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Abstract 

Objectives: Functional connectivity triggered by naturalistic stimulus (e.g., movies) 

and machine learning techniques provide a great insight in exploring the brain 

functions such as fluid intelligence. However, functional connectivity are considered 

to be multi-layered, while traditional machine learning based on individual models not 

only are limited in performance, but also fail to extract multi-dimensional and 

multi-layered information from brain network. Methods: In this study, inspired by 

multi-layer brain network structure, we propose a new method namely Weighted 

Ensemble-model and Network Analysis, which combines the machine learning and 

graph theory for improved fluid intelligence prediction. Firstly, functional 

connectivity analysis and graphical theory were jointly employed. The network and 

graphical indices computed using the preprocessed fMRI data were then fed into 

auto-encoder parallelly for feature extraction to predict the fluid intelligence. In order 

to improve the performance, different models were automatically stacked and fused 

with weighted values. Finally, layers of auto-encoder were visualized to better 

illustrate the impacts, followed by the evaluation of the performance to justify the 

mechanism of brain functions. Results: Our proposed methods achieved best 

performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 

R-squared coefficient, outperformed other state-of-the-art methods. It is also worth 

noting that, the optimization of the biological pattern extraction was automated 

though the auto-encoder algorithm. Conclusion: The proposed method not only 

outperforming the state-of-the-art reports, but also able to effectively capturing the 

common and biological pattern from functional connectivity during naturalistic 

movies state for potential clinical explorations. 

Keywords: functional Magnetic Resonance Imaging, Functional connectivity, 

Weighted Ensemble-model and Network Analysis, fluid intelligence  

1.  Introduction 



Human brain could be viewed as a complex network with enormous amount of 

locally segregated structural regions, each region dedicating to different 

functionalities, together they maintain global functional communications among 

different cognitive resources. One of the most important non-invasive approaches to 

measure the brain functional connectivity (FC) is the functional Magnetic Resonance 

Imaging (fMRI), which reflects the change of Blood Oxygen Level-Dependent 

(BOLD) signal [1]. As one of the major advancements in recent fMRI data analyses, 

functional connectivity is used to measure the temporal dependency of neuronal 

activation patterns in different brain regions and the communications between these 

regions [2]. Traditional FC analysis was based on specific experimental paradigm or 

resting-state; recent studies have shown that the Naturalistic Stimuli, which forms 

ecologically valid paradigms and approximate the real life, could improve compliance 

of the participants [3], hence increase the test-retest reliability [4]. Indeed, the 

functional connectivity with high ecological validity in naturalistic stimulus has been 

found more reliable than that in resting-state [5].  

 Many neuroimaging studies have shown that relationships between brain and 

cognitive functions can be established using brain measurements, cognitive 

measurements and statistical methods (e.g., Pearson correlation). However, statistics 

methods (e.g., parametric methods) tend to over-fit the data and yield a quantitatively 

increased certainty of the statistical estimates, while fail to generalize to novel data [6]. 

Furthermore, it may be impaired by high-dimensional situations (e.g., FC) [7]. On the 

other hand, machine learning methods with well-established processing standards, 

could simultaneously extract common-level patterns and leverage individual-level 

prediction from neuroimaging data [8]. By further integrating FC analysis into machine 

learning framework, a data-driven approach named connectome-based predictive 

modeling (CPM), could even predict individual differences in traits and behavior [9]. 

Coupled with the alerting score method, Rosenberg et al. found that CPM could 

predict sustained attention abilities using resting-state fMRI data, this finding may be 

applied to describe the new insight on the relationship between FC and attention [10]. 

Using machine learning techniques, the physiologically important representations 

buried in fMRI data could also be excavated and captured [11]. For example, using 

deep learning and fMRI, Plis et al. found that deep nets could screen out the latent 

relation and biological patterns from neuroimaging data [12]. These studies indicate 

that deep neural nets could not only be used to infer the presence of brain-behavior 



(e.g., FC and human behavior) relationships and bring new representation to explain 

the neural mechanisms, but also can be used as the fingerprint to translate 

neuroimaging finding into practical utility [13]. However, traditional machine learning 

model based on single model was limited in model generalization and model 

performance [9]. Previous studies have demonstrated that the ensemble learning, 

proposed by Breiman et al. [14], has been integrated with bootstrap samples and 

multiple classifiers to improve the generalization. In addition, the overfitting issue 

would also be eliminated by using ensemble learning [15]. Brain networks are 

considered hierarchical with information processed in different layers[16]. Inspired by 

this, combining hierarchical structure and ensemble learning could be an effective 

way to improve the performance of models and extract biological information from 

data. 

