selected for the prediction. The best 

single biomarker provided a sensitivity of 64% and specificity 

of 62%; by combining the six selected features, the 

performance was found increased to a sensitivity of 88% and 

specificity of 82%. Given the data was obtained from a 21-

channel system (much less raw information were captured 

compared with caps with high sensor density), these results 

indicated a clear advantage of employing multi-biomarker 

analysis in the clinical field. 

Recently, the cross-frequency coupling in cognition has 

become a new trend in neuromarker development. Dimitriadis 

et al. [38] investigated the phase coherence measure, in 

particular using the phase-to-amplitude estimator as a feature 

for the MCI vs. HC (healthy control) classification problem. 

Based on the EEG data captured from only a single sensor (Pz), 

a high recognition of 95% was achieved by using a poll of 

subjects containing 25 MCIs and 15 HCs. The data collection 

proceeded while subjects were performing the classic oddball 

tasks, with each trial of 1 second, in total 30 trials were obtained 

for each subject. Based on the leave-one-out cross-validation, 

their experimentations showed a high performance with 96% of 

sensitivity and 93% of the specificity. 

2.3 Entropy and Complexity 

Neuromarkers derived from the principle of entropy and 

complexity are found to be one of the most popular features for 

AD and MCI detection in the literature. Generally, researchers 

have been attempting to develop these kinds of neuromarkers 

broadly in two conventional ways: 1) entropy or entropy-related 

features computed using the time domain signals; 2) analysis of 

the complexity or entropy of the signals from the frequency 

domain perspective. The follow-up sub-sections are devoted to 

review a few of these researches from these two aspects. 

2.3.1 Time-domain analysis 

Gómez et al. [25] reported an accuracy of 70.83% (66.67% 

sensitivity, 75% specificity) using cross-approximate entropy 

to classify between AD patients and healthy controls. Cross-

approximate entropy is a measure of asynchrony between two 

paired time-series [39]; five minutes of data were recorded 

using a 148-channel MEG system and the cross-approximate 

entropy of the signal between channels were computed. In total 

24 subjects participated in the experiment, 12 of which were 

patients with AD and the rest were HCs. Compared with control 

subjects, a significantly higher synchrony was noticed between 

MEG signals from AD patients. 

Azami et al. [26] did another investigation on the 

effectiveness of using different entropies as neuromarkers for 

AD analysis. A 148-channel whole-head magnetometer system 

was employed to collect the MEG data from a pool of 62 

subjects, 36 of which were AD patients and the rest were the 

elderly controls. Four types of entropies, namely dispersion 

entropy (DisEn), fuzzy entropy, sample entropy (SampEn) and 

permutation entropy, were used to analyse the differences 

between the two classes. These features were directly computed 

in the time domain, using band-pass filtered signals (1.5-40 Hz) 

with segments of 10 seconds. The results indicated that the 

smallest p-value for AD patients vs. controls was obtained by 

using the DisEn; the computational efficiency of their newly 

proposed DisEn was also an appealing factor in the real-world 

scenario. 

Another relatively straightforward method for AD detection 

(and arguably related to [25]) is to directly measure the 

complexity of the brain signals in the time domain. Gómez et 

al. [40] proposed to compute the Lempel-Ziv complexity of the 

MEG signals, which were recorded for 5 minutes in a relaxed 

state with a 148-channel whole-head magnetometer. Data from 

10 patients with probable AD and 10 age-matched control 

subjects were used to test the effectiveness of the proposed 

biomarker, similar with the results reported in [39], it was found 

that the complexity level of the MEG signals from the AD class 

is significantly lower than the signals from the healthy controls. 

The problem on the classification of AD and HC has also 

been addressed through the regularity and complexity 

measurements of the background activities in [41]. In their 
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study, five minutes of data was obtained using a 148-channel 

MEG system, 20 patients with AD and 21 healthy subjects 

contributed their data for the experiments. By employing the 

SampEn and multiscale entropy as neuromarkers, the MEG 

recordings from AD patients were found less complex and more 

regular than that from the HC subjects. The accuracies of 75.6% 

with SampEn, and 87.8% with multiscale entropy were reached. 

2.3.2 Frequency-domain analysis 

Using the same database as in [41] (20 AD and 21 HC), Poza 

et al. [42] computed the entropy-based markers in the frequency 

domain. Firstly, the relative spectral powers of the segmented 

MEG signals were computed, then a series of features including 

Shannon spectral entropy, Tsallis spectral entropy, generalized 

escort-Tsallis spectral entropy and Rényi spectral entropy were 

computed, the optimal markers were selected based on the 

results of Mann-Whitney U test. The classification was done 

using a binary logistic regression. The results suggested a 

significant decrease in irregularity of AD patients’ MEG 

activity, which is in line with the observations that was reported 

in [41]. 

