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Motivation: symplectic setting



Toric symplectic geometry

(M2n, ω) compact symplectic with effective Hamiltonian action of G = T n.

So have associated moment map

µ : M → g∗ ∼= Rn

which is invariant and for all X ∈ g

〈µ,X 〉d〈µ,X 〉 = ξ(X ) y ω.

� If b1(M) = 0, then T n a action preserving ω is Hamiltonian iff all

orbits are isotropic.

� codim of generic orbit equals that of target space of µ.

� Stabiliser of any point is subtorus of dim n − rank dµ.

� µ identifies orbit space, M/G , with a convex polytope.
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HyperKähler

(M, g , I1, I2, I3) is hyperKähler if each (g , I`) is a Kähler structure and

Ii Ij = Ik = −Ij Ii , (ijk) = (123); each ω` = g(I` · , · ) is then symplectic.

Given p ∈ M,

StabGL(TpM)(ω1, ω2, ω3) ∼= Sp(n) 6 SO(4n).

As a consequence g has holonomy in Sp(n) and is Ricci-flat.

M has 2-sphere worth of symplectic forms, but g is Ricci-flat...

If M is compact any Killing vector field is parallel,

implying that holonomy of g reduces.

We are interested in torus symmetry, so take M to be non-compact.
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Toric hyperKähler

Hypertoric is complete hyperKähler M4n with effective tri-Hamiltonian

G = T n action: this means we have hyperKähler moment map

µ = (µ1, µ2, µ3) : M → R3 ⊗ g∗ ∼= R3n,

i.e., µ` is symplectic moment map for ω`.

� If b1(M) = 0, then a T n action preserving each ω` is tri-Hamiltonian

iff all orbits are isotropic for each ω`.

� codim of generic orbit is 3n, same as that of target space of µ.

� Stabiliser of any point is subtorus of dim n − 1
3 rank dµ.

� µ induces homeomorphism M/T n → R3n.

Locally, g is given by Gibbons-Hawking type ansatz:

g =
1

det(V )
θt adj(V )θ +

3∑
`=1

dµt
`Vdµ`,

θ connection 1-form and V = (g(Ui ,Uj))−1, with U` generating the torus

action; V pos. def. sym. matrix of polyharmonic functions.
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Ricci-flat special holonomy

In addition to hyperKähler, there are 3 other types of Ricci-flat geomtries

appearing on Berger’s holonomy list:

name hol dim form deg

Calabi-Yau SU(n) 2n 2, n, n

HyperKähler Sp(n) 4n 2, 2, 2

G2-mnfld G2 7 3, 4

Spin(7)-mnfld Spin(7) 8 4

We have seen that for geometries defined by symplectic forms and

admitting torus symmetry, moment map techniques can be used to

construct many examples and obtain classifications.

What about the cases with higher degree closed forms?
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Multi-Hamiltonian torus actions



Multi-Hamiltonian actions

M with closed α ∈ Ωr+1(M) preserved by action of Abelian G .

Action is multi-Hamiltonian if there is invariant ν : M → Λr g∗

s.t. ∀Xi ∈ g

〈ν,X1 ∧ · · · ∧ Xr 〉d〈ν,X1 ∧ · · · ∧ Xr 〉 = α(ξ(X1), . . . , ξ(Xr ), · ).

Our interest is G = T n, acting effectively:

� should take n > r ;

� if b1(M) = 0, then T n action preser α is multi-Hamiltonian iff α pulls

back to zero on each orbit.

If we have several closed invariant forms αi ∈ Ωri+1(M) with

multi-moment maps νi , we form the product multi-moment map

ν = (ν1, . . . , νk) : M →
k⊕

i=1

Λri g∗
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Capturing orbit space with multi-moment maps

Let M0 ⊂ M be the open dense set where the torus G acts freely and let

q = dim(M0/G ) be the codimension of generic orbits.