In this study, we propose a new machine learning hierarchical structure to predict 

the fluid intelligence, using the biological patterns extracted by measuring the 

functional connectivity. A new regression method based on machine learning and 

graph theory, namely Weighted Ensemble-model and Network Analysis (WENA) has 

been developed for this purpose. Compared with the traditional CPM, we used a 

self-supervised learning method named auto-encoder (AE) to extract no-linear and 

deep information from the functional connectivity and graphical theory indices based 

on fMRI data. In order to further improve the prediction performance, we also 

proposed a new method namely Weighted-Stacking (WS) which was 

multi-stacking-layers structure for WENA and based on the stacking structure and 

model fusion. The results showed that the proposed method outperforms other 

state-of-the-art methods, it also demonstrated the existing coherence between 

biological fluid intelligence and neuroimaging using this data-driven approach. 

2. Materials and methods 

2.1. Data acquisition  

Data of 464 participants, aged from 18 to 88 years old were downloaded from 

the population-based sample of the Cambridge Centre for Ageing and Neuroscience 

(Cam-CAN, http://www.cam-can.com). The subjects without behavioral and/or 

neuroimaging data (fMRI or MRI) were excluded in this study, hence in total 461 

controlled participants without mental illnesses and neurological disorders were 

included in this work. The fluid intelligence score (FIS) and other demographical 

http://www.cam-can.com/


information about the participants is shown in Table1. 

The fMRI data were recorded while subjects watching a clip of the movie by 

Alfred Hitchcock named “Bang! You’re Dead”. According to previous neural 

synchronization study, the full 25-minute episode was condensed to 8 minutes [17]. 

Participants were instructed to watch, listen, and pay attention to the movie. 

The data were collected using a 3T Siemens TIM Trio System, with a 32-channel 

head coil, at MRC Cognition Brain and Science Unit, Cambridge, UK. for each 

participant, a 3D-structural MRI was obtained using T1-weighted sequence 

(Generalized Auto-calibrating Partially Parallel Acquisition; repetition time = 2250 

ms; echo time = 2.99ms; inversion time = 900ms; flip angle α = 9°; matrix size 256 

mm × 240 mm × 19 mm; field of view = 256 mm × 240 mm × 192 mm; resolution = 

1 mm isotropic; accelerated factor = 2) during the movie watching.  

Table1. Demographical information of the subjects 

Total number Age FIS Gender (female/male) 

461 54.64±18.63 32.97±6.30 231/230 

2.2. Experimental Pipeline 

To predict the brain fluid intelligence, we propose a novel WENA method to 

construct a series of model discriminative functional networks. Figure 1 illustrates the 

overall structure of the system. To start with, the raw fMRI data was preprocessed and 

the FCs (12720 FCs for each subject) from 160 regions of interest (ROIs) computed; 

the graphical theory indices were also obtained in parallel within this step. The indices 

were entered into AE module, encoded AE features and decoded AE patterns were 

then obtained. Finally, all features were fed into WS structures to obtain the FIS for 

each subject. 



 

Fig.1. The overall procedure of proposed method. a) data preprocessing. b) Encode functional 

connectivity and graphical theory indices. The AE was used in this step to extract features and 

biological patterns from the network indices. c) the structure of weighted stacking fusion Model. 

Firstly, the features extracted from network edges and graphical theory indices were trained 

respectively in the first layer. In the next layer, weighted operators based on the training error 

caused by the last layer of the training model were added into label predicted by the last layer, and 

these weighted-labels were used as training features in next layers. The final predicted labels were 

the weighted sum of labels from different models.  

