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Abstract This work explores the sensitivity of electroen-

cephalographic-based biometric recognition to the type of

tasks required by subjects to perform while their brain

activity is being recorded. A novel wavelet-based feature is

used to extract identity information from a database of 109

subjects who performed four different motor movement/

imagery tasks while their data were recorded. Training and

test of the system was performed using a number of

experimental protocols to establish if training with one type

of task and tested with another would significantly affect

the recognition performance. Also, experiments were

conducted to evaluate the performance when a mixture of

data from different tasks was used for training. The results

suggest that performance is not significantly affected when

there is a mismatch between training and test tasks. Fur-

thermore, as the amount of data used for training is

increased using a combination of data from several tasks,

the performance can be improved. These results indicate

that a more flexible approach may be incorporated in data

collection for EEG-based biometric systems which could

facilitate their deployment and improved performance.

Keywords EEG � Biometrics � Identification � Verification

1 Introduction

With the rapid development of machine learning tech-

niques as well as the increasing availability of low-cost

sensors, the biometric person recognition technologies

have become an active area of research in recent years,

leading to significant deployments in a range of application

domains. However, despite some considerable successes,

important challenges still hinder their widespread adoption

and acceptance [1], and because of this the search for new

biometric modalities continues. Bio-signals are potentially

rich in identity information, which make them appealing

candidates for biometric applications. With its nonstation-

ary characteristics [2], the electroencephalographic (EEG)

signal is becoming an attractive choice as a biometric

modality in some applications due to its natural resistance

to spoofing and increasing ease of acquisition through low-

cost sensors.

While EEG-based biometrics would require the use of

dedicated sensors and ameasure of cooperation from the users

to ensure consistent and reliable signals that can be captured

to recognize their identity, there are special use-cases where

this modality could be of practical use. One can consider

scenarios where the use of a headset is natural in user inter-

actions, such as driving certain motor vehicles, or during the

performance of certain activities (e.g., safety/security tasks)

where the sensors could be built in the helmet/headset that the

user will naturally wear. In this case, verification of identity

can take place in a hands-free manner as and when required.

Use of this modality can also ensure a greater degree of

counter-spoofing through continuous liveness detection. The

literature survey that follows presents a picture of active and

growing interest in this biometric modality.

Poulos et al. [3–5] first proposed to employ EEG signals

for person identification. Since then, this modality has been
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increasingly receiving attention in its potential biometric

applications. Intuitively, EEG signals are expected to

contain some information unique to individuals. However,

it is not clear what deliberate or involuntary mental activity

would generate the best and most biometrically informative

signals. This question is closely related to which scalp

region should provide the signals for biometric recognition.

The mental activity or motor movement tasks used in

the research literature to trigger EEG signals for biometric

processing could generally be grouped into three main

categories:

1. Resting state, with no intentional mental or physical

activity with eyes either open or closed,

2. Event-Related Potential (ERP) signals, especially the

P300 evoked potential [6] triggered by visual stimuli or

motor movement, and

3. Intentional mental activity(s), such as mental counting

or motor imagery.

Some important research results related to these three

categories are reviewed briefly in the following

subsections.

1.1 Resting state EEG

Su et al. [7] reported their system’s performance while

using only the Fp1 electrode position (frontal region) for

data collection from 40 healthy subjects, while participants

rested on a sofa with their eyes closed. Each subject pro-

vided 60 min (12 recordings) of recordings in total, and

half of this data was randomly used for training and the rest

was used for testing. A correct recognition rate (CRR) of

97.5 % was reported.

Lee et al. [8] also captured their EEG data while subjects

were resting with their eyes closed but only four subjects

were included. Data were obtained using O1 electrode

(occipital region) in two sessions with the time intervals

ranging from 10 days to 5 months. Data of the first session

were used as the training set, and the second session’s

recording was used for testing (20 s of training and 20 s of

testing). An accuracy of 98.33 % was achieved.

Recently, Rocca et al. [9] reported the EEG identifica-

tion performance using a relatively large database. Two

subsets of a publicly available database of 108 subjects in

resting state were analysed, one with eyes open and the

other with eyes closed. There was 1-min-long EEG

recording for each subject, and ten seconds of test data was

used for sixfold leave-one-out cross-validation. A perfor-

mance of 100 % recognition accuracy was reported using

the fusion of conventional power spectral feature and their

proposed functional connectivity feature.

