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Abstract

Clinical electroencephalographic (EEG) data varies significantly depending on a number of 

operational conditions (e.g., the type and placement of electrodes, the type of electrical grounding 

used). This investigation explores the statistical differences present in two different referential 

montages: Linked Ear (LE) and Averaged Reference (AR). Each of these accounts for 

approximately 45% of the data in the TUH EEG Corpus. In this study, we explore the impact this 

variability has on machine learning performance. We compare the statistical properties of features 

generated using these two montages, and explore the impact of performance on our standard 

Hidden Markov Model (HMM) based classification system. We show that a system trained on LE 

data significantly outperforms one trained only on AR data (77.2% vs. 61.4%). We also 

demonstrate that performance of a system trained on both data sets is somewhat compromised 

(71.4% vs. 77.2%). A statistical analysis of the data suggests that mean, variance and channel 

normalization should be considered. However, cepstral mean subtraction failed to produce an 

improvement in performance, suggesting that the impact of these statistical differences is subtler.

I. Introduction

Diagnosis of clinical conditions such as epilepsy are dependent on electroencephalography 

(EEG), the recording of the brain’s electrical activity through electrodes placed on the scalp, 

as shown in Figure 1. Delivering a conclusive diagnosis without an EEG is often unfeasible 

[1]. The key role played by this technique in the diagnosis of several neurological conditions 

coupled with the large amounts of time required by specialized neurologists to interpret 

these records, has created a workflow bottleneck – neurologists are overwhelmed with the 

amount of data that needs to be manually reviewed [2]. There is a great need for partial or 

complete automation of the EEG analysis process, and automated technology is slowly 

emerging to fill this void [3],[4]. The need for this data to be manually reviewed in real-time 

for clinical reasons further exacerbates the need for automatic interpretation technology.

Research has specifically focused on the task of ictal (seizure) EEG detection or 

identification. In [3], for instance, hidden Markov models (HMMs) are trained to recognize 

the ictal, interictal and postictal stages of the brain. The research presented in [5], on the 

other hand, describes a system that uses a wavelet-based sparse functional linear model with 

a 1-NN classifier for the classification of ictal EEGs. The same task was accomplished in [4] 

through the implementation of a Support Vector Machine (SVM) classifier. All these studies 

achieved detection accuracies in the range of 89% to 100%, even though clinical 
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performance of commercial technology based on these approaches is significantly lacking 

[6][7].

Few studies, however, have addressed an important problem inherent to clinical recordings: 

the immense variability. All seizure detection studies previously cited limit the training and 

evaluation of their models to one or two homogeneous databases. The large variability 

among EEG channels and montages utilized in clinical EEGs is not usually taken into 

account for the generation and evaluation of the models. For example, in the TUH EEG 

Corpus [8], which is the basis for this study, there are over 40 different channel 

configurations and at least 4 different types of reference points used in the EEGs 

administered. It is unclear that whether this data can be modeled by a single statistical 

model, or whether special measures must be taken to account for this variability. Research 

fields such as speech recognition have dealt with this problem for many years using 

technologies such as speaker and channel adaptation [9], but these technologies have yet to 

be explored in EEG research.

The information yielded by an EEG channel is essentially the difference of electrical activity 

between two electrodes. In Figure 1, we show a typical EEG electrode pattern that includes 

common electrical reference points. Because changes in the electrode locations on the scalp 

present different electrical activity, the reference point used to measure a voltage has a 

significant impact on the nature of the voltage observed. In fact, since the conduction of 

these electrical signals through the brain is a highly nonlinear and noisy process, grounding 

plays a very important role in the quality of the observed signals.

A differential view of the data, known as a montage, which consists of differencing the 

signals collected from two electrodes (e.g., Fp1-F7), is very common. In fact, neurologists 

are very particular about the type of montage used when interpreting an EEG. At Temple 

University Hospital (TUH), for example, a Temporal Central Parasagittal (TCP) montage 

[10] is very popular.

Of course, one might think that this problem is of little importance since most EEG analysis 

is done using differential voltages (e.g. Fp1-F7). In theory, the effects of a reference point 

would be cancelled via subtraction of two channels with the same reference point. In 

practice, the location of the reference point changes the nature of the waveforms 

considerably because the brain and scalp conduction paths are highly nonlinear [11].