Entropy as a neuromarker can also be performed on top of 

other features for AD and MCI detections. For example, in [24], 

a series of entropies were computed to measure the classic 

frequency domain PSD. The objective was to classify between 

the MCI patients and the healthy controls using MEG data. 

Firstly, the PSDs from five typical brain regions were 

computed, these initial features were further used to compute 

Shannon spectral entropy, Tsallis spectral entropy and Rényi 

spectral entropy. Interestingly, in order to quantify the 

irregularity of MEGs, the Euclidean and the Wootters distances 

were employed as the disequilibrium measures. Using the data 

of a 10 seconds’ recording with subjects in a relaxed state, 

awake and with eyes closed, a highest recognition rate of 64.3% 

were achieved using the Shannon spectral entropy as the 

neuromarker. A total of 18 patients with MCI and 24 healthy 

subjects participated in this experiment ([24]), which is 

comparable with the report from [32] in terms of subject 

numbers and employed modality (both were using MEG data 

for analysis). The experimental results (80.5% vs. 64.3%) seem 

to verify that the classification between MCI and HC subjects 

are more challenging than AD vs. HC classification. 

Three-way classification of AD, MCI and HC subjects were 

also conducted by [43]. Data of 36 AD patients, 18 MCI 

subjects and 24 HC were recorded using a 148-channel whole-

head magnetometer. PSD was computed as the initial feature, 

then the Jensen’s divergence was adopted to measure the 

irregularity of the resulting PSDs. The results indicate 

significant changes of irregularity in the feature space for the 

data of AD patients, compared with MCI and heathy control 

subjects. The differences between MCI and HC are, however, 

less noticeable according to their report. These observations 

confirmed that the MCI is a transitional process towards AD 

stage from an ML point of view, and revealed that such 

classification is more challenging due to the prodromal nature 

of MCI. 

In order to improve the recognition performance, the attempt 

of combing the time-frequency domain features and entropy-

based neuromarkers were also made. Ruiz-Gómez et al. [44] 

tested a number of features, such as the relative power in the 

conventional frequency bands (i.e., delta, theta, alpha, beta, and 

gamma), median frequency, spectral entropy, sample entropy, 

and auto-mutual information. The experiments involved the 

classification for MCI, AD and HC. Each of the classes 

contained 37 subjects. Relevance and redundancy analyses 

were conducted to select the optimal set of features; LDA, 

quadratic discriminant analysis and multi-layer perceptron 

(MLP) were used to test and compare the classification 

performance. The results indicated MLP provided the highest 

performance for all the classification schemes: sensitivity of 

82.35% and positive predictive value of 84.85% for HC vs. all 

classification task; specificity of 79.41% and negative 

predictive value of 84.38% for AD vs. all comparison. 

Al-Nuaimi et al. [45] implemented a number of entropy and 

complexity based neuromarkers in the frequency domain. Data 

from 52 subjects were collected by a 19-channel EEG system, 

20 of which were AD patients and the rest were healthy 

controls. Three types of neuromarkers namely Tsallis entropy 

(TsEn), Higuchi Fractal Dimension (HFD), and Lempel-Ziv 

complexity (LZC) were computed using data from the 

frequency bands. The results showed that AD patients have 

significantly lower TsEn, HFD, and LZC values for specific 

EEG frequency bands. In particular, the LZC provided the best 

overall classification performance with a sensitivity of 100%, 

specificity of 92.31% and the recognition accuracy of 95%. It 

is well-recognized that the classification between AD and HC 

is relatively easier than distinguishing HC and MCI; authors of 

the work in [45] also pointed out this challenge as their future 

work. 

2.4 Other Neuromarkers 

As the prodromal stage towards AD, MCI is found quite 

challenging to diagnose. In [46], a transform namely complete 

ensemble empirical mode decomposition (CEEMD) was 

employed to extract the neuromarkers from non-stationary 

MEG signals. A nonlinear dynamics measure based on 

permutation entropy was used as the neuromarker, which 

measures the characteristics of the resulting intrinsic mode 

functions after CEEMD. The analysis of variance (ANOVA) 

was used to select the computed entropy features, followed by 

an enhanced probabilistic neural network for the classification 

between normal and abnormal subjects. The data was collected 

using a 148 sensors MEG system; 18 MCI and 19 normal 

subjects participated in the experiment. A considerably high 

accuracy of 98.4% was achieved using the enhanced 

probabilistic neural network classifier. This seems to suggest 

that besides the conventional approaches, some less traditional 

algorithms, which are especially developed for the non-

stationary signals can also be quite promising for AD/MCI 

detections. 

Blind source separation methods is another viable approach 

that have been used to improve the diagnosis of AD patients. 