An interesting case is when the multi-moment map

ν : M0 → Rq

has full rank. Then ν locally exhibits M0 as a principal G -bundle over

U = ν(M0) ⊂ Rq.

For the Ricci-flat special holonomy geometries, the above requires:

name dim(M) degαi G q

Calabi-Yau 2n 2, n, n T n−1 n + 1

HyperKähler 4n 2, 2, 2 T n 3n

G2 7 3, 4 T 3 4

Spin(7) 8 4 T 4 4
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Toric exceptional holonomy

manifolds



G2-structures

M7 with ϕ ∈ Ω3(M) pointwise linearly equivalent to

ϕ0 = e123 − e1(e45 + e67)− e2(e46 + e75)− e3(e47 + e56) ∈ Λ3(R7)∗

e ijk = e i ∧ e j ∧ ek . The GL(7,R) stabiliser of ϕ0 is G2 6 SO(7).

It determines metric g and orientation volg via

6g(X ,Y ) volg = (X y ϕ) ∧ (Y y ϕ) ∧ ϕ.

So we also have 4-form ∗ϕ.

For model form ϕ0, g0 = (e1)2 + · · ·+ (e7)2, vol0 = e1234567 and

∗ϕ0 = e4567 − e23(e45 + e67)− e31(e46 + e75)− e12(e47 + e56).

Holonomy of g is in G2 iff dϕ = 0 and d ∗ϕ = 0.
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Spin(7)-structures

This geometry is defined in 8 dimensions by Φ ∈ Ω4(M8) pointwise linearly

equivalent to

Φ0 = e0 ∧ ϕ0 + ∗ϕ0ϕ0 ∈ Λ4(R8)∗;

GL(8,R) stabiliser of Φ0 is Spin(7) 6 SO(8).

Again, Φ determines metric g and volume form.

Holonomy of g is in Spin(7) iff dΦ = 0.
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Full holonomy examples with torus symmetry

As before, Ricci-flatness implies that full holonomy examples with torus

symmetry must be non-compact.

The first complete examples were constructed 30+ years ago

[Bryant-Salamon 1989]:

M Λ2
−(S4) Λ2

−(CP2) S(S3) Σ−(S4)

Isom0 Sp(2) SU(3) SU(2)3 Sp(2)× SU(2)

rank(Isom) 2 2 3 3

Above list already provide examples with full holonomy admitting effective

torus action.
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Multi-Hamiltonian G2- and Spin(7)-manifolds

Have anticipated that, from toric viewpoint, most interesting cases should

be G2-manifolds with T 3-symmetry and Spin(7)-manifolds with

T 4-symmetry.

Other situations with torus symmetry that have been investigated

previously include:

� [Madsen-Swann ’12] explored G2-manifolds with T 2-symmetry,

multi-Hamiltonian for ϕ; here ν : M → R whilst dim(M0/T
2) = 5;

� [Baraglia ’10] studied G2-manifolds with T 4-symmetry,

multi-Hamiltonian for ϕ. Then ν : M → R6, but dim(M0/T
4) = 3;

� [Madsen ’11] described Spin(7)-manifolds with multi-Hamiltonian

T 3-symmetry. So ν : M → R whilst dim(M0/T
3) = 5.

12



Toric G2-manifolds: verifying expectations

Consider a G2-manifold (M, ϕ) with effective T 3 action that is

multi-Hamiltonian for both ϕ and ∗ϕ.

Let U1,U2,U3 generate the torus action. So ϕ(U1,U2,U3) = 0 and

multi-moment map (ν, µ) = (ν1, ν2, ν3, µ) : M → R4 satisfies

dνi = Uj ∧ Uk y ϕ (ijk) = (123)

dµ = U1 ∧ U2 ∧ U3 y ∗ϕ.

Recall that, at p, we can write

ϕ = e123 − e145 − e167 − e246 − e275 − e347 − e356,

∗ϕ = e4567 − e23(e45 + e67)− e31(e46 + e75)− e12(e47 + e56).

