
UWL REPOSITORY

repository.uwl.ac.uk

Justifying the need for forensically ready protocols: a case study of identifying

malicious web servers using client honeypots

Seifert, Christian, Endicott-Popovsky, Barbara, Frincke, Deborah A., Komisarczuk, Peter, Muschevici,

Radu and Welch, Ian (2008) Justifying the need for forensically ready protocols: a case study of 

identifying malicious web servers using client honeypots. In: Fourth Annual IFIP WG 11.9 

International Conference on Digital Forensics, 27–30 Jan 2008, Kyoto, Japan. 

This is the Accepted Version of the final output.

UWL repository link: https://repository.uwl.ac.uk/id/eprint/802/

Alternative formats: If you require this document in an alternative format, please contact: 

open.research@uwl.ac.uk 

Copyright: 

Copyright and moral rights for the publications made accessible in the public portal are 

retained by the authors and/or other copyright owners and it is a condition of accessing 

publications that users recognise and abide by the legal requirements associated with these 

rights. 

Take down policy: If you believe that this document breaches copyright, please contact us at

open.research@uwl.ac.uk providing details, and we will remove access to the work 

immediately and investigate your claim.

mailto:open.research@uwl.ac.uk
mailto:open.research@uwl.ac.uk


Chapter 1

JUSTIFYING THE NEED FOR FORENSICALLY

READY PROTOCOLS: A CASE STUDY OF

IDENTIFYING MALICIOUS WEB SERVERS

USING CLIENT HONEYPOTS

Christian Seifert, Dr. Barbara Endicott-Popovsky, Dr. Deborah A.
Frincke, Dr. Peter Komisarczuk, Radu Muschevici and Dr. Ian Welch

Abstract Client honeypot technology can find malicious web servers that attack
web browsers and push malware, so called drive-by-downloads, to the
client machine. Merely recording the network traffic is insufficient to
perform an efficient forensic analysis of the attack. Custom tools need
to be developed to access and examine the embedded data of the network
protocols. Once the information is extracted from the network data, it
cannot be used to perform a behavioral analysis on the attack, therefore
limiting the ability to answer what exactly happened on the attacked
system. Implementation of a record/ replay mechanism is proposed
that allows the forensic examiner to easily extract application data from
recorded network streams and allows applications to interact with such
data for behavioral analysis purposes. A concrete implementation of
such a setup for HTTP and DNS protocols using the HTTP proxy Squid
and DNS proxy pdnsd is presented and its effect on digital forensic
analysis demonstrated.

Keywords: Security, Digital Forensics, Client Honeypots, Network Foren-
sics

1. Introduction

Network forensic readiness (NFR) is a concept that is targeted at
”maximizing the ability of an environment to collect credible digital
evidence while minimizing the cost of an incident response” [10]. Digital
network forensics should become easier without sacrificing the quality
of the digital evidence. The effort to perform a forensic analysis should
decrease while at the same time maintaining the level of credibility in



2

the digital evidence collected. This can be achieved through specific
tools, checklists, etc., but also through embedding forensic capabilities
into networks, thus ”operationalizing” NFR [1].

This paper examines NFR in the context of malicious web servers.
Malicious web servers are servers that push malware, so called drive-
by-downloads, to a client machine by exploiting vulnerabilities of web
browsers that access them. In a previous study [14], client honeypots
were used to find these malicious servers on the Internet. However,
once identified, the attack origin and mechanism as well as the actions
performed by the malware could not be explained. The forensic tasks to
answer these questions will be the focus of this paper.

The forensic task highlighted several issues in NFR, specifically the
ability to extract and interact with application data from the network
streams recorded. In particular, one cannot demonstrate and analyze
the attack, which needs to be piped via network channels through the
client application in order to execute the identical code path that made
the attack possible. This is necessary because source code of the attack is
not readily available, and observing system behavior, so called behavioral
analysis, is the primary means to infer the inner workings of the attack.