Data from 18 AD patients and 18 HC subjects were used for 

extracting a range of features [47]: mean frequency, spectral 
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entropy, approximate entropy, and Lempel-Ziv complexity. 

From the separated signals, the features with the most 

significant inter-class differences and least correlated were 

preserved based on the results from the Student’s t-test. The 

preserved components were used to partially reconstructing the 

MEG channels, and the linear discriminant analysis was 

employed for classification. A significant boost in recognition 

rate from 72.2% to 80.6% was observed by performing the 

proposed blind source separation method. 

A method based on the positive and unseen learning 

algorithm was implemented by Rasheed et al. for the 

identification of mild traumatic brain injury (mTBI), which was 

considered principally similar with diagnosing MCI using 

default mode network analysis in [48]. In detail, the 

classification was performed by devising default coherence 

limits between all pairs of MEG sensors for positive (control) 

group (7 subjects), and the assessment of severity (15 subjects) 

was carried out by using the positive and unseen learning 

method (single class model). The classification outcome of the 

proposed algorithm was compared with the original diagnosis: 

the average similarity between the ground truth and the 

algorithm performance was 79.52%, while the minimum 

similarity was 73% and the maximum similarity was 91%. 

Another popular type of the biomarker is based on the 

cortical connectivity estimates. Gomez et al. [23] reported a 

diagnosis system to classify between MCI and HC subjects; 

data from 43 participants consisting of 18 MCI patients and 25 

elderly controls were involved in the experiment. A 148-

channel whole-head magnetometer (MAGNES 2500 WH, 4D 

Neuroimaging) was employed for the data collection, two 

connectivity measures, namely coherence and synchronization 

likelihood (SL) [49], were computed to measure the difference 

between the two classes. The results indicated that the 

coherence and SL mean values were lower in the MCI group 

than in control group at all frequency bands; it was also found 

the highest accuracy reached 69.8% in the beta band with both 

connectivity measures. 

Researchers have been trying to combine the information of 

different frequency bands of the brain signals in order to 

improve the classification performance. Yu et al. [50] proposed 

an MEG-based system for the classification between AD and 

HC. In total 27 patients with AD and 26 HC subjects 

participated in the data collection, the MEG data were recorded 

using a 306-channel whole-head system. Several multiplex hub 

and heterogeneity metrics were computed to capture both 

overall importance of each brain area and heterogeneity of the 

connectivity patterns across frequency-specific layers. Their 

work indicated that the proposed multiplex brain networks 

analysis contains important information that cannot be revealed 

only by using frequency-specific brain networks. It was also 

found that MEG-based resting state multiplex networks in 

Alzheimer’s disease were preferentially disrupted in hub 

regions, including regions in medial temporal lobe (left 

hippocampus), posterior default mode network and occipital 

regions. 

The MAGIC-AD multicentre initiative was recently created 

to advance AD research, which has already produced MEG 

datasets of significance value including one dataset with 78 

MCIs and 54 HCs in resting state, along with other two small 

datasets of 13 MCIs vs. 15 HCs and 11 MCIs vs. 13 HCs 

respectively, were employed [70]. In subsequent analysis by 

this group, the raw MEG signals were filtered into classic 

frequency bands (Theta (4-8Hz), Alpha (8-12 Hz), Beta (12-30 

Hz), Gamma (30-45 Hz) and broadband (2-45 Hz)). The mutual 

information was used as the feature to estimate functional 

connectivity between all pairs of magnetometers. A series of 

experimental schemes with different database combinations 

were investigated to test the robustness of the proposed feature. 

The best classification performance was 83% of the accuracy, 

with 100% sensitivity and 69% specificity. 

III. COMPARATIVE REVIEW 

The first part of this section is devoted to particularly 

reviewing the related source localization techniques on M/EEG; 

a number of factors on this technique that impact the 

classification are discussed. A comparative analysis of EEG and 

MEG in detecting AD and MCI is presented in the section 3.2, 

followed by a discussion on the pros and cons of these two 

modalities in the neurological field. Finally, a comparison of 

the recent works on MCI/AD/HC classifications in resting state 

is provided in section 3.3. 

3.1 M/EEG-based MCI/AD detection at source-level 

Despite numerous algorithms proposed for the source 

localization in literature, a great many challenges still remain: 

due to the ill-posed inverse problem, the selection of an 

appropriate inverse modelling algorithm becomes one of the 

most critical and debatable issues for the source-level analysis. 