A potential problem of using the EEG data captured

during the resting state for biometrics recognition may be

the ambiguity of the instruction given to the participants

during the data collection, which may be interpreted by the

subjects in different ways, resulting in incommensurable

data.

1.2 Event-stimulated EEG

An event-related potential (ERP) is the measured brain

response that is the direct result of a specific sensory,

cognitive, or motor event [10]. The P300 wave is one such

ERP component obtained during the process of decision-

making, such as the reaction to the oddball paradigm [11].

In such a visual evoked potential (VEP) setting, the visual

stimulus results in an EEG P300 signal. The P300 signal

appears as a positive deflection in the measured EEG

voltage with latency (delay between stimulus and response)

roughly in the range of 250–500 ms [6]. Researchers have

used this particular waveform for biometric recognition.

Using the P300 signal directly from a single electrode,

Singhal et al. [12] reported an average identification

accuracy of 78 % for a database containing 10 subjects. A

‘‘peak matching algorithm’’ was applied to the averaged

VEP signal in the time domain for comparison. Yearn et al.

[13] also investigated VEP signals generated using a face

stimuli in an authentication scenario using a data set con-

taining ten subjects and captured over 2 sessions conducted

on different days. An equal error rate of 14.5 % was

achieved using 18 electrodes.

Palaniappan et al. [14] employed the P300 VEP for

feature extraction, while people were viewing a set of

pictures originally proposed in [15]. The experiment

comprised of 10 subjects using an EEG cap of 61 elec-

trodes. The maximum identification rate achieved was

95 % for the data recorded in a single session. Similar but

improved approaches have been tested using databases

with larger populations leading to a performance of

98.12 % with a database of 102 subjects [16–18].

1.3 Mental imagery EEG

Considering the limitations of the resting state and the

visual stimulus approaches to EEG stimulation for bio-

metric applications, it is only natural for researchers to

explore other approaches which may be more controllable

than the resting state scenario and potentially less complex

than the visual stimulus scenario. The use of mental

activity in an identification scenario was first reported in

2005, when EEG data were recorded (from 4 subjects)

during the performance of mental tasks (including mathe-

matics, geometric figure rotation, mental letter composing

and visual counting) [19].

Marcel et al. [20] used the data captured while imag-

ining hand movements for a biometric authentication
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scenario. Power spectral density (PSD) features of the EEG

signal were compared using Gaussian mixture models

(GMM). Sixteen minutes of recordings from 8 electrodes

were used for training and 4 min for testing, and a half total

error rate (HTER) of 7.1 % was reported for 9 subjects.

One drawback of employing EEG as a biometric

modality has been the complexity of setting up the data

acquisition system, given the number of electrodes

involved, the time required for their attachment, and the

expensive hardware required. Thus, the use of low-cost

sensors becomes an important research trend despite the

likely reduction in signal quality. Chuang et al. [21]

reported a system which employed only a single Fp1

electrode (NeuroSky MindSet [22]); two 40–50-min data

collection sessions were conducted on separate days. Dif-

ferent mental activities were performed, and an EER of

1 % was achieved for a database of 15 subjects. However,

the identification accuracy was only 22 % when using the

same database.

Template ageing effects when using mental tasks with

long time interval between training and test sessions have

been reported. In [23], EEG data were recorded with 53

electrodes from 9 subjects in two sessions (with motor task

data of imaginary finger movements) with a time interval

of approximately 1 year. Using part of the data from the

first session for training and the rest of the same session’s

data as the test set, the CRR reached as high as 98 %;

whereas using the first session’s data for training and data

of the second session for testing, the performance reduced

to a CRR of 87.1 %.

One possible drawback of using visual stimulus for

biometric applications is the need for an external stimulus

to trigger the VEP signals. This may make the resulting

biometric system more complex compared with alterna-

tives based on using the resting state or directed mental

activity. In contrast, for EEG signals captured during the

resting state as well as those obtained during the perfor-

mance of mental/cognitive tasks there is the problem of the

variability associated with the users’ interpretations of the

instruction given.