Recorded network data does not allow replaying the attack against
the application. Replaying recorded network data isn’t functionality
that is supported by the network and application protocols. The au-
thors view the lack of this functionality as the root cause of the missing
network forensic readiness in the context of client-side attacks. This pa-
per presents a custom solution using web and DNS proxies and illustrates
its effects on the forensic analysis. The proposed solution, however, is
specific to the HTTP and DNS protocol [3, 8] and not easily generaliz-
able. That is why the authors call for the support and implementation
of a record/ replay mechanism in these protocols to provide a generic
solution to the problem.

This paper is structured as follows. Section 1.2 recaps the previous
study on malicious web servers and the issues identified in more detail.
Section 1.3 introduces the solution and section 1.4 presents the conclu-
sion.

2. Case Study

This section summarizes the previous study on malicious web servers
followed by a description of the issues encountered that demonstrate the
lack of forensic readiness.



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 3

Figure 1. Client Honeypot

2.1 Overview

The previous study [14] concerned itself with identifying an emerging
type of attack that occurs on the Internet: drive-by-downloads. Drive-
by-downloads are client-side attacks that originate on malicious servers.
These attacks target vulnerabilities of client applications and usually
can alter the state of the client machine without user consent. Typically
this means that the server is able to control and install malware on the
client machine without the user noticing such actions.

This study concentrated on finding malicious web servers that attack
web browsers. A mere retrieval of a malicious web page with a vulnerable
browser would result in a successful compromise of the client machine.
A web setting was chosen because those types of attacks seem to be the
most prominent drive-by-download attack type today.

Malicious web servers were identified using high interaction client hon-
eypot technology. Using a dedicated operating system, a high interac-
tion client honeypot drives an actual vulnerable browser to interact with
potentially malicious web servers. After each interaction, it checks the
operating system for unauthorized state changes, such as a new exe-
cutable file in the startup folder. If any unauthorized state changes are
detected, the server is classified as malicious as shown in the example in
Figure 1.

Using 12 instances of a high interaction client honeypot, about 300,000
web pages were inspected over a three-week period. 306 malicious URLs
were identified that successfully attacked a standard installation of Mi-



4

crosoft Windows XP SP2 with Internet Explorer 6.0 SP2. The malicious
servers took complete control of the machine and primarily installed mal-
ware that was targeted at defrauding the victim.

As client honeypots identified malicious web servers, unauthorized
state changes were recorded that occurred on the client machine. In
addition, all the network data with the tool Tcpdump [7] was recorded
that resulted in network libpcap data files. This data contained all the
network traffic that was sent to, and originated from, the client honeypot
including the HTTP and DNS request/ responses. More information
about the study can be found in the research paper [14].

2.2 Forensic Analysis Issues

As part of the forensics analysis, the data that was sent to the client
was to be analyzed. The network and application data (DNS records,
HTML pages, IP source addresses) would allow the identification of the
servers involved in the attack and their role in the attack. Potentially
by inspecting the HTML page, one could obtain information about the
mechanism of the attack if the source code was embedded in the page.

An attack is comprised of an exploit that attacks the vulnerability and
the payload that is executed upon successful exploitation. Usually source
code is only available for the initial exploitation code. The payload is
usually not available in source code form and requires behavioral analysis
to determine how it operates. Behavioral analysis would require the
attack code to execute once again on the client machine. Because of
various factors, such as server location, the server domain name, and
security context, execution of the attack code is not easy to do. Opening
a web page from the web server, compared to opening it as a file, is quite
different. The attack code has to be sent to the client application via
the network as if it originates from the malicious server itself for it to
successfully operate. If a page is opened from a previously saved file, it
might not trigger.

Collected network data does not lend itself to a straightforward foren-
sic analysis. The application data is embedded in the libpcap files and
needs to be extracted via development of custom tools. Once extracted,
however, the data does not allow for a behavioral analysis to take place.
For instance, while it is possible to extract HTML pages with the custom
tools, it is not possible to feed these pages into the browser in a way to
analyze whether and why the attack took place. A description on why
the network data could not simply be replayed can be found below in
section 1.2.2.1.