Hincapié et al. [51] undertook a comparative analysis of some 

most popular source reconstruction methods, including the 

minimum norm estimate (MNE), linearly constrained minimum 

variance (LCMV) beamforming [52], and dynamic imaging of 

coherent sources (DICS) beamforming. A simulated sensor-

level data through forward modelling based on a 275 channel 

CTF MEG system [53] configuration was used for testing the 

effectiveness of the algorithms. The MNE assumes a Gaussian 

distribution for the noise which is uncorrelated with the brain 

activity; despite the debatable observations, the main 

assumption of beamformer methods is that the oscillatory 

activities are uncorrelated between two different sources or 

dipoles [54]. These assumptions may be unrealistic and may 

have impact on the selection of these algorithms in the real-

world scenarios. A few interesting observations were reported 

in [51]: though LCMV beamforming is a time-domain 

technique whereas the DICS beamforming works in the 

frequency domain, these two methods yielded similar 

performances in all the proposed test cases. Between the MNE 

and beamforming methods, it was found, for point-like sources 

(two coupled single-dipole sources), the spatial filters (LCMV 

and DICS) provided a better estimation of coherence, whereas 

MNE provided better coherence reconstructions when the 

simulated sources consisted of extended patches. These 

observations indicated the necessity of a scenario to imitate the 

real-life applications before deciding which source localization 
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method to use. 

Another important factor for solving MEG/EEG inverse 

problems is the use of a template image or an individual MRI 

image for source reconstruction. A recent study conducted by 

Douw et al. [55] investigated the topic using data from 17 

healthy participants who provided their MEG and MRI scans 

during a resting state recording with eyes closed. Relative 

power from six typical frequency bands for each region of 

interest after averaging were used as the neuromarkers. 

Functional connectivity (phase lag index) between each pair of 

regions was also calculated. It was found that there was no 

(systematic) bias or inconsistency between the results for the 

template and native MRI implementations, which is an 

important result in the field. 

The combination of MEG and other modalities for feature 

extraction demonstrated good performance. Nakamura et al. 

[56] investigated the prodromal stages of AD based on MEG 

modality. A linearly constrained minimum variance 

beamforming technique was employed to perform the source 

reconstruction. MEG data obtained from 28 individuals with 

mild cognitive impairment and 38 cognitively normal 

individuals were used for feature extraction. The preliminary 

feature extracted was the regional spectral patterns, and then the 

integrating information from Pittsburgh compound B-PET, 

fluorodeoxyglucose-PET, structural MRI, and cognitive tests 

were analysed. The results demonstrated that regional spectral 

patterns of resting state activity could be separated into several 

types of MEG signatures [56], which may be used as useful 

biomarkers for the pre-dementia stages of Alzheimer’s disease. 

Usage of the source localization algorithm on EEG for the 

diagnosis of early AD was studied by Aghajani et al. [57]. Data 

obtained from 17 HC subjects and 17 subjects with AD were 

used for the data analysis. The source localization method was 

the standardized low-resolution brain electromagnetic 

tomography (sLORETA), the relative logarithmic power 

spectral density values from four conventional EEG bands 

(alpha, beta, delta, and theta) were extracted from 12 selected 

cortical regions. The results showed that the right temporal 

region reflected a significant difference between the two groups 

in all frequency bands; in the left brain hemisphere the theta 

band power increased whereas the alpha band decreased for AD 

patients. The classification performances using a support vector 

machine between AD and HC groups were accuracy of 84.4%, 

sensitivity 75.0%, and specificity of 93.7%. 

Dimitriadis et al. [58] recently proposed a source-level 

analysis based on the reconstructed MEG signals. It 

investigated the performance of different analytic strategies of 

single-layer and multi-layer representations of functional brain 

networks. Three connectivity estimators namely phase locking 

value (PLV), the imaginary part of PLV (iPLV) and the 

correlation of the envelope (CorrEnv) were computed and used 

as the neuromarkers. Four minutes of resting state activity were 

obtained using a 306-channel Elekta Vectorview system from 

24 MCI patients and 30 healthy controls. The source 

reconstruction was performed using an LCMV beamformer. 

Particularly, following the Yu et al.’s research [50], Dimitriadis 

et. al. [58] also proposed studying the intra and cross-frequency 

coupling or functional connectivity estimators as novel 

neuromarkers. They reported a highest classification accuracy 

of 98% using the CorrEnv feature. Despite the remarkable 

performance, the authors also pointed out the importance of 

testing the performance in a second blind cohort; due to the non-

stationary characteristics of the time-series, using cross-

validation within one database often tend to yield biased 

performance. 

A recent investigation showed that the brain networks tend 

to facilitate information propagation across different 

frequencies, which was demonstrated by the analysis of multi-

participation coefficients (MPC) [59]. In this work, the PSDs 

were used as features for the classification problem of AD vs. 

HC; each class contained the data obtained from 25 subjects. 