The American Clinical Neurophysiology Society (ACNS) recognizes that there is a great 

variety of montages among EEG laboratories. Even though the ACNS has proposed 

guidelines for a minimum set of montages [10], several reference sites are still used 

depending on the purpose of the EEG recording [8]. Some commonly used reference 

schemes include:

• Common Vertex Reference (Cz): uses an electrode in the middle of the head;

• Linked Ears Reference (A1+A2, LE, RE): based on the assumption that sites like 

the ears and mastoid bone lack electrical activity, often implemented using only 

one ear;
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• The Average Reference (AR): uses the average of a finite number of electrodes 

as a reference.

The robustness of a state of the art machine learning system that decodes EEG signals 

depends highly on the ability of the system to maintain its performance with different 

variations of the data. The specific montage of a recording could potentially affect the 

operation of such systems in a negative way, which constitutes a fundamental problem, given 

the fact that EEG signals tend to present high variability in clinical settings [8].

This investigation will explore the statistical variations and effects that are produced by two 

different referential montages observed in the TUH EEG Corpus [8], LE and AR, on a 

machine learning system based on HMMs [12].

II. Experimental Design

The TUH EEG Corpus Error! Reference source not found. is the largest, publicly 

available source of clinical data in the world. The referencing systems that are compared in 

this study are the ones that predominate in this corpus: Linked Ears Reference (LE) and 

Averaged Reference (AR) and (43.8% and 46.5% of the data respectively). The large 

amounts of data available in TUH EEG (approximately 16,500 files each), was the main 

motivation for the selection of these particular referential systems.

The study of the two referential systems was divided into three types of analyses: (1) simple 

descriptive statistics, (2) analysis of variance using Principal Component Analysis (PCA) 

[13] and (3) a comparison of the performance obtained from our standard HMM baseline 

system that uses models trained separately for each class.

Feature extraction for EEG signals was performed using a standard approach described in 

[12] and shown in Figure 2. The frame and window durations for feature extraction are 0.1 

and 0.2 seconds respectively. The base features were used in a calculation that produced 

their first and second derivatives. It is important to note that the second derivative was not 

calculated for the differential energy feature, because it was proven to be redundant in 

previous studies [12].

The final feature vector that was used as an input for the experiments had a dimension of 26, 

with 9 of those features being the base, or absolute, features, and the rest being derivatives of 

the original features. The number of features used was varied depending on the experiment. 

In some experiments, only absolute features (9 features) were used because these are more 

appropriate for studying basic statistical properties since they map directly to spectral 

characteristics of the signal.

The descriptive statistics of the data were calculated through a simple computation of the 

mean and variance for each class (LE and AR). The global mean and variance for all the 

data were also calculated in order to determine the significance and direction of the bias. For 

this particular part of the study, 16,840 LE files and 17,858 AR files were used, meaning that 

48.5% of the data were referenced to LE while 51.5% of the data was referenced to AR. 

Note that for this part of the study, only the base features were used.
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Following the descriptive statistical analysis, a PCA was performed on the features. The 9-

dimensional mean vector, μ, and covariance matrix Σ of the data were computed, which was 

followed by the calculation of the eigenvalues and vectors of the covariance matrix. The 

eigenvalues and eigenvectors were then analyzed and compared to the comparable 

eigenvector in the opposite class. This was done to assess the importance of each component 

in the overall weighting of the feature vector.

A machine learning system was used to evaluate the mismatch between feature vectors from 

each class. This baseline system was a traditional HMM system described in [12]. This 

specific system, however, was trained to detect two different types of events: (1) seizures 

(SEIZ), and (2) background (BCKG). To assess the mismatch between feature vectors, we 

trained statistical models with only LE features (LE model), only AR features (AR model) 

and the combination of both types of features combined (LE+AR model). The models were 

evaluated in similarly divided evaluation sets (LE data only, AR data only and LE+AR data). 

The training sets were comprised of 44 EEG records for each class (LE and AR) and the 

evaluation set had 10 EEG records per class. All of the records in both the training and 

evaluation sets came from unique patients, which implies that 108 patients were represented 

in the total dataset.

Speech recognition systems have been generally successful in mitigating the influence of 

channel variations. Feature normalization techniques, such as Cepstral Mean Normalization 

(CMN) [14], are well-established techniques that enhance the robustness of these systems. 

We also report on a pilot experiment using CMS to offset any biases between montages.

III. Results and Discussion

Descriptive statistics were calculated for both classes per feature type as an initial analysis. 

Table 1 presents a summary of the findings. These statistics demonstrate that there is a great 

variation in the means and variances for each base feature, indicating that the characteristics 

that describe these two sets are very different in the frequency domain. We also examined 

individual channels and observed a comparable amount of variation.