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 5

The reader might question why the application could not simply inter-
act with the actual attack server to analyze the attack. The answer lies
in the dynamic nature of the network that makes malicious web servers
appear different over time. Attackers might implement malicious fluc-
tuations to make forensic analysis of their attacks more difficult. These
are explained in more detail in section 1.2.2.2. As a result, the foren-
sic analysis needs to be based on the data recorded during the initial
identification of the malicious web servers.

2.2.1 Issues In Replaying Network Data. In order to
replay network data on the transport layer, one would have to place
recorded network packets back on the wire. A network flow would have
to be split into network traffic of the server and the client. Once one
side of the network flow is selectively placed on the wire, for example
the client side, the server would recognize this request as if it originated
from an actual client and serve a server response as it would do normally.

Separation of a network flow into client and server network packets
is an easy task. It can be done through filtering the network flow by
source of the client or server IP address. However, record/ replay is not
a capability that the transport layer of the network protocol, such as
TCP [5] (independent of whether IPv4 [6] or IPv6 [2] is used), supports
out of the box. There are several challenges that hinder replaying TCP
network traffic against applications. The main ones are reviewed next:

First, TCP is a stateful protocol that establishes a connection be-
tween a client and server via a three-way handshake as shown in Figure
2. Using this mechanism to establish the TCP connection, the client
sends a TCP packet with the ACK flag set to the server. The server
acknowledges this initial connection request with a TCP packet with
the ACK and SYN flag set. The connection is fully established by the
subsequent TCP packet from the client with the ACK flag. During this
process, sequence numbers are exchanged that identify the other party.
If such data is recorded and one side of the conversation placed on the
communication link, no successful connections can be established.

Second, during the establishment of the connection, ephemeral ports
are created by the client to accept the response packets by the server.
In other words, the client application temporarily becomes a server it-
self. This ephemeral port is dynamically assigned in the high port range
with each connection as shown in Figure 3. If no connection is being
established, the port remains closed. Replaying network traffic against
the client would necessitate matching the temporarily opened ephemeral
port with the destination port specified in the TCP packets of the net-



6

Figure 2. TCP Handshake

work flow. Otherwise, the traffic would not reach its desired target of
the client application.

The freely available Tcpreplay tool [11] suggests that it is able to
perform a replay functionality by its name. Indeed, this tool is able to
place recorded packets back on the wire, but does so in a passive way
without modifying the recorded packets to address the TCP handshakes
and ephemeral port assignment issues identified above. Rather, it places
packets on the wire in its original form, which can be used to test network
performance and inline security devices, such as firewalls and intrusion
detection systems.

2.2.2 Network Fluctuations. The dynamic nature of the
network prevents the forensic examiner from simply retrieving malicious
content from the identified malicious web server once again for analysis
purposes. The content retrieved might be different from the content that
was initially sent to the client application. If one identifies a malicious
web server and subsequently tries to analyze the attack by repeatedly
interacting with this server, they will run into malicious network fluc-
tuations. The purpose of these malicious fluctuations is to frustrate
the effects of forensic investigations through non-deterministic behavior.
There are three main techniques attackers apply.

First, there is the simple technique of removing malicious content from
the server. A malicious web server is identified by a client honeypot. On



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 7

Figure 3. Ephemeral Port Assignment



8

subsequent interactions, even when interacting with the same web server,
the malicious content is not contained on the page anymore. The content
has simply been taken offline between the initial contact and the time
the analysis took place.

Second, subsequent interactions with the malicious server might be
routed to a different physical machine. The explanation for this behavior
lies in the domain name system (DNS). DNS translates domain names
into IP addresses, so the request targeted for the particular domain can
be routed to the appropriate physical machine on the network. It has
been observed that attackers make use of fast-flux service networks in
which public DNS records are constantly changing [4]. This practice
makes the attack infrastructure more resilient against failure, but also
makes tracking of the malicious code more difficult.