The data was collected using a whole-head MEG system with 

102 magnetometers and 204 planar gradiometers (Elekta 

Neuromag TRIUX MEG system). To solve the inverse 

problem, a weighted Minimum Norm Estimate algorithm with 

overlapping spheres was employed. It was found that the 

regional connectivity in AD subjects abnormally distributed 

across frequency bands as compared to controls, causing 

significant decreases of MPC, which was similar with the trend 

found in the entropy-based analysis results. The best 

classification accuracy of 78.39% was reported for the proposed 

detection system. 

Medvedeva and Yahno [60] reported an investigation based 

on using the EEG signals for the analysis of AD and MCI. Data 

from 131 AD, 45 MCI and 45 HC subjects were collected using 

a digital 19-channel scalp EEG device based on the 

International 10-20 system [61]. For each subject, 40 seconds 

of artefact-free EEG recording was kept and segmented into a 

window size of 2 seconds. Coherence measurements were 

computed and used as the biomarkers, combined with the 

eLORETA for the source-level analysis. Statistically 

significant differences between AD and MCI patients for theta 

band coherences were found. In addition, MCI subjects showed 

reduced coherence compared with healthy controls in certain 

regions. 

Babiloni et al. [62] investigated the individual alpha 

frequency peak (IAF) and transition frequency (TF) after 

conventional FFT-based power spectral analysis, as features for 

the classification between MCIs and HCs. A 19-sensor EEG 

cap was used to capture the raw signals; eight bands (delta, 

theta, alpha 1, alpha 2, alpha 3, beta 1, beta 2, and gamma), and 

five ROIs (frontal, central, parietal, occipital, and temporal) 

were taken into the consideration during the data analysis. A 

source reconstruction method namely eLORETA was used to 

estimate the functional lagged linear connectivity solutions. It 

was reported that the best recognition performance for MCI vs. 

HC were sensitivity of 73% and specificity of 64%, led an 

accuracy of 68.5% and an area under ROC curve of 0.71. 

An interesting investigation was conducted by Pineda-Pardo 

et al. [63] on the classification of the HC, single-domain MCI 

and multiple-domain MCI subjects. According to the report, 

Single-domain MCI (sdMCI) showed isolated memory 

impairment, whereas multiple-domain MCI (mdMCI) showed 

memory deficit accompanied by various degrees of impairment 
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in cognitive domains such as executive functions, visual- spatial 

skills, and/or language. A 306-channel MEG system was 

employed for data collection, a database containing 29 HCs, 22 

sdMCIs and 30 mdMCIs in resting state were used for this 

classification problem; an atlas-based anatomical parcellation 

of 66 regions was obtained for each subject. A minimum 

variance beamformer algorithm was adopted for the source 

reconstruction. The reconstructed time-domain connectivity 

matrix was directly used as features for classification. A 

number of classifiers, namely k-NN, LDA, SVM with different 

kernels were selected for distinguishing the three classes. The 

best accuracies were as follows: HC vs sdMCI 86.27%, HC vs 

mdMCI 81.36% and sdMCI vs mdMCI 84.62%. 

Some recent works on the classification between MCI/AD 

and HC in the source-level are illustrated in Table 1. It appears: 

1) different type of source reconstruction methods do not yield 

significant difference in performance if the database size is 

comparable; 2) while the number of subjects increases, the 

recognition performance tends to degrade drastically (98% 

compare to less than 70%). Here the modality information is 

purposely ignored, as it is hard to make a fair judgement given 

that very limited results are reported to date. In the next section, 

a further comparison is made to address the effectiveness of 

EEG and MEG on MCI/AD detection. 

3.2 EEG vs. MEG: A comparative analysis 

EEG as an electrophysiological brain monitoring approach 

has almost 100 years of usage history: the first human EEG 

recording was obtained by Hans Berger in 1924 [64]; since then 

EEG has been implemented in a series of different scenarios [64， 

65，66]. As one of the non-intrusive modalities, EEG not only 

benefits from its relatively easy deployment, but also it is 

considerably cheaper than MEG in equipment purchasing and 

maintenance. It is therefore popular among researchers for 

quantitative analysis of brain activations. 

On the other hand, MEG received increasing attentions in 

recent years despite the need of high financial investment to 

prepare the related equipment for data collection and analysis. 

One of the major advantages of the MEG over EEG is that the 

magnetic fields are less distorted than the electric fields by the 

skull and scalp, which results in a better spatiotemporal 

resolution compared with EEG. High spatial resolution used to 

be an appealing advantage of image-based modality such as 

fMRI, but nowadays we can also reach a comparable quality of 

spatial resolution using MEG. Not least important, the 

preparation time for participants in the MEG system is much 

less than in EEG system (a few minutes vs. roughly one hour), 

which have a critical effect on the disposition of the participants 

and hence the data quality. A brief comparative analysis 

between EEG and MEG based on the state-of-the-art literature 

in relation to the AD and MCI detection is outlined below.  