2.3. Data preprocessing  

The data preprocessing was carried out using the Data Processing Assistant for 

Statistical Parametric Mapping (SPM8, http://www.fil.ion. ucl.ac.uk/spm) and 

necessary hand-crafted MATLAB scripts (MATLAB 2018a). Initially, the first 5 

volumes were discarded to reduce the impact of instability of the magnetic field. The 

preprocessing procedure of naturalistic fMRI included slice-timing correction, 

realignment, spatial normalization (3×3×3 mm3) and smoothing [6-mm full-width at 

half maximum (FWHM)]. First, slice-timing correction were used for different signal 



acquisition between each slice and motion effect (6 head motion parameters). The 

possible nuisance signals, which included linear trend, global signal, individual mean 

WM and CSF signal, were removed via multiple linear regression analysis and 

temporal band-pass filtering (pass band 0.01-0.08 Hz). The calculation of head motion 

was the following formula: 

headmotion= 
1

M-1
√|∆𝑑𝑥𝑖

1|2 + |∆𝑑𝑦𝑖
1|2 + |∆𝑑𝑧𝑖

1|2 + |∆𝑑𝑥𝑖
2|2 + |∆𝑑𝑦𝑖

2|2 + |∆𝑑𝑧𝑖
2|2  

(1) 

 Where M means number of time points of each subject; 𝑑𝑥𝑖
1/𝑑𝑥𝑖

2, 𝑑𝑦𝑖
1/𝑑𝑦𝑖

2 and 

𝑑𝑧𝑖
1/𝑑𝑧𝑖

2 are translations/rotations at each time point in the x, y and z, and ∆𝑑𝑥𝑖
1 

means difference between 𝑥𝑖
1 and 𝑥𝑖−1

1 . Furthermore, the subjects with translational 

motion >2.5 mm, rotation > 2.5°, mean absolute head displacement (mFD) >0.5 mm 

were excluded in this study. Next, the fMRI data were spatially normalized to the 

Montreal neurological institute (MNI) space by using Dosenbach [18]. Finally, the 

fMRI data were smoothed with a Gaussian kernel of 6 mm full width at half 

maximum (FWHM) to decrease spatial noise.  

2.4. Functional connectivity and network property 

For each participant, the whole-brain functional connectivities between all 160 

brain regions were constructed pairwise from the preprocessed fMRI data according 

to Dosen Bash[19]. The FCs for each ROI pair, computed using the Pearson’s 

correlation (PC), Mutual information (MI) [20] and Distance correlation (DC) [21] were 

calculated respectively, then further averaged over time toward the BOLD signals per 

subject. Once the whole-brain network was available, numerous measures could be 

expressed in terms of a graph. A threshold (the highest 20% of the weights) was set to 

sparse the constructed network. Graph theory analysis was performed on the sparse 

network for each subject with different FC calculation strategies. The graph theory 

indicesincluded the degree centrality (DC), ROI’s strength (RS), local efficiency (LE) 

and betweenness centrality (BC). Finally, the features based on FC and graph theory 

indices were used for further feature representation via AE and regression. 

2.5. Feature encoder and network pattern construction 

Each subject’s Nnode × Nnode connectivity matrices which were concatenated to 

give Nsubject × Nedge matrix and graph theory indices which were Nsubject × Ngraph indices 

matrix were then entered into AE respectively (Fig. 1A). The number of epochs was 

500 and the hidden nodes was set to 50 [22]. The AE, illustrated in Fig. 2, is a special 



type of neural network which is capable of conduct feature engineering. The vectors 

𝑥 ∈ R was encoded into hidden representation h ∈ R′ by the activation function 𝑓: 

ℎ = 𝑓(𝑊𝑥 + 𝑏)                          (2) 

The hidden representation h was decoded to reconstruction data ℎ ∈ 𝑅  by the 

activation function: 

r = g(W′h + b′)                          (3) 

where W and W’ are the weight matrices, b and b’ represent the bias vectors, the 

classic sigmoid(𝑥)=1/(1+𝑒−𝑥) has been adopted as the activation function for 𝑓 and 

g. 

Effectively a nonlinear principal components analysis (PCA) [23], the AE can be 

trained in a fully unsupervised manner. AE seeks the optimal parameters W, W’, b 

and b’ via gradient descent algorithm to minimizes the reconstruction error 𝐿(𝑥, 𝑟) =

‖𝑥 − 𝑟‖2. In order to prevent overfitting, a weighted constraint parameter was used to 

regularizes 𝐿′(𝑥, 𝑟), shown in (4). 