The following example illustrates how attackers utilize these fast-flux
networks. First, the attacker needs to be in control of a DNS server and
a host name, such as myattackserver.com. The actual web page is hosted
on multiple physical machines that all have different IP addresses. The
attacker could then configure the DNS to resolve the myattackserver.com
host name to one of these physical machines. On repeated requests, the
DNS could resolve to a different physical machine. If not all physical
machines host the attack code, one might be faced with a malicious page
initially, but with a benign page on subsequent requests.

Third, attacks apply a mechanism called ”IP Tracking”. In-depth
analysis of exploitation frameworks that can be deployed on web servers,
such as Mpack v0.94, revealed that attacks make use of server side tech-
nologies that provide powerful mechanisms to the attack code [13]. An
exploitation kit, for instance, can be configured to only trigger on the
initial contact with the web server. A subsequent interaction with the
web server from the same IP address would not solicit an attack, but
rather a benign web page. As a result, a web server that launched an
attack on the client honeypot would appear benign during the analysis
phase.

3. Solution

In this section, the proposed solution is presented. It is based on
the concept of record/ replay mechanism in which recorded data is
played back through the client application as shown Figure 4. Previ-
ously recorded network data is played back to the client application.
As a result, it is easier to extract relevant information from the data.
Instead of writing a custom forensic analysis application that extracts
the information from the network data, the existing functionality of the



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 9

Figure 4. Record/ Replay

client application can be reused. In addition, replaying recorded data
through the client application opens the door for behavioral analysis.

As mentioned above, a record/ replay mechanism on the network
transport layer comes with many technical issues. As a result, the appli-
cation layer to implement a record/ replay is the focus of the proposed
solution in which the communication of the client application and ma-
licious web server is routed through a proxy that records all the appli-
cation data. The proxy, if instructed to always replay the stored data,
instead of fetching it from the actual server, can repeatedly replay the
server responses to the client. The architecture is shown in the top
portion of Figure 7.

As the proxy server stores the data during the initial operation of the
client honeypot, it can be used for forensic analysis at a later point in
time. First, it is possible to perform a behavioral analysis of the attack
code by using the actual browser. The browser makes the HTTP request,
which is routed via the proxy. Since the proxy already knows about the
response, it will return the server response without requesting it from the
malicious server once again. Rather, the proxy returns the response from
its internal storage. Second, even though the storage of the proxy might
be in a proprietary binary format, the application data can be easily
retrieved. Browsers and DNS clients can obtain and decode the proxy
data. For example, WGET could easily obtain the HTTP response; the
host tool could translate DNS responses stored on the proxy server. No
custom tools have to be written by the forensic examiner to extract and
analyze the application data. The code of existing tools is reused.

Next, the specifics of the proxy solution with a description of specific
proxy configurations is presented followed by a discussion of its limita-
tion.



10

Figure 5. Squid Configuration Options

3.1 Proxy Solution

Since two application protocols are used when web browsing, two
proxy solutions need to be created: a web proxy that is able to route
and store HTTP data and a DNS proxy that is able to route and store
DNS data.

A web proxy relays HTTP data and is designed to store this data
in its cache. Caching is a functionality that is part of the HTTP/1.1
specification in RFC 2612 [3] to improve response performance, avail-
ability and to some extent allow disconnected operation. However, the
caching functionality is not designed for the purposes of forensics anal-
ysis. The HTTP/1.1 specification primarily contains caching for perfor-
mance improvement and increased availability. With the focus on these
two factors, the specification is also concerned with staleness of the data
and therefore defines a mechanism that checks whether a newer resource
is available or whether the resource itself should never be cached. In
particular there are the freshness and privacy/ security constraints and
cache correctness (Detailed description of these directives is available in
the Section 14.9 of RFC 2612.)