 Table 2 and Table 3 illustrate some of the most recent 

research outcomes, separately for studies using EEG or MEG 

modality. For the sake of clarity and straightforward 

comparison, only the classification accuracy is reported here. It 

is noticed that classification accuracies are similar between 

analyses using these techniques, though slightly better results 

seem to be obtained using MEG modality particularly for HC 

vs. MCI scenario. We attribute the latter to the high density of 

MEG sensor arrays in contrast to EEG, and the simpler relation 

between neuronal activities generated inside the brain and 

externally collected signals. Otherwise, we observed that the 

classification between AD and HC has been found to provide 

better performance than the MCI vs. HC for both M/EEG, but 

this observation may be difficult to corroborate as there are only 

few studies simultaneously analysing all these 3 categories. As 

MCI is considered a prodromal stage of AD, it would be 
Table 2. Comparison between two classification scenarios using EEG 

EEG-based Report Accuracies MCI vs. HC AD vs. HC 

Poil et al., 2013 [37] 85%  

Aghajani et al., 2013 [57]  84.4% 

Al-Nuaimi et al., 2016 [45]  96% 

Mazaheri et al., 2017 [33] 87.5%  

Ruiz-Gómez et al., 2018 [44]  82% 

Yu et al., 2018 [20]  98.9% 

 

Table 1. Some reports on MCI/AD detection using source reconstruction techniques 

Modality Neuromarkers Source Reconstruction Subjects Classification Accuracy 

MEG Regional spectral patterns, integrating 
information from Pittsburgh compound B-PET, 

fluorodeoxyglucose-PET, structural MRI, and 

cognitive tests [56] 

Minimum variance 

beamforming 
28 MCI, 38 HC 

Within HC to predict amyloid-β 
positivity: 76.3% 

Within MCI to predict amyloid-β 

positivity: 78.6% 

EEG Relative logarithmic power spectral density 
values [57] 

sLORETA 17 AD, 17 HC 84.4% 

MEG 
Phase locking value (PLV), the imaginary part of 
PLV and the correlation of the envelope [58] 

Linearly Constrained 

Minimum Variance 

beamformer 

24 MCI, 30 HC 

98% for the correlation of the 

envelope and 94% for the 

imaginary part of PLV 

MEG PSD [59] Weighted Minimum Norm 
Estimate 

25 AD, 25 HC 78.39% 

EEG coherence measurements  [60] eLORETA 131 AD, 45 

MCI, 45 HC 

N/A 

EEG Individual alpha frequency peak, 

Transition frequency [62] 

eLORETA 75 MCI, 

75 HC 

68.5% 

MEG time domain connectivity matrix [63] Minimum variance 
beamformer 

22 sd MCIs, 30 
md MCIs, 29 

HC vs. sdMCI 86.27% 
HC vs. mdMCI 81.36% 

sdMCI vs mdMCI 84.62% 
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interesting to study: 1) which neuromarkers appear consistently 

in both AD vs. HC and MCI vs. HC analyses, as well as which 

ones are less stable. 2) regarding the individual neuromarker 

trends, whether these tend to show ceiling effects, further 

deteriorate or show less impact in AD as compared to MCI, 

when considering HC as a baseline state. The results in Table 3 

seem to suggest that the MEG have a great potential in detecting 

early signs of AD; a few rather high accuracies were reported 

in this recognition scenario. This evidence seems to indicate 

that MEG may be more appropriate for studying MCI, AD and 

other dementias when compared to EEG, though it may be 

obscured due to the fact MEG has been only recently used for 

this purpose.  

 It is also needed to objectively pointing out that the correct 

design of data analysis approaches is paramount to obtaining 

significant and reproducible results. For example in [58], the 

highest performance was 98%, which was obtained through a 

5-fold cross-validation, whereas a performance of around 75% 

was also reported in the same study for the same data but using 

leave-one-out cross-validation, while using the same strategy of 

feature selection in both analysis. Due to the dramatic 

differences, we recommend to be cautious when interpreting 

such results and appreciations. In general, there are negative 

impacts and liabilities in using a relative small number of 

samples in these studies [28, 29]. Therefore, it is important for 

the M/EEG community to share their databases to ensure better 

reproducibility and enhanced statistical power by allowing 

multi-site statistical testing and data combination.  

In addition, by further analysing the Table 3, a recent 

research by Amesquita-Sanchez et al. [46] proved to be quite 

promising. Different from the conventional biomarkers which 

derived from Fourier-based time-frequency analysis, the 

entropy-based biomarker employed in this work was built on 

top of empirical mode decomposition [68], a specially designed 

transform for non-stationary time-series. It is also noticed that 

in comparison to the performance of MCI detections, usage of 

MEG for AD detection still needs more investigations. Given 

the availability of mass AD databases in hospitals, a 

considerable boost to the research can be expected if more 

researchers will share/release the databases to the community. 