 L′(𝑥, 𝑟) = L(𝑥, 𝑟) + 𝜀‖𝑊‖2
2                   (4) 

where 𝜀 is regularization parameters. 

 

Fig.2 Autoencoder: the encoder maps input data into hidden representation, the decoder maps the 

encoded features to reconstruct the data 

The whole-brain FC was entered into AE to extract and preserve the main 

information of the network according to the loss function minimum criterion [24].  

2.6. Weighted-Ensemble models and Network Analysis Framework 

All models were initially trained using different AE features, these features were 

extracted from network patterns and graphical indices. To prevent overfitting and the 

accuracy bias due to the reuse of the same data, the extracted features were split into 

training and test set respectively for 10-fold cross-validation. Predictive models were 

implemented and merged in a multi-stacking-layers approach called 

Weighted-Stacking (WS). On its first layer, basic regression models were used to 



predict FIS from neuroimaging data, weighted operators were then obtained to 

measure the performance of each model. The formula of weight operator W was 

shown in (5). 

W𝑖 =

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Coefficient𝑖
𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟𝑖

∑
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Coefficient𝑖

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟𝑖

𝑛
𝑖=1

                    (5) 

Where n is the number of features, Correlation Coefficient refers to the 

correlation between real label and predicted label of each first level training model, 

Mean Absolute Error measures the absolute error between real label and predicted 

label of each first layer training model. 

On the second layer, predictions from the first level models were multiplied by 

W coefficient and then stacked with other regression models. Finally, the fusion 

factors were set to fuse the weighted stacking models. And Fusion operator W’ were 

defined in (6). 

W′𝑗 =

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Coefficient′𝑗

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟′𝑗

∑
𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 Coefficient′𝑗

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟′𝑗

𝑚
𝑗=1

                   (6) 

Where m is the number of regression models, “Correlation Coefficient’” 

indicates the correlation coefficient between real label and predicted label of each 

second level training model, “Mean Absolute Error” is the mean absolute error 

between real label and predicted label of each second layers training model.  

In this study, basic regression models employed for WENA were ensemble tree 

regression (ETR) and ridge regression (RR). Support vector regression (SVR) with 

Gaussian kernel and extreme learning machine regression (ELMR) were also used to 

compare with the performance of WENA and test the robustness of proposed 

framework. 

2.7. Parameters Test  

In order to test the impact of the model parameters, in this study the stacking 

layers (from 2 layers to 4 layers), different FC construction methods and model fusion 

strategies were used to train WENA model . Also, in order to reduce the effect of 

other parameters on the performance, different regression models were trained via the 

same AE features. And we changed the parameters to be tested and fixed the others. 

and stacked into higher fixed stacking layers structure. 

2.8. Methods Comparison  



In this study, in order to test the performance of WENA, we compared the 

performance of conventional stacking models with ETR, RR, SVR and ELMR model 

and basic regression models. Also, features extracted via principal component 

analysis (PCA) and independent component analysis (ICA) were also used to trained 

WENA framework, the results were compared with using AE methods for feature 

extraction. All methods were tested in features based on three FC construction 

methods. 

3. Result Evaluation 

The Mean Absolute Deviation (MAE), Pearson Correlation Coefficient (R value) 

and R-squared Coefficient (R2 value) between real value and predicted value were 

used to evaluate the performance of the proposed method. 

3.1. Biological Pattern Visualization 

Each AE feature was evaluated by using RelifF method [25] and the feature with 

the largest RelifF value was considered as the biomarker with biological significance. 

Pearson correlation was used to evaluate the relationship between age and AE features 

to extract age-related and biological patterns. The biological patterns corresponding to 

the chosen AE features were extracted via weight value of AE and visualized [26].  

3.2. Results 

We compared the performance of our WENA method with different weighted 

stacking models and FC construction methods. Table 2 illustrated that the proposed 

WENA achieved the best performance for fluid intelligence prediction across three 

functional connectivity construction methods. The performance of MI-based features 

obtained the highest performance with 3.85 for Mae, 0.66 for R value and 0.42 for R2 

value. The best FIS prediction of each network construction was shown in Fig. 3. 