If a web proxy strictly adheres to these functional requirements, a
saved malicious web page might be invalidated by the freshness con-
straint and fetched once again from the server on a subsequent request.
In contrast, the proposed solution aims at using the web proxy for stor-
age rather than caching without application of these mechanisms defined
by the specification. Squid [15], an open-source web proxy implementa-
tion, is highly configurable and allows for the deviation from the specifi-
cation via the following configuration options as shown in Figure 5. With
this implementation and these configuration settings, the web proxy will
meet the above mentioned requirements in a forensic setting.

DNS proxies, similarly to web proxies, are designed to store DNS re-
sponses in their caches for a predefined period of time. Once the validity
of a DNS response has expired, the DNS proxy must make another DNS
lookup on the actual DNS server. Again, an implementation is needed
that can overwrite this behavior. Pdnsd is a simple caching DNS dae-
mon that permits this. It is a proxy DNS server with permanent caching



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 11

Figure 6. Pdnsd Configuration Options

[9] that is designed to cope with unreachable or down DNS servers (for
example in dial-in networking). Purging of the older cache entries can be
prevented by setting the maximum cache size to a high value as shown
in Figure 6.

3.2 Limitations

The proposed solution has a few limitations. First and foremost, it
is not easily applicable to other network data. HTTP and DNS are
protocols that follow a simple request/ response model. These proto-
cols have existed for a long time and during which Internet access was
dominated by dial-up networks. Caching proxies were popular to save
money and increase reliability, which was likely the main driver for the
development of these tools. The existence of proxy storage capabilities
and the flexibility of these tools permitrepurposing of the proxies for
forensic data collection and analysis; however, this is not likely to be
the case for other protocols. If one considers peer-to-peer protocols, or
more interactive applications (such as SSH), the proxy record and replay
capabilities are not likely to exist. They don’t follow the simple request/
response structure of DNS and HTTP, which makes record and replay
functionality harder to implement.

Second, the proxy solution does not provide the same interactivity
as a real server interaction. State, for example authentication, is held
by the client and usually conveyed back to the server in the form of a
cookie. While the proxy will be able to store this information, a client
would have to adhere to the same request sequence in order to solicit the
same responses. For example, if a client accesses a web page after au-
thentication, a client would again have to authenticate before accessing
this web page when interacting with the server at a later time. A client
cannot merely access the web page on the proxy without authentication
first as important information, such as the cookie, would be missing in
the request.

Further, the proxy solution is not able to handle encryption, because
encryption is designed to ensure the confidentiality between two commu-
nicating parties. If a proxy could be placed in the middle and record all
communication, it would effectively circumvent encryption. Of course



12

Figure 7. Proxy Architecture

this privacy constraint could not be disabled and therefore the system
is not capable of handling encrypted data.

Finally, interacting with a server via a proxy might solicit different
server responses. While this is not a concern in the forensic setting, as
the data sent to the client will be the data recorded by the proxy, it
might represent a problem when performing searches with client honey-
pot technology. A server might check for the existence of a proxy and
not behave maliciously if such a proxy is encountered as a precaution
against the recording measures. This is shown in Figure 7. The top flow
shows a client application interacting with a server via a proxy. The
server detects this setup and therefore delivers a benign web page; the
bottom flow shows a client interacting with the server directly. Because
no proxy is recording the data in between, the server is free to deliver
the attack.

4. Conclusion

In a previous study, client honeypot technology identified numerous
malicious web servers. Merely recording the network traffic was insuffi-
cient to perform an efficient forensic analysis. Custom tools had to be
developed to access and examine the embedded data of the network pro-
tocols. Once the information was extracted from the network data and
was accessible, it did not permit performing a behavioral analysis on the
attack, therefore limiting the ability to answer what exactly happened
on the attacked system.

This situation makes digital forensic investigations extremely difficult
and time consuming. The effort to launch an attack from web servers is
miniscule compared to the effort of analyzing the attack. Network foren-



Seifert, Endicott-Popovsky, Frincke, Komisarczuk, Muschevici & Welch 13

sic readiness tries to address this imbalance by making digital forensic
analysis easier.