3.3 Resting state comparison 

In this section, we propose to compare some recent M/EEG 

system performances documented in the literature, while 

subjects remained in a resting state condition [69]. The resting 

state is one of the most common experimental scenarios and 

Table 4. Resting state using EEG for MCI/AD detection, the sequence of the report is stacked downward based on the year of publication till the most recent 

Feature(s) Subjects Channels Recording Epoch length Performance 

Relative logarithmic power spectral 

density values [57] 

17 AD, 17 

HC 

128 3-4 minutes N/A Maximum accuracy 84.4% 

Cross-frequency coupling measurements 

[38] 

(This is VEP task) 

25 MCI, 15 

HC 

Pz 2 types of 

recordings 

each last for 30 
seconds 

1 second Maximum accuracy 95% 

Band power [21] 11 MCI, 11 

HC 

64 60 seconds 2.5 seconds Theta relative power of MCI is 

larger than HC 

Relative power in the conventional 

frequency bands, median frequency, 

individual alpha frequency, spectral 
entropy, Lempel-Ziv complexity, central 

tendency measure, sample entropy, fuzzy 

entropy, and auto-mutual information [44] 

37 AD, 37 

MCI, 37 

HC 

19 5 minutes 5 seconds Maximum accuracy HC vs. All: 

78.43% 

Maximum accuracy AD vs. All: 
76.47% 

Permutation dis-alignment index [20] 14 AD, 14 

HC 

16 10 minutes 8 seconds Maximum accuracy 92.5% 

Tsallis entropy, Higuchi Fractal 

Dimension, and Lempel-Ziv complexity 
[45] 

32 AD, 20 

HC 

19 3 minutes 3 minutes Maximum accuracy for single 

channel 85% 

FFT-based power spectrum analysis, 

individual alpha frequency peak, 

transition frequency [62] 

75 

ADMCI, 

75 PDMCI, 
75 HC 

19 5 minutes 2 seconds Accuracy 63.48% ± 7.06% 

Coherence measurements [60] 131 AD, 45 

MCI, 45 

HC 

19 40 seconds 2 seconds N/A 

 

Table 3. Comparison between two classification scenarios using MEG 

MEG-based Report Accuracies MCI vs. HC AD vs. HC 

Escudero et al., 2007 [47]  80.6% 

Gómez et al., 2007 [41]  87.8% 

Poza et al., 2007 [42]  85.4% 

Hornero et al., 2008 [32]  80.5% 

Bruna et al., 2010 [24] 64.3%  

Gómez et al., 2012 [25]  70.83% 

Sanchez et al., 2016 [46] 98.4%  

Guillon et al., 2017 [59]  78.39% 

Rasheed et al., 2017 [48] 79.52%  

Hernandez et al., 2018 [23] 69.8%  

Nakamura et al., 2018 [56] 78.6%  

Dimitriadis et al., 2018 [58] 98%  
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assumed as least affected by individual cognitive processes. 

The system performances reported based on this scenario are 

arguably comparable. Depending on the modalities (MEG and 

EEG), the most recent papers are listed in Table 4 and Table 5, 

respectively. 

Table 4 lists a few recent papers reporting on MCI/AD 

detections using EEG data obtained in resting state. It is found 

that the power and entropy features are often considered as 

effective neuromarkers in detecting MCI and/or AD. Only a 

few minutes of recording appears to be enough for analysis, 

which is something worth pointing out. Usually in the clinical 

scenarios, there are ample recording length available. For MEG 

modality (Table 5), the entropy and complexity features are 

rather prevalent, whereas the power-based neuromarker appears 

to be less popular compared with EEG. The overall 

performance obtained using MEG for MCI/AD detection seems 

to be relatively worse than that of using EEG. A few 

suggestions can be made for better experiment design:  

1) It seems most of the results are based on data obtained from 

single recording session, in contrast to longitudinal studies; 

such a scenario makes it quite difficult to address the issue of 

individual differences and expected changes associated with 

healthy ageing. Therefore, we suggest that research in MCI/AD 

changes should be combined with research in healthy ageing 

processes. 

2) The recording length for each session should not 

necessarily be too long (a few minutes is found to be enough) 

in order to guarantee the quality of the features that capture the 

studied phenomena. Additionally, as AD affects multiple 

cognitive areas of the brain, diverse cognitive stimulation 

paradigms should be combined to better explore the cognitive 

changes. 

3) Currently, the results are still incongruent, which can be 

attributed to the relatively small samples used in Alzheimer’s 

research but also the disease heterogeneity, together with the 

wide range of used methodologies. For example, using the same 

database and features, the performances obtained through 

Table 5 Resting state using MEG for MCI/AD detection, the sequence of the reports is stacked downward based on the year of publication till the most recent. 