Moreover, for p ∈ M0, we can choose our G2-basis s.t.

Span{U1,U2,U3} = Span{E5,E6,E7}.
Hence, (ν, µ) : M0 → R4 has full rank and multi-moment map locally

exhibits M0 as principal T 3-bundle over U ⊂ R4.
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Toric Spin(7)-manifolds: verifying expectations

Similarly, consider a Spin(7)-manifold (M,Φ) with an effective

multi-Hamiltonian T 4 action.

Let U0, . . . ,U3 be generators of the torus action. Then

Φ(U0,U1,U2,U3) = 0 and multi-moment map

ν = (ν0, ν1, ν2, ν3) : M → R4 is chosen to satisfy

dνi = (−1)iUj ∧ Uk ∧ U` y Φ (ijk`) = (0123).

This time, at p, we have Φ = e0 ∧ ϕ0 + ∗ϕ0ϕ0, and for p ∈ M0 we may

take our Spin(7)-basis s.t. Span{Ui} = Span{E0,E5,E6,E7}.

As before, it follows that ν : M0 → R4 has full rank and so locally realises

M0 as a principal T 4-bundle over U ⊂ R4.
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Where action is free: toric G2 and Spin(7)

We have that M0 is the total space of a principal T n-bundle, n = 3, 4,

with connection 1-forms θi ∈ Ω1(M0) that satisfy

θi (Uj) = δij , θi (X ) = 0 ∀X ⊥ Span{Ui}.

On M0 we can define a positive definite symmetric n × n-matrix of

functions by:

V = (g(Ui ,Uj))−1.

This enables us to write down a toric G2-structure in a way resembling

what we had for hypertoric case:

g = 1
det V θ

t adj(V )θ + dνt adj(V )dν + det(V )dµ2

ϕ = − det(V )dν123 + dµ ∧ dνt adj(V )θ +S
ijk

θij ∧ dνk

∗ϕ = θ123dµ+ 1
2 det(V )

(
dνt adj(V )θ

)2
+ det(V )dµ ∧S

ijk

θi ∧ dνjk
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For toric Spin(7)-manifolds, we have:

g = 1
det(V )θ

t adj(V )θ + dνt adj(V )dν

Φ = det(V )S
ijk`

(−1)iθi ∧ dνjk` +S
ijk`

(−1)`θijk ∧ dν`

+ 1
2 det(V ) (dνt adj(V )θ)2.

Note that G2- and Spin(7)-structures defined by the above formulae are

generally not torsion-free, so holonomy reduction is not guaranteed.
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Torsion-free condition amounts to following system of PDEs:

V ∈ Γ(U ,S2(Rn)), n = 3, 4, is a positive definite solution to∑
i

∂Vij

∂νi
= 0 for each j (divergence-free)

and

L(V ) + Q(dV ) = 0 (elliptic)

where

L =
∂2

∂µ2
+
∑
ij

Vij
∂2

∂νi∂νj︸ ︷︷ ︸
G2

, L =
∑
ij

Vij
∂2

∂νi∂νj︸ ︷︷ ︸
Spin(7)

and

Q(dV )ij = −
∑
ab

∂Via

∂νb

∂Vbj

∂νa

Naturality: L and Q are preserved, up to scale, by GL(n,R) change of

basis, and this specifies Q uniquely.
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Diagonal solutions: examples of incomplete toric G2

V = diag(V1,V2,V3) (divergence-free) and off-diagonal terms in (elliptic)

read
∂Vi

∂νi
= 0,

∂Vi

∂νj

∂Vj

∂νi
= 0 (i 6= j)

Either V = diag(V1(ν2, µ),V2(ν3, µ),V3(ν1, µ)), linear in each variable.

E.g. V = µ13, µ > 0, full holonomy G2:

g =
1

µ
(θ2

1 + θ2
2 + θ2

3) + µ2(dν2
1 + dν2

2 + dν2
3 ) + µ3dµ2

dθi = dνj ∧ dνk (ijk) = (123).