An extensive review of EEG signals used for biometric

recognition can be found in [44]. The published research

using mental tasks for generating biometric EEG signals

has not considered the impact of task types on perfor-

mance. The impact of the type of task on the performance

that can be achieved in biometric recognition may be sig-

nificant and is yet to be investigated. Four specific ques-

tions are addressed in this work: (1) does the optimal

placement of electrodes vary with the movement/imagery

task required of the subjects? (2) Does the type of move-

ment/imagery task performed by subjects affect the bio-

metric recognition performance? (3) Would training with

data from one task and testing with data from another task

significantly affect the performance? (4) Whether com-

bining data from different types of tasks for training of the

system improves performance?

The paper is structured as follows: Sect. 2 describes a

wavelet-based method for EEG feature extraction and pro-

vides details of the particular wavelet features used in this

work. Section 3 contains the proposed experimental proto-

cols, which are especially designed to investigate the ques-

tions raised in Sect. 1. The experimental evaluations and the

analysis of results are included in Sect. 4. Conclusions and

suggestions for further work are presented in Sect. 5.

2 EEG biometric system

The block diagram of the proposed EEG-based biometric

system used for exploring the task sensitivity is depicted in

Fig. 1. Users are instructed to conduct certain motor

movement/motor imagery tasks while their EEG data are

being recorded. Time and frequency domain features are

extracted and subsequently used for user recognition. The

performance of the system crucially depends on the choice

of features. In this section, we present a wavelet-based

technique for feature extraction that will be used in later

experiments on task sensitivity.

Similar to certain modalities in the field of signal pro-

cessing (speech recognition, for example [24]), the EEG

signal is also considered nonstationary [2, 25]. Fourier

transform (FT) is a conventional approach in signal pro-

cessing and is widely used for EEG-based signal analysis.

However, its use is based on the assumption that the data to

be analysed are strictly stationary. Short-time Fourier

transform (STFT) may moderately relax this restrictive

criterion: by segmenting the nonstationary signal into a

series of overlapped short time frames, assuming the data

within each frame is stationary and the Fourier transforms

is applied to each of these frames separately. This

approach, however, may not be able to fully capture the

nonstationary dynamics of the signals’ content.

In recent decades, the Wavelet Transform (WT) and its

related applications have received increasing attention due

to its capability of capturing the signal information in both

time and frequency domains [26]. By mapping the signal

x(t) into a particular space (wavelet space) with a scale

a and a shift b, it is possible to reveal both time and fre-

quency content of nonstationary data simultaneously (al-

leviate the trade-off in FT). The transformation process can

be expressed as follows [27]:

WTw xf g a; bð Þ ¼ x;wa;b

� �
¼ r

þ1

�1
x tð Þ � wa;b tð Þdt ð1Þ

Where wa,b(t) is the scaled and shifted version of a given

wavelet function:
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wa;b tð Þ ¼ 1
ffiffiffi
a

p w
t � b

a

� �
ð2Þ

the wavelet coefficients WTw{x}(a, b) in (1) may theoret-

ically reveal both the time and the frequency properties of

signals.

One advantage of the WT is the flexibility of choosing

the wavelet functions. Rather than representing the signals

by a series of sinusoidal functions, WT decomposes the

signal using a series of scaled and shifted wavelet func-

tions; different wavelets may be used based on particular

applications [27, 28].

In this work, we propose to employ one discrete form of

WT, the wavelet packet decomposition (WPD) transform,

which includes a full decomposition of the signals into

multiple levels using both wavelet and scaling functions

[27]. In conventional WT, each level is calculated by

passing only the previous wavelet approximation coeffi-

cients through discrete-time low- and high-pass quadrature

mirror filters. In the WPD, both the detail and approxi-

mation coefficients are decomposed to create the full bin-

ary tree [27, 28]. The EEG signals were decomposed up to

level 3 (see Table 1). This allows the signal to be divided

into eight nonoverlapped wavelet bands. In order to max-

imize the use of both time and frequency properties of the

signal, the coefficients from both level 2 and level 3 were

employed as the primary features in this work.

Different decomposition levels result in a series of

coefficients with different lengths: the higher the

decomposition level, the more frequency details are

reflected by the coefficients, hence less time domain

information may be retained. Therefore, the coefficients

of the four sub-bands from level 2 were retained for

feature extraction as well as those of level 3, since they

may better retain useful time domain properties of the

signal. Based on preliminary investigations, the Daube-

chies 4 wavelet function was used and a segmentation

window size of 4800 samples (30 s) was chosen [29].