PCA analysis provides a more complete analysis of the differences between montages. The 

percent variance explained by each eigenvalue is presented in Figure 3 for each of the 

montages. Figure 4 compares the eigenvectors. We observe that the first PCA component 

explains a much higher portion of the variance for the LE data than for the AR data. This 

analysis was supported in Figure 4. The eigenvectors show similar behavior in the energy 

features and the lower cepstral coefficients. The lower order eigenvectors, which correspond 

to large eigenvalues, weight the higher cepstral coefficients more heavily. These features, 

whose eigenvectors show opposite polarity, correspond to beta waves (13 Hz – 30 Hz) 

frequently present in normal recordings.

The recognition experiments on seizure detection were much more revealing. A Detection 

Error Tradeoff (DET) curve for each of these experiments is presented in Figure 5 while the 

detection rate is summarized in Table 2. Best performance is obtained by training on the 

entire dataset (LE+AR) and evaluating only on LE. However, the performance of this model 
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on the AR data set is degraded, causing the overall performance on the combined data to 

suffer. The AR model is the one with the least amount of variability when tested on different 

evaluation sets.

The results presented in Table 2 support the fact that the three models, AR, LE and LE+AR 

are fundamentally different. The bias between the montages that can be seen in Table 1 was 

addressed through the implementation of CMN, in the hopes of stabilizing the systems. 

Unfortunately, CMN did not prove to be as successful with EEG data. Figure 6 shows that 

the performance with CMN is worse for all cases except the AR model evaluated on LE 

data.

IV. Summary

EEG machine learning technology should be robust to any type of EEG signal. The ability to 

train channel-independent models, or to maintain performance across different montages, is 

extremely important in clinical settings, where there is not one specific standard way to 

conduct the recordings. Our analysis of the two different referential montages that represent 

the majority of the data in the TUH EEG Corpus, Linked Ears Reference (LE) and Averaged 

Reference (AR), shows that there are systematic differences in the statistics of the data. 

Though our existing baseline system is capable of addressing these variations, it seems 

likely that some form of channel normalization should improve performance and reduce the 

variance of the model.

Cepstral mean normalization (CMN) was implemented in order to address the mean bias that 

is present in the two different referential systems. Our results indicate that this technique was 

not as successful in the EEG domain as it was in speech. Additional investigation into this 

topic is warranted. This paper has shown that finding and implementing a successful 

normalization approach for clinical EEGs would allow the data to be mixed, thereby making 

the overall corpus more useful for machine learning research.
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Figure 1. 
Three common referential montages are shown: a) the Common Vertex Reference (Cz), b) 

the Linked Ears Reference (LE) and c) the Average Reference (AR).

López et al. Page 7

IEEE Signal Process Med Biol Symp. Author manuscript; available in PMC 2017 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Base features calculated through a cepstral coefficient-based approach that uses frame and 

window durations of 0.1 and 0.2 seconds respectively.
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Figure 3. 
Percent variance explained by each principal component for each referential montage type.
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Figure 4. 
The amplitudes of the eigenvectors for each montage are shown. Note that components 2–8 

represent the cepstral features, component 1 represents frequency domain energy and 

component 9 represents differential energy.
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Figure 5. 
DET Curves for each of the recognition experiments. The first montage indicator refers to 

the data used for training, while the second one refers to the evaluation set. For example, LE

+AR/AR refers to a model trained with LE+AR data and evaluated with AR data.
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Figure 6. 
Performance comparison for the normalized and non-normalized systems.
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Table 1

Summary of the descriptive statistics of the elements of the feature vector by montage.

Feature

Mean Variance

LE AR LE AR

Ef 1.685 12.390 49.560 19.368

c1 2.296 1.949 0.891 1.171

c2 0.991 0.677 0.510 0.675

c3 0.320 0.296 0.166 0.250

c4 −0.060 −0.009 0.107 0.128

c5 −0.026 0.037 0.037 0.050

c6 −0.007 −0.035 0.024 0.027

c7 0.045 0.042 0.017 0.016

Ed 1.887 3.001 23.298 21.824
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Table 2

Recognition results for mismatched training and evaluation sets according to the referential montage type of 

each set.

Train/Eval LE AR LE+AR

LE 77.19% 72.89% 78.52%

AR 55.92% 61.41% 60.89%

LE+AR 68.60% 68.25% 71.40%
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