Or get elliptic hierachy V3 = V3(µ), V2(ν3, µ), V1 = V1(ν2, ν3, µ):

∂2V3

∂µ2
= 0,

∂2V2

∂µ2
+ V3

∂2V2

∂ν2
3

= 0,
∂2V1

∂µ2
+ V2

∂2V1

∂ν2
2

+ V3
∂2V1

∂ν2
3

= 0

E.g. V1 = 2µ5 − 15µ2ν2
3 − 5ν2

2 , V2 = µ3 − 3ν2
3 , V3 = µ.
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M

T− T+

Wishful thinking: incomplete examples as necks

Underlying manifold in first example above is of the form

M = (T−,T+)× N6,

where, after quotienting by lattice, N is a nilmanifold, with corresponding

Lie algebra characterised by ‘structure equations’:

n = (0, 0, 0, 23, 31, 12).

If one likes analogies, [Hein-Sun-Viaclovsky-Zhang ’18] produced

hyperKähler manifolds by gluing two Tian-Yau spaces with neck region

given by interval times nilmanifold with incomplete hyperKähler metric...

Might it be possible to to produce compact G2-manifolds, using

incomplete toric gluing blocks as neck?
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Toric Spin(7): first examples with rank 4 symmetry

V = (V0,V1,V2,V3) with (divergence-free) and off-diagonal terms in

(elliptic) similar to G2 case.

Again one option is a linear solution. Simplest full holonomy of the form

Vi = νi+1, νi > 0, i ∈ Z4:

g =
1

ν1
θ2

0 +
1

ν2
θ2

1 +
1

ν3
θ2

2 +
1

ν0
θ2

3 + ν2ν3ν0dν
2
0

+ ν1ν3ν0dν
2
1 + ν1ν2ν0dν

2
2 + ν1ν2ν3dν

2
3 ,

dθ0 = −ν2dν23, dθ1 = ν3dν30, dθ2 = −ν0dν01, dθ3 = ν1dν12.

Otherwise, get elliptic hierachy. Full holonomy arises, e.g., from taking

V0 = V0(ν1, ν2), V1 = V1(ν2, ν3), V2 = ν3, V3 = ν0 with

V1
∂2V0

∂ν2
1

+ ν3
∂2V0

∂ν2
2

= 0, ν3
∂2V1

∂ν2
2

+ ν0
∂2V1

∂ν2
3

= 0.
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Towards global picutre: special orbits

For toric G2-manifolds, we cannot have fixed points as isotropy group acts

faithfully as subgroup of G2 on normal space of the orbit.

In addition, it turns out stabilisers are connected:

Proposition

For toric G2-manifolds every non-trivial stabiliser of the T 3 action is

subtorus of rank 6 2.

For toric Spin(7) similar conclusion as there is always one isotropy invariant

direction, forcing isotropy group to be a subgroup of G2 6 Spin(7).

As a consequence most of the hard work in understanding behaviour

around points with Gp 6= {e} amounts to understanding G2-case.
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Flat models - toric G2

For stabiliser S1, the flat model is

� M = T 2 × R× C2

� G = T 2 × S1 = T 2 ×
{

diag(e iθ, e−iθ)
}

and topologically

M/G = (T 2×R×C2)/(T 2×S1) = R× (C2/S1) = R×C (S3/S1) = R4.

For the case of stabiliser T 2, associated flat model is

� M = S1 × C3

� G = S1 × T 2 = S1 ×
{

diag(e iθ1 , e iθ2 , e iθ3 ) : θ1 + θ2 + θ3 = 0
}

Topologically, we then have

M/G = (S1×C3)/(S1×T 2) = C3/T 2 = C (S5)/T 2 = C (S5/T 2) = R4.