Only the bands in Level 2 and Level 3 of Table 1 had been

used for feature extraction in this study.

The overall system is illustrated in Fig. 2. The acquired

EEG data from I electrodes are segmented in time into

N overlapping windows; each window overlaps its neigh-

bour by 50 %. For a given time window, data from each of

the electrodes are transformed using multi-level WPD fol-

lowed by a feature enhancement stage where the derivatives

of the WPD coefficients are computed. For each of these

feature-enhanced bands, the standard deviation (SD) is cal-

culated. The SDs for all the bands and all the electrodes are

then concatenated to produce the feature vector for classi-

fication using an LDA classifier. The classifier decisions

from all the time windows are fused using the majority

voting rule. The performances of this system were investi-

gated for identification and verification scenarios.

Before conducting experiments using this database to

explore the sensitivity of the biometric system to task type,

it is helpful to verify that there are indeed some significant

differences in the four mental/imagery tasks that it

includes.

The mean of wavelet coefficients is used as a feature for

task discrimination. Data of multiple subjects (first 15

subjects of MM/I data set) were analysed, and the values

for the four motor/imagery tasks were plotted. As exam-

ples, Fig. 3 depicts the four task clusters for Subject 1 (S1)

and Subject 2 (S2) using the first three feature dimensions.

It is clear that the clusters of T2 and T4 are close to each

other and away from both T1 and T3.

3 Experimental protocols

Data from the ‘‘EEG Motor Movement/Imagery Dataset’’

(MM/I) have been used for the investigations [30, 31]. This

data set contains EEG data collected using the BCI 2000

Instructed Task(s) Brain EEG Signal Pre-processing

Feature ExtractionClassificationIdentity

Fig. 1 EEG-based biometric

system

Table 1 Wavelet packet decomposition for the proposed system

Decomposition Wavelet frequency bands

Level 0 0–80 Hz

Level 1 0–40 Hz 40 Hz–80 Hz

Level 2 0–20 Hz 20 Hz–40 Hz 40 Hz–60 Hz 60 Hz–80 Hz

Level 3 0–10 Hz 10 Hz–20 Hz 20 Hz–30 Hz 30 Hz–40 Hz 40 Hz–50 Hz 50 Hz–60 Hz 60 Hz–70 Hz 70 Hz–80 Hz
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system (sampling frequency 160 Hz) from 109 subjects. In

order to guarantee equal and sufficient recording length (at

least 2 min for mental tasks), 108 out of 109 subjects’ data

were selected for the experiments—excluding 1 subjects

with shorter data recordings. Subjects performed four dif-

ferent movement/imagery tasks (T1–T4). Additionally two

baseline tasks (Tb) were also performed where subjects

were in a resting state with both eyes open (EO) and both

eyes closed (EC). The four movement/imagery tasks lasted

for about 2 min per recording. The motor movement/im-

agery tasks were repeated three times (three ‘‘runs’’: R1,

R2 and R3). The two baseline tasks lasted only 1 min with

only a single recording. In brief, the four task instructions

given to the subjects to perform are as follows:

• Task 1 (T1)–‘‘open and close left or right fist’’;

• Task 2 (T2)–‘‘imagine opening and closing left or right

fist’’;

• Task 3 (T3)–‘‘open and close both fists and both feet’’;

• Task 4 (T4)–‘‘imagine opening and closing both fists

and both feet.’’

Further details of the database may be found in [32].

The first goal of this work is to investigate the biometric

performance achieved when using EEG signals from dif-

ferent scalp regions. Nine electrodes clustered in three

distinctive scalp regions were selected for analysis (AF3,

AFz and AF4 in the frontal lobe (F); C1, Cz and C2 in the

motor cortex (M); and O1, Oz and O2 in the occipital lobe

(O)). The positioning of the sensors is illustrated in Fig. 4

[33]. These regions were chosen to cover the anatomically

significant areas of the brain involved in motor/imagery

tasks [34] and to investigate the impact from other regions

that are less likely to be activated by the chosen tasks [35].