Furthermore, conventional stacking structures and feature engineering methods were 

used to compare with proposed WENA method based on AE features. Table 3 showed 

that conventional stacking model based on SVR achieved the best performance (Mae 

was 4.25, R value was 0.53, R2 was 0.26) with PC-network construction method and 

basic SVR model achieved best Mae with 4.20 (R value was 0.53, R2 was 0.28). 

Compared with conventional feature engineering methods with 

MI-network-construction method, WENA achieved the performance with 4.12 for 



Mae, 0.58 for R value and 0.33 for R2 value for PCA methods and 4.77 for Mae, 0.32 

for R value and 0.10 for R2 value for ICA methods. 

Stacking layers and model fusion strategies were used to test the robustness of 

proposed WENA. Fig 4 and Table 3 showed that proposed WENA outperformed 

conventional stacking models and basic regression models and was robust to network 

construction methods and applied stacking layer. Fig 5 showed that WENA with 

different regression models fusion strategies outperformed corresponding single 

regression models shown in Table 3. 

Additionally, there was a significantly correlation found between age and FIS (R 

= 0.65, p < 0.001). There were also significant differences between the network AE 

feature and age in FC pattern (R = -0.34, p < 0.001), BC pattern (R = 0.59, p < 0.001) 

and LE pattern (R= 0.46, p<0.001), while there were no significant relationship found 

between other graph theory indices (DC and RS) and age. The most discriminative 

and age-related FC with network-property patterns were visualized via AE, as well as 

the important ROIs extracted by WENA(shown in Fig. 4 and Table 5). These results 

revealed that the most biological patterns extracted by WENA were sensorimotor 

network, cingulo-opercular network, occipital network and cerebellum network. 

 

Table 2. The performance of weighted stack model and model fusion 

Feature Method MAE R R2 

PC 

WS- ETR 4.21 0.57 0.31 

WS–RR 4.07 0.59 0.33 

WS-SVR 4.21 0.55 0.28 

WS-ELMR 4.47 0.54 0.21 

WENA 4.05 0.61 0.36 

MI 

WS-ETR 4.06 0.63 0.36 

WS- RR 3.90 0.64 0.39 

WS-SVR 4.11 0.60 0.35 

WS-ELMR 4.43 0.57 0.24 

WENA 3.85 0.66 0.42 

DC 

WS-ETR 4.20 0.56 0.31 

WS- RR 4.32 0.56 0.28 

WS-SVR 4.38 0.52 0.25 

WS-ELMR 4.55 0.52 0.19 

WENA 4.16 0.58 0.34 

 



 

Fig.3. The best prediction performance of FIS based on different construction methods. a) the 

regression performance based on network based on Pearson’s correlation (Mae=4.05, R2=0.36. 

R=0.61). b) the network based on Multi information (Mae=3.85, R2=0.42. R=0.66). c) the network 

based on Distance correlation (Mae=4.16, R2=0.34. R=0.58). (Left: the performance of regression, 

x-coordinate represents predicted label, y-coordinate represents real label Right: the distribution of 

label difference, x-coordinate represents number of subjects, y-coordinate represents difference 

between predicted label and real label). 

 

Table.3. The performance of conventional stacking models and single models. The performance of 

conventional stacking methods under different FC construction methods were obtained in order to 

compare the performance of WENA . 

Feature Method MAE R R2 



PC 

Stacking –ETR 4.26 0.53 0.28 

Stacking–RR 5.05 0.054 0.0041 

Stacking–SVR 4.25 0.53 0.26 

Stacking–ELMR 12.16 0.27 0.0039 

MI 

Stacking–ETR 4.20 0.54 0.29 

Stacking–RR 5.05 0.038 0.0042 

Stacking–SVR 4.42 0.50 0.21 

Stacking–ELMR 11.62 0.23 0.0010 

DC 

Stacking–ETR 4.25 0.54 0.29 

Stacking–RR 5.04 0.25 0.055 

Stacking–SVR 4.33 0.25 0.061 

Stacking–ELMR 11.98 0.23 0.0038 

Basic regression 

Models (MI) 

ETR 4.22 0.54 0.29 

RR 4.23 0.52 0.23 

SVR 4.20 0.53 0.28 

ELMR 4.41 0.49 0.18 

 

Table.4. The performance of different feature engineering method based on MI features. The 

performance of conventional dimension-reduction methods under different FC construction 

methods were obtained in order to compare the performance of AE. 