This paper presents a step in this direction by introducing a record/
replay solution utilizing proxy servers. This setup permits easy exam-
ination of the application data by reusing the capability of the clients
that consume such data. It also permits interactively sending this data
to the client application in order to perform behavioral analysis on the
attack. The resulting application behavior provides a more complete
picture of what happened on the system. Unfortunately, the proposed
usage of proxy servers was limited to a few protocols (HTTP and DNS)
and tools (Squid and pdns proxy).

While these capabilities were implemented on the application layer
using existing proxy solutions, the authors believe a generic solution
on the network transport layer could be implemented as well. Such a
solution is likely to remove the constraint of the proposed application
layer solution that currently is only suitable to these few application
protocols. A solution on the network transport layer is likely to address
record/ replay functionality in a generic way. Several technical aspects
were identified that hinder such an implementation. While these issues
might be overcome technically, they are not trivial. A tool that attempts
to implement such functionality is the flowreplay tool. ”flowreplay has
the simple goal of reading a pcap file, taking the client side of the connec-
tion(s) and replaying that data using a standard TCP/ UDP socket to
connect to a server.” [12]. However, as of September 2007 no functional
version of the tool exists indicating that this task may be even more
complex than described above.

The difficulties encountered are primarily sourced in the fact that
network forensic readiness is an afterthought. One is faced with existing
network and application protocols and tools that might not support
the goals pursued in a forensic analysis. The authors call for including
requirements within network and application protocols from the start
that are designed to achieve network forensic readiness. A record/ replay
requirement was identified that would ease efforts in the situation of
analyzing malicious web server; however, additional requirements might
be included and are left for future work.

References

[1] B. Endicott-Popovsky, D. A. Frincke and C. A. Taylor, A Theo-
retical Framework for Organizational Network Forensic Readiness,
Journal of Computers, 2(3), May 2007



14

[2] S. Deering and R. Hinden, RFC 2460 - Internet Protocol, Version
6 Specification (www.faqs.org/rfcs/rfc2460.html).

[3] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P.
Leach and T. Berners-Lee, RFC2616 - Hypertext Transfer Protocol
– HTTP/1.1 (www.ietf.org/rfc/rfc2616.txt).

[4] The Honeynet Project, Know Your Enemy: Fast-Flux Service Net-
works (www.honeynet.org/papers/ff/).

[5] Information Sciences Institute, University of Southern
California, RFC 793 - Transmission Control Protocol
(www.faqs.org/rfcs/rfc793.html).

[6] Information Sciences Institute, University of Southern Cali-
fornia, RFC 791 - Internet Protocol, Version 4 Specification
(www.faqs.org/rfcs/rfc791.html).

[7] V. Jacobson, Tcpdump (www.tcpdump.org).

[8] P. Mockapetris, RFC1035 - Domain Names - Implementation and
Specification (www.ietf.org/rfc/rfc1035.txt).

[9] T. Moestl and P. Rombouts, Pdnsd - Proxy DNS Server
(www.phys.uu.nl/ rombouts/pdnsd/index.html).

[10] J. Tan, Forensic Readiness (web.archive.org/web/20031203010126
/http://atstake.com/research/reports/acrobat/ at-
stake forensic readiness.pdf).

[11] A. Turner, Tcpreplay (tcpreplay.synfin.net/trac/).

[12] A. Turner, Flowreplay Design Notes (syn-
fin.net/papers/flowreplay.pdf).

[13] C. Seifert, Know Your Enemy: Behind the Scenes of Malicious Web
Servers (www.honeynet.org/papers/wek).

[14] C. Seifert, R. Steenson, T. Holz, Y. Bing and M.
A. Davis, Know Your Enemy: Malicious Web Servers
(www.honeynet.org/papers/mws/).

[15] D. Wessels, H. Nordstroem, A. Rousskov, A. Chadd, R. Collins,
G. Serassio, S. Wilton and C. Francesco, Squid Web Proxy Cache
(www.squid-cache.org).