These abbreviations are combined, using the convention

Task-Recording-Region, to generate labels for the data

subsets used in the experiments, e.g., TbEOF meaning

baseline task with eyes open and data from the frontal

region electrodes and T1R1M refers to data from Task 1,

Run 1 and motor cortex region electrodes. If a scalp region

is not specified in the label, it implies that data from all

nine electrodes have been used in the experiment.

Temporal
Segmentation

Multi-scale
WPD

Band-wise
Feature

Enhancement

Individual
Identities ConcatenationLDA

Electrodes
Separation

Band-wise
Power

Calculation

EEG raw signal
with I

Electrode(s)
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(I-1) Electrodes
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A
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Fig. 2 System Diagram
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Three experimental protocols are proposed to investi-

gate the research questions raised in Sect. 1. These proto-

cols are used for system evaluation in both identification

and verification scenarios.

3.1 Protocol P1: region/task pairing

The goal of this protocol (P1) is to investigate the

impact of the pairing of electrode regions and task types

on system performance. Experiments performed using

this protocol will also serve as a preliminary investiga-

tion to find the tasks with greatest biometric potential to

be investigated further. The training and test data sets for

P1 are shown in Table 2. The data subsets identified in

P1 make it possible to explore the performance in each

electrode region separately. The data from R1 together

with R3 are chosen as the training data, and R2’s data

are employed for testing. P1 also identifies four groups

of data subsets matching the four types of motor

movement/imagery tasks (T1–T4) in MM/I to facilitate

experiments to see the relative performance of each task

type.

3.2 Protocol P2: mismatched training/testing tasks

The purpose of the second protocol (P2) is to investigate

the impact of using different motor/imagery tasks for

training and testing of the system—the test data have been

taken from a different task type to that used for training the

system (all nine of the selected electrodes are used). P2

makes it possible to see if a mismatch between the training

and testing task types can significantly affect the

performance.

As in P1, the data from R1 together with R3 are selected

for training and R2’s data are employed for testing.

Additionally, the data from the two baseline data sets are

also used in this protocol for testing as illustrated in Fig. 5.

In this figure, each arrow signifies a pairing of a training

subset and a test subset that is used in experiments. The

matched pairings are also included here for comparison.

3.3 Protocol P3: heterogeneous training

This protocol (P3) explores if data from different task

types may be combined for the training of the system to

achieve a better performance. Test data from just one

task type and recording (T1R2) was used in this proto-

col. The training data were generated by including an

increasing quantity of data from different task types. The

data subsets used in P3 for training and testing are

shown Table 3.

AF3 AFz AF4

C1 Cz C2

O1 Oz O2

Fig. 4 Chosen electrode positions

Table 2 Protocol P1

Experiments Training set Test set

P1.1 T1R1F ? T1R3F T1R2F

P1.2 T1R1M ? T1R3M T1R2M

P1.3 T1R1O ? T1R3O T1R2O

P1.4 T1R1 ? T1R3 T1R2

P1.5 T2R1F ? T2R3F T2R2F

P1.6 T2R1M ? T2R3M T2R2M

P1.7 T2R1O ? T2R3O T2R2O

P1.8 T2R1 ? T2R3 T2R2

P1.9 T3R1F ? T3R3F T3R2F

P1.10 T3R1M ? T3R3M T3R2M

P1.11 T3R1O ? T3R3O T3R2O

P1.12 T3R1 ? T3R3 T3R2

P1.13 T4R1F ? T4R3F T4R2F

P1.14 T4R1M ? T4R3M T4R2M

P1.15 T4R1O ? T4R3O T4R2O

P1.16 T4R1 ? T4R3 T4R2

T1R1+T1R3

T2R1+T2R3

T3R1+T3R3

T4R1+T4R3

Training set

TbEO

TbEC

T1R2

T2R2

T3R2

T4R2

Test set

Fig. 5 Protocol P2—Mismatched training/testing tasks
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4 Experimental analysis

This section presents and analyses the results from the

experiments defined in the protocols in Sect. 3. Both the

identification and the verification scenarios are investigated.

4.1 Identification scenario

4.1.1 Test results for P1

Figure 6 presents the performance of the system for dif-

ferent pairings of electrode positions and tasks. The results

were generated by randomly selecting 75 % of the EEG

data from R1 and R3 to train the system, and the data from

R2 were used for testing. The tests were repeated 100 times

for generating the box plots.

It is evident that the accuracies achievable from the

isolated scalp regions are very comparable for the tasks

investigated, although some small variations can be seen.

For isolated regions, task T1 produced the highest accuracy

(about 89 %) when using data from the Occipital (O) re-

gion only. Further inspecting the median accuracies of the

four tasks, it appears that introducing feet movements

actually adversely affected the biometrics performance: the

performance of T3 and T4 (movement or imagery move-

ment of both fist and feet) are both worse than that of T1

and T2 (movement or imagery movement of only fist).

When features from all the regions are combined, there is a

significant rise of about 7–12 % in the median accuracies

for all the tasks. Task T1 in this case had produced the

highest median accuracy of about 96 %.

In summary, the results show that EEG data contain

adequate discriminatory information to be used for bio-

metrics identification. While the position of the isolated

sensors did not make a substantial difference in identifi-

cation performance, the choice of the task of opening and

closing the fists (T1) seems to outperform all the other

tasks in the database when all the three regions are used.

4.1.2 Test results from protocol P2

For the tests in Protocol P2, the principal objective was to

see the effect of nonmatching training and test tasks on

system performance. Here, the features extracted from all

the nine electrodes are concatenated for this evaluation. The

two baseline resting state recordings (TbEO and TbEC) are

also included for testing to establish the usability of such

data in conjunction with movement/imagery data used for

training in a biometric context. The results are shown in

Table 4. It is clear that the performances observed with the

baseline resting state tasks used for testing are very poor.

This could be due to the fact that training data based on

movement/imagery tasks are substantially different in nature

from EEG signals obtained in resting state.

On the contrary, when the system was tested with non-

matching movement/imagery tasks, the performances were

very promising and comparable to each other. In particular,

training with the data from task T1 has again shown the

highest identification accuracies amongst the four tasks for

nonmatching training/testing scenarios explored here. In

some cases, the nonmatching data sets actually showed better

accuracy than those from thematching data sets (e.g., training

by T1 and test with T2 provided the best performance).

In short, the results suggest that given a particular type of

motor movement/imagery task used for preparing the training

data, the system may still be able to give acceptable results

while tested by a different movement/imagery task data. This

allows more flexibility from the perspective of both system

designers and users in real-life biometric applications. The

impact on recognition performance from different motor

movement/imagery tasks data is limited, whereas using the

resting state EEG for testing was found to be ineffective.

4.1.3 Test according to P3

The results of the previous experiments have shown that

the match between the training and the testing task types is

Table 3 Protocol P3
Experiments Training set Test set

P3.1 T1R1 T1R2

P3.2 T1R3 T1R2

P3.3 T1R1 ? T1R3 T1R2

P3.4 T2R1 ? T2R2 ? T2R3 T1R2

P3.5 T1R1 ? T1R3 ? T2R1 T1R2

P3.6 T1R1 ? T2R1 ? T2R2 ? T2R3 T1R2

P3.7 T1R1 ? T1R3 ? T2R1 ? T2R2 T1R2

P3.8 T1R1 ? T1R3 ? T2R1 ? T2R2 ? T2R3 T1R2

P3.9 T1R1 ? T1R3 ? T2R1 ? T2R2 ? T2R3 ? T3R1 T1R2

P3.10 T1R1 ? T1R3 ? T2R1 ? T2R2 ? T2R3 ? T3R1 ? T4R1 T1R2

P3.11 T1R1 ? T1R3 ? T2R1 ? T2R2 ? T2R3 ? T3R1 ? T4R1 ? T4R2 T1R2
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not essential for achieving a good performance provided a

nonresting task have been used for training and testing. In

this investigation, data from multiple task types are pre-

combined for classifier training. As shown in Fig. 7, the

size of the training set is gradually increased by adding the

training data coming from different task types (data from

all nine electrodes from the three scalp regions were used).

The identification accuracy increased steadily with the

accumulation of more training data until the performance

curve becomes flat. Under this experimental protocol,

accuracy rates greater than 99 % have been achieved.

The results in P3 indicate that by concatenating different

types of motor movement/imagery data for system training,

the identification performance noticeably improved. How-

ever, this improvement appears to saturate as the training

data volume is further increased.

4.2 Verification scenario

The results presented in this section are from the evaluation

of the proposed system in the verification scenario. The

detection error trade-off (DET) curves, which reveal the

relationships between false acceptance rates (FAR) and

false rejection rates (FRR) at different operating thresholds,

have been used throughout this work to evaluate the pro-

posed system [36]. In some cases, equal error rate (EER)
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Fig. 6 Identification rates for matching tasks and different electrode regions: a Task1, b Task2, c Task3, d Task4

Table 4 Mean accuracies

according to Protocol P2
Test set Training set

T1R1 ? T1R3 (%) T2R1 ? T2R3 (%) T3R1 ? T3R3 (%) T4R1 ? T4R3 (%)

T1R2 96.15 91.22 89.73 89.49

T2R2 96.44 94.72 86.48 91.45

T3R2 92.78 90.13 95.50 88.42

T4R2 95.01 94.91 87.12 93.10

TbEO 1.92 1.43 2.32 2.08

TbEC 3.45 1.45 1.92 2.44
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has also been used for comparative analysis. The publicly

available software employed here to generate DET curve

was provided by the National Institute of Standards and

Technology (NIST) [37]. Note that the Fisher’s LDA was

used for verification, through a series of binary classifica-

tions where each subject was in turn classified against the

rest of the subjects in the database.

4.2.1 Protocol P1: analysing the impacts of different

electrode positioning

The DET curves in Fig. 8 depict the verification perfor-

mance of signals captured from three scalp regions. Data

from matching tasks were used for training and testing.

Only the results from task T1 are reported as an example to

analyse the impact of electrode locations; results obtained

from other tasks also exhibited similar trends. Like previ-

ous experiments, data of R1 and R3 together were used for

training and the data from R2 were used for testing.

It can be observed from Fig. 8 that the occipital elec-

trodes produced the best overall performance amongst the

three scalp regions while the motor cortex electrodes pro-

duced the worst. The data obtained from occipital lobe and

frontal region provided comparable EERs. Despite the

results indicating that the occipital lobe seems to be a

slightly better electrode location, the difference between

the performances amongst these regions is quite small.

Hence, the impact from the electrode locations is not

conclusive.

4.2.2 Protocol P2: the impact of nonmatching tasks

The DET curves in Fig. 9 depict the performance when

different types of tasks were used for testing the system

while it was trained by T1 as described in Protocol P2.

Figure 9a shows the results obtained using data from the

occipital lobe (three electrodes), since these electrodes

produced the best overall performance in the previous

experiments. For comparison purposes, the data from the

two baseline tasks (TbEO and TbEC) were also used for

testing. For matched training and test data, the EER was

8.26 %. For nonmatching motor movement/imagery tasks,

the performances were found very similar. For example,

the EERs were 8.09 % for T2R2O and 7.83 % for T4R2O,

respectively, which were even lower than when it was

tested by the same type task data (T1R2O). However, much
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Fig. 7 Protocol P3—

experimental results (The labels

under the boxplots indicate the

experiments as in Table 3)
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Fig. 8 DET curves for Task 1 for Experiments P1.1 (frontal lobe),

P1.2 (motor cortex) and P1.3 (occipital lobe)
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worse performances were exhibited by the two curves

which represent the two baseline tasks. Furthermore, the

TbEO curve indicates the performance when the system

was tested using the eyes open baseline data, resulting in

better verification rates than that provided by the data

obtained while eyes were closed (TbEC).

In Fig. 9b, data from all the nine electrodes (in the three

regions) was employed. The lowest system EER achieved

was 2.785 % when it was tested with the data from task T2.

The error rates in these sets of experiments have reduced

by about three times when the number of electrodes

employed was raised from three to nine. In this imple-

mentation, all the DET curves are again very compactly

clustered.

It is therefore evident that when the system is trained

by data from one motor movement/imagery task and

tested by another, the verification performance does not

necessarily deteriorate than that from the task-matching

test. However, when tested by the data generated from

the resting states, the performances degraded quite

significantly.
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Fig. 9 DET curves showing the impact of testing with different task

types when the system is trained with T1 a only occipital lobe data are
used, b all nine electrodes are used (The legends indicate the test set)
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Fig. 10 a Tested with T1R2, cross-task increasing the training data

size, b tested with one run of one task, trained with the rest of data for

the four tasks
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4.2.3 Protocol P3: concatenating different task data

for training

Extensive tests, using nine electrodes shown in Fig. 4, were

conducted to investigate the effect of training using an

aggregation of all the four tasks on verification rates. Of the

available twelve same-length data recordings, only one

recording has been set aside for testing and all the remainder

were used for training. Figure 10a shows four DET curves,

while four different tasks were used for testing: for example,

the curve marked T1 indicates using data of one run from T1

for testing while the data of all the remaining runs (11 runs)

for training. The results suggest that all the EERs fall within

around 3–5 % by using the accumulated data.

The DET curves in Fig. 10b depict the results obtained

from a subset of experiments in Protocol P3. Here, the fea-

tures from different taskswere gradually concatenated to train

the system. Data from T1R2 alone were used as the test set.

The system achieved the lowest EER of 2.63 %by combining

the data from T1 and T2 for training. Although the EER

dropped initially with the addition of extra training data, after

a point there was no further improvement in performance.

It is evident that the DET curves cluster in three groups

depending on the volume of the training data. For the group

with the smallest training set, using the data of single runs

from a single task for training, the lowest performances

were observed and the training data of R3 (P3.2) provide

better results than R1 (P3.1). This performance variation

also indicates that stable operation of EEG biometrics

verification systems may not be possible with short

amounts of training data. The performance improved with

increasing the training data volume (from multiple data

recordings/tasks) and alleviated the performance variation.

4.3 Comparative analysis

Table 5 shows some of the most recent works that relate to

the proposed experiments. All of these reports of used one

or both of two popular publicly available databases for

EEG biometrics: the MM/I data set and the UCI VEP

database [38]. The UCI VEP database contains comparable

number of subjects with MM/I data set, but with only

single recording session. Indeed, the results reported in [9]

and [42] provided comparable identification performance

when other factors (number of electrodes and subjects, for

instance) are taken into consideration.

The proposed system provided comparable performance

with the state-of-art systems in both identification and

verification scenarios, but employed much less number of

electrodes. Compared with most of the reports in Table 5,

the proposed system separated the training and test data by

different recordings, which is a step further towards the

realistic biometric scenarios.

5 Conclusions

In this paper, we have explored the impact of user activity

on the performance of an EEG-based biometric system

using wavelet features. Using EEG biometric signals based

on the time derivative of wavelet coefficients, we investi-

gated impact of electrode placements and the type and

quantity of training data on the system accuracy using a

mixture of motor movement/mental imagery tasks. We

constructed three protocols to verify the questions raised in

Sect. 1, mainly aimed at establishing the impact of training

strategies and data volume on performance.

The results indicate that for the proposed experimental

design there is no clear difference in performance amongst

scalp regions. It was also found that the recognition per-

formance was not sensitive to nonmatching motor move-

ment/imagery tasks used for training and testing.

Aggregated EEG data obtained from different types of user

activity from separate recordings was explored to build

more robust training models. Results clearly indicate that

increasing the training data volume, irrespective of the type

Table 5 Comparison with related works

Reports Features Task(s) Electrode(s) Run(s) Subjects Performance (%)

Motor movement/imagery data set (MM/I data set)

Rocca et al. [9] PSD & spectral coherence EO & EC 56 1 108 CRR: 100

Fraschini et al. [39] Eigenvector centrality EO & EC 64 1 109 EER: 4.4

Proposed work Wavelet coefficients T1–T4 9 3 108 CRR: 99

EER: 4.5

UCI EEG database data set (VEP data set)

Su and Farzin [40] EEMD-based InsAmp Visual 1 1 118 CRR: 95.9

Yazdani et al. [41] AR coefficients & PSD Visual 64 1 20 CRR: 100

Brigham et al. [42] AR coefficients Visual 64 1 120 CRR: 98.96

Huang et al. [43] Root-mean-square values Visual 64 1 116 CRR: 95.1
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of activity used, improves identification and verification

performance.

The overall conclusion is that there appears to be

substantial flexibility in the choice of user activity

employed for training and testing such systems. The work

has also indicated that data from different types of motor

movement/imagery activity may be aggregated to provide

more robust training of the system without any adverse

effects. This flexibility with regards to types of user

activity could result in systems that are easier to develop,

deploy and use in a range of applications. Future work

will be focused on evaluating the robustness of this

approach when collecting data with long time intervals

between training and testing as well as data from low-cost

EEG sensors.
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