Feature Method MAE R R2 

PCA 

WS –ETR 4.25 0.54 0.29 

WS –RR 4.37 0.55 0.23 

WS –SVR 4.24 0.54 0.27 

WS –ELMR 4.58 0.52 0.19 

WENA 4.12 0.58 0.33 

ICA 

WS –ETR 4.86 0.27 0.0065 

WS –RR 4.92 0.30 0.0097 

WS –SVR 4.77 0.33 0.092 

WS –ELMR 5.24 0.25 0.0013 

WENA 4.77 0.32 0.10 



 

Fig. 4 The influence of stacking-layers on performance, including MAE, R value and R2 value. A. 

Mae of WENA with different stacking-layers. B. R value of WENA with different stacking-layers. 

C. R2 value of WENA with different stacking-layers. (X-coordinate represents MAE, R value and 

R2 value, Y-coordinate represents number of model stacking-layers, e.g., Four- layers means this 

stacking model consisted of four layers).  



 

Fig.5. The influence of regression models fusion on performance of WENA with different 

network construction methods. A. Mae of WENA with different regression model fusion. B. R 

value of WENA with different classifier-choice. C. R2 value of WENA with different regression 

model fusion. (Model-Fusion contains ETR and RR methods. X-coordinate represents MAE, R 

value and R2 value, Y-coordinate represents different model fusion methods with different 

network construction methods).  



 

Fig. 6. The extracted network pattern via WENA. a) Network pattern. b) Pearson’ correlation 

between age and AE feature (R = -0.34, p < 0.001. X-coordinate represents AE feature, 

Y-coordinate represents age). 

  

 
Fig.7. The extracted graphical theory indices pattern via WENA. a) BC age-related pattern (R = 

0.59, p < 0.001). b) LE age-related pattern (R = -0.46, p < 0.001). (X-coordinate represents age, 

Y-coordinate represents AE feature.) 



 

Table 5. the extracted important ROIs and functional networks 

network ROIs X Y Z 

sensorimotor 

Parietal 46 -20 25 

precentral gyrus 46 -8 24 

post insula -30 -28 9 

cingulo opercular 

mid insula 32 -12 2 

post parietal -41 -31 48 

Thalamus -12 -12 6 

aPFC -25 51 27 

vFC -48 6 1 

vPFC 34 32 7 

Temporal -41 -37 16 

occipital 
post occipital 13 -91 2 

Occipital -16 -76 33 

cerebellum Infcerebellum -6 -79 -33 

 

Table 6. The state-of-the-art of fluid-intelligence score prediction. 

 Feature MAE R R2 

[27] fMRI -- 0.2~0.5 -- 

[28] fMRI -- 0.25~0.3 -- 

[29] fMRI -- 0.26 -- 

 

4. Discussion 

In this study, we have developed a new regression method based on machine 

learning and graph theory called WENA, in order to better extract the biological 

patterns from functional connectivity and predict the fluid intelligence. The results 

indicate that (a) our proposed method outperformed the state-of-the-art reports; (b) 

proposed method was robust under the effect of network construction methods and 

other parameters; (c) the patterns extracted using this method were found with 

interesting biologically meaning. These patterns were significantly related to age, 

which were found stemmed from sensorimotor network, cingulo-opercular network, 

occipital network and cerebellum network. 

The proposed WENA structure also outperformed other traditional methods in 

term of performance of FIS prediction (shown in Table 2, Table 3, Table 4). Firstly, 



ensemble learning models (including bagging, stacking and boosting) which consisted 

of several single machine learning model [30], outperformed single machine learning 

model. Given that single machine learning algorithm was limited in model 

generalization and model performance [9], while performance of ensemble learning 

could be improved via using bootstrap replicates and simple bagging could be 

improved via stacking [31]. Unlike deep learning, which risks at overfitting and lacking 

model generalization [32], ensemble learning could integrate with bootstrap samples 

and multiple classifiers, which could lead to enhancement of model-generalization 

and reduction of model-overfitting [14, 33]. 