Feature(s) Subjects Channels Recording Epoch length Performance 

Lempel-Ziv complexity [40] 10 AD, 10 

HC 

148 5 minutes 20 seconds ADs have less LZ complexity 

Mean frequency, spectral entropy, 
approximate entropy, and Lempel-

Ziv complexity [47] 

18 AD, 18 
HC 

148 5 minutes 20 seconds Without blind source separation 
(BSS): 72.2% of accuracy 

With BSS: 80.6% of accuracy 

Shannon spectral entropy, Tsallis 

spectral entropy, generalized escort-
Tsallis spectral entropy and Rényi 

spectral entropy, calculated from the 

relative spectral power [42] 

20 AD, 21 

HC 

148 5 minutes 10 seconds Maximum accuracy 85.4% 

Sample entropy and multiscale 
entropy [41] 

20 AD, 21 
HC 

148 5 minutes 10 seconds Maximum accuracy 87.8% 

Median frequency, spectral entropy, 

approximate entropy, Lempel-Ziv 

complexity [32] 

20 AD, 21 

HC 

148 5 minutes 10 seconds Maximum accuracy 80.5% 

Coherence and synchronization 
likelihood [23] 

18 MCI, 
25 HC 

148 5 minutes 24 seconds Maximum accuracy 69.8% 

Shannon spectral entropy, Tsallis 

spectral entropy, and Rényi spectral 

entropy (RSE), based on the 
normalized power spectral density 

[24] 

18 MCI, 

24 HC 

148 5 minutes 10 seconds Maximum accuracy of is 64.3% 

obtained from Shannon spectral 

entropy 

Cross-approximate entropy [25] 12 AD, 12 

HC 

148 5 minutes 5 seconds Maximum accuracy 70.83% 

Disequilibrium: PSD-based Jensen’s 
divergence [43] 

36 AD, 18 
MCI, 24 

HC 

148 5 minutes 5 seconds AD significantly different from 
MCI; MCI slightly different from 

HC. 

Structural connectivity [63] 22 

sdMCI, 
30 

mdMCI, 

29 HC 

306 3 minutes 10 seconds Maximum accuracy 86.27% 

Functional connectivity metrics [70] 102 MCI, 
82 HC 

306 3-5 
minutes 

2 seconds Maximum accuracy 83% 

Dispersion entropy [26] 36 AD, 26 

HC 

148 5 minutes 10 seconds p-value ranges from 0.006 to 0.114 

Amyloid-beta deposition on regional 

power spectra [56] 

28 MCI, 

38 HC 

306 5 minutes 10 seconds N/A 

Phase locking value, imaginary part 
and the correlation of the envelope 

[58] 

24 MCI, 
30 HC 

306 4 minutes 10 seconds Maximum accuracy 98% for 5-
fold cross-validation; 75% for 

leave-one-out cross validation. 
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leave-one-out cross validation and n-fold cross validation have 

resulted in a change of  more than 20% of accuracy [58]. In a 

real-life clinical scenario, current MCI/AD/HC classification 

accuracies are still not found sufficiently high as needed in 

clinical applications [58]. We exhort researchers to increase the 

sample size of ongoing studies and to share EEG/MEG database 

to openly comparing the developed methodologies. 

IV. DISCUSSION AND CONCLUSION 

This work explored the state-of-the-art neuromarkers from 

the ML perspective; its primary aim has been to review the 

mainstream algorithms devised for detecting/predicting MCI 

and AD using MEG and/or EEG signals. It is found that overall 

the MEG tends to perform slightly worse than EEG. However, 

as a relatively new modality, MEG has shown great potential in 

the field, particularly for MCI detection [46]. EEG with its 

much lower cost has been used for diagnosing the brain diseases 

for much longer time than MEG; the properties of the EEG 

signal are much well-studied and better understood. In general, 

there appears to be huge variability in prediction performance 

reported in the literature by algorithms using both EEG and 

MEG modalities. There is an urgent need to arrive at a 

consensus in terms of a single neuromarker or a neuromarkers 

combination most suitable for application in clinical practice. 

Given its minor deployment in general, much work could be 

done in excavating the potential of MEG in MCI/AD detection. 

From the perspective of information gain, MEG modality 

intuitively should be much more informative than EEG signals, 

due to its higher sensor density and arguably more information 

per channel. Another strategy to boost the prediction 

performance is to combine the EEG and MEG: a multi-modal 

recognition system equipped with a well-designed fusion 

algorithm can synergistically combine complementary 

information from both modalities. From a broad perspective, 

using M/EEG based machine learning algorithms to classify 

AD patients and patients with other neurodegenerative diseases 

(such as Parkinson’s disease, Lewy body dementia) may also 

deserve much attention in future investigations. 
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