Hence for toric G2-manifolds orbit space is topological manifold. Same

statement holds for toric Spin(7)-manifolds.
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Multi-moment map for flat models

For M = S1 × C3, so T 2 stabiliser, we have

ϕ = i
2dx ∧ (dz11̄ + dz22̄ + dz33̄) + Re(dz123)

∗ϕ = Im(dz123) ∧ dx − 1
8 (dz11̄ + dz22̄ + dz33̄)2

with T 3 generated by

U1 =
∂

∂x
, Uk = 2 Re

(
i

(
zk−1

∂

∂zk−1
− z3

∂

∂z3

))
k = 2, 3.

Associated multi-moment map (ν, µ) : M → R4 is

ν1 + iµ = −z1z2z3, ν2 = 1
2 (|z2|2 − |z3|2), ν3 = − 1

2 (|z1|2 − |z3|2)

As for hypertoric manifolds, analysis of this special case gives:

Proposition

(ν, µ) induces a homeomorphism M/G = C3/T 2 → R4.

Similar conclusion holds for S1 stabiliser. 23



General case: global local coordinates

Theorem

For toric G2- and Spin(7)-manifolds the multi-moment map induces a local

homeomorphism M/G → R4.

Key steps in proof:

� properties of commuting Killing fields at zeros;

� approximation by the flat model;

� ‘controlled comparison’ with flat model to infer injectivity around

singular orbit; this gets quite involved for the case of T 2 stabiliser.
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Approximation by flat model - toric G2

Consider the case of having stabiliser T 2 at p. At this point, we can

ensure ϕ and ∗ϕ agree with flat model. From study of commuting Killing

fields we know that, at p, it can be assumed that

U2 = 0 = U3, ∇U1 = 0, ∇2U2 = 0 = ∇2U3,

and U1, ∇U2, ∇U3 agree with flat model.

Then, using ∇ϕ = 0 we get:

∇`νi =
∑

q+r=`−1

(
`− 1

q

)
ϕ(∇qUj ,∇rUk , · ) (ijk) = (123)

with similar explicit expressions for ∇`µ, obtained using ∇∗ϕ = 0.

Lemma

At p, ν1, µ agree with the flat model to order 4 and ν2, ν3 agree with the

flat model to order 3.

For S1 stabiliser, we obtain that ∇`ν1, ∇`ν2 and ∇`µ agree with flat

model to order 2.
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Combinatorial data: image of singular locus

Recall that for toric G2, we have:

dνi = ϕ(Uj ,Uk , · ) (ijk) = (123),

dµ = ∗ϕ(U1,U2,U3, · ).

So if, say, U3 vanishes on a collection of singular orbits, then ν1, ν2 and µ

are constant on that collection and we get a line segment parameterised by

ν3.

Inspecting the flat models, we get the following in general:

� S1 stabilisers 7→ lines in R3 × {µ} ⊂ R4 of rational slope;

� T 2 stabiliser 7→ a point in R4 = R3 × R;

� any intersection is triple with primitive slope vectors summing to zero.

Hence, we get a collection of trivalent graphs in R3 × R, each connected

component contained in some R3 × {µ} ⊂ R4.

For toric Spin(7) a similar conclusion holds, but with no distinguished

direction in target R4.
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Trivalent graphs for some known toric G2-manifolds

Flat model S1 × C3:

Bryant-Salamon example(s) on S(S3):

For the above examples, multi-moment map induces homeomorphism

M/T 3 → R4. 27



Some key questions to be addressed

� I have not given you any examples complete toric Spin(7)-manifolds

with full holonomy: do such examples exist?

� For g complete, can we show that the multi-moment map furnishes a

homeomorphism M/G ∼= R4? Maybe, we have to impose additional

assumptions on asymptotic behaviour of metric.

� How do combinatorial data fit into classification scheme? What

trivalent graphs correspond to complete G2-manifolds?
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Toric Asymptotically Conical

G2-manifolds



Toric Calabi-Yau 3-folds

Consider a Calabi-Yau 3-fold (N6, ω,Ψ) with an effective G = T 2 action,

multi-Hamiltonian for ω and