 Secondly, the proposed WENA based on WS methods and model fusion 

outperformed traditional stacking methods (see Table3). Thirdly, The proposed 

method was based on self-supervised learning AE, it could extract non-linear features 

and principal modes from FC data across population [34]. The performance of WENA 

based on WS outperformed that of WENA based on principal component analysis 

(PCA) and independent component analysis (ICA) (see Table 4). As traditional 

approaches in neuroscience, PCA and ICA were both for linear features, the 

performance based on PCA features and ICA features were influenced by uncertain 

reduced dimensions [35]. By contrast, AE could represent high-layers features and 

abstract low-level features (e.g., cerebrospinal fluid, cortical thickness and gray matter 

tissue volume) from neuroimaging data, but also general latent feature representation 

and improve the performance [11, 36]. For example, via AE and fMRI, Suk et al. 

extracted nonlinear hidden features from neuroimaging data and improved diagnostic 

accuracy[36].  

However, it should be noted that the network construction methods were used 

and compared in this study (shown in Table 1) and our results showed that 

performance of machine learning is affected by FC construction methods (shown in 

Table 1 and S-Table 1). WENA was robust to network construction methods for 

improving the performance of FIS prediction. However, the number of stacking-layers 

and the regression methods could affect the performance of WENA (seen in Fig. 4 

and Fig. 5). In all, our results revealed that the proposed WENA model achieved the 

best regression accuracy on FC constructed via MI methods (Mae = 3.85, R = 0.66, R2 

= 0.42). Furthermore, proposed WENA was better than other conventional methods 

and the state-of-the-art (shown in Table 4). Also, our results revealed that proposed 

method was robust to parameters and could keep performance improved.  



The proposed WENA methods achieved improvement in the performance of 

fluid-intelligence prediction from neuroimaging data, also was able to decode the 

biologically age-related patterns from the naturalistic fMRI data (shown in Table 3). 

The fluid intelligence, as a highly age-related cognitive traits, could offer objective 

evidence in understanding naturalistic neuroimaging data for aging problem. For 

example, fluid intelligence, the ability to think and solve problem under the limited 

knowledge situation [37], was tended to decline with aging due to reduction in 

executive function of prefrontal cortex [38]. In our study, FIS was negatively related to 

age and extracted AE features were negatively related to age (p<0.05). Furthermore, 

the functional network extracted via AE spatial filter were sensorimotor network, 

cingulo-opercular network, occipital network and cerebellum network. To be specific, 

AE feature corresponded to sensorimotor network and cerebellum network was 

significantly positively correlated to age, which demonstrated that compensatory may 

existing age-related decline in motor function [39]. The existence of the increased 

sensorimotor and cerebellum functional connectivity has been found in elders, 

supporting the increasing interactivity across network with age [40], in line with our 

study. Similarly, AE features corresponded to cingulo-opercular network and occipital 

network were significantly negatively associated with age, in line with previous 

studies [41]. Previous studies have also shown that sensorimotor network was 

associated with sensory processing and occipital network was related to visual 

preprocessing [41]. Additionally, cingulo-opercular network, also referred to as 

salience network, was decreased with age, which was the neural factor that visual 

processing-speed [42]. These brain functions were closely related to movie-watching 

experience and ageing issue as well as fluid intelligence. Therefore, these studies 

supported and revealed that our methods could decode biological patterns. 

However, several limitations should be noted. Firstly, the WENA was unable to 

clearly reflect the quantitative relationship between age, functional connectivity and 

fluid intelligence. Secondly, robustness of proposed methods should be further tested 

using samples from other resources. Finally, overfitting problem in training dataset 

should be carefully considered, though ensemble learning could reduce it in some 

degree. 

5. Conclusion 

In this study, we have proposed a new method namely WENA to predict fluid 



intelligence and mining deep network information naturalist fMRI data, which is 

based on ensemble learning, FC analysis and graph theory analysis. Results indicate 

that the proposed method outperformed mainstream state-of-the-art methods for the 

problem of interest. As a deep network, once the classifier-choice and stack-level been 

optimized, the performance of WENA is found rather robust. Special aging-related 

network pattern and its properties pattern were also able to be extracted via WENA. It 

is found the sensorimotor, cingulo-opercular and occipital-cerebellum are the most 

impacting regions for the prediction of fluid intelligence. Our future work will be 

focusing on addressing the existing limitations of the proposed method, hence better 

predicting human behavior and observing the human brain states. 
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