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ABSTRACT 
Victoria University has developed a capability around the 
detection of drive by download attacks using client honeypot 
technology [1-3]. Two types of client honeypot, low-interaction 
and high-interaction honeypots, have been developed to inspect 
malicious web pages. A new client honeypot model, called a 
hybrid system, has also been proposed to improve the 
performance of client honeypots [2]. These client honeypots have 
made significant contributions to Internet security through 
detection of malicious servers. However, their performance has 
shown there are areas where artificial intelligence (AI) technology 
can add value to create more adaptable client honeypots. In this 
workshop, we briefly present client honeypots which have been 
developed by Victoria University and how we can apply AI to 
improve their performances.  
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Client Honeypots at Victoria University 
Client honeypots are measurement systems that actively measure 
the Internet for malicious web servers and malicious content. 
Malicious servers respond to client requests for a URL with the 
requested web page but may also include crafted exploit code 
which aims to compromise the client system resulting in loss of 
integrity or loss of data. These attacks are called “drive-by-
downloads” [5-6]. 
Client Honeypots can be classified into two main types: low-
interaction client honeypots and high-interaction client honeypots. 
Low-interaction client honeypots are developed by emulating 
system services which are attractive to the intruders. On the other 
hand, high-interaction client honeypots use real systems that 
interact with potential web servers [2].  

To detect malicious web pages, Victoria University has developed 
both client honeypots: HoneyC - a low-interaction client honeypot 
and Capture – high interaction honeypot. HoneyC inspects 
malicious web pages by analyzing the responses from web servers 
directly. It uses static method such as pattern matching, static 
code analysis algorithm to detect malicious web pages [3]. 
Capture, on the other hand, detects malicious pages by deploying 
a real operating system in a virtual machine to interact with 
potential malicious web servers and monitoring for any 
unauthorized state changes during surfing web pages [1]. In 
performance, HoneyC has high false positive rate while Capture 

has a false positive rate of zero but may miss attacks that detect 
for the presence of a virtual machine. However, Capture 
consumes large computing resources and time to detect malicious 
servers and exploits [2].  

To take advantages of both client honeypots, a hybrid client 
honeypot system has been proposed.  In this system, there is a set 
of client honeypot nodes operating collaboratively to detect 
malicious web servers. Each node uses both client honeypots: 
low-interaction and high-interaction honeypots. Low-interaction 
honeypot are first used to analyze the responses from web servers 
and suspicious web servers are forwarded to high-interaction 
honeypots for final classification [2].  

Performance of Client Honeypots: Need of AI 
Technology. 
The detection performances of client honeypots has benefited 
from applying AI technology. First of all, HoneyC uses static 
methods to detect malicious web pages. Signatures from known 
malicious contents are used to classify web pages. Therefore, it 
misses unknown malicious contents because the drive-by-
download attacks are mutating over time, called “concept - drift” 
and so pattern matching is not effective long term [2]. In addition, 
Capture also misses trigger attacks which need users’ interactions 
to make state changes in the system [4]. Using AI technology to 
study potential web page contents can be used to overcome these 
issues. 

In hybrid client honeypots, AI technology is very important in 
order to get significant performances. First off all, AI technology 
can be used to analyze the responses from potential web servers. 
It can reduce the set of potential URLs sent to high-interaction 
honeypots for inspecting. Moreover, high-interaction honeypots 
can use AI to study the activities of intruders. The outcome of this 
study can be some generated patterns or signatures which can be 
used in low-interaction honeypots and be continuously updated to 
overcome concept-drift. 

Current Works in Applying AI for Client 
Honeypots 
Christian et al. propose static heuristics to classify malicious web 
pages. The main idea of this method is to classify web pages 
using static heuristics before they are inspected by high-
interaction honeypots. The web pages classified as malicious were 
then forwarded to high-interaction honeypot for evaluating. To 
implement this method, common elements of malicious web 
pages were studied and some potential attributes were chosen. 
These attributes were extracted from both malicious and benign 
web pages and were fed into J4.8 decision tree learning algorithm 
implementation of Weka Machine Learning Library [8]. This 

Copyright is held by the author/owner(s) 
PAM 2009, 1-3 April 2009, Seoul, Republic of Korea. 



method has been proposed to improve the known false negative 
rate in high-interaction honeypot. It also improves the speed of 
performance as reducing the set of inspected URLs [4].  

In addition, Vicky K. [7] used clustering to classify intruders’ 
intention in high-interaction honeypots. She used log files 
generated from Capture – a high-interaction honeypot which 
instruments the Windows XP operating system to detect events. 
The main task is to classify malicious web pages with similar 
behaviors into the same groups. These groups are then studied to 
find the common characteristics which can be used to generate the 
general signatures to detect malicious web pages. To implement 
this research, all actions which are made by malicious web pages 

are monitored and stored into log files by high-interaction 
honeypots. These actions are encoded as sequences of characters 
and indexes. The characters and indexes presents for actions and 
affected objects. These sequences are then fed into hierarchical 
agglomerative clustering algorithm for estimating the number of 
clusters. They are finally fed into K-means clustering algorithm.  
Smith Waterman similarity measuring techniques are used to 
measure the similarity of sequences of actions and indexes 
because of the similarity of events captured to DNA pattern 
matching [7]. 
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Figure 1. Client Honeypot system with AI implementation 
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Further Researches on Applying AI 
Technology for Client Honeypots 
Christian et al. has used J4.8 decision tree learning algorithm to 
classify web pages while Vicky K. used clustering to analyzing 
unauthorized activities for classifying intruders’ behaviors. There 
are still many challenges to use AI technology for client 
honeypots. These challenges can be addressed as workshop 
discussion topics: 

- Which available learning algorithms can do better 
performances than J4.8 decision tree learning algorithm? 

- How to study activities of malicious webs to overcome missing 
trigger attacks at high-interaction honeypots? 

- What is the relationship between unauthorized activities 
monitored by low-interaction honeypots and attributes used by 
high-interaction honeypots to classify potential malicious web 
pages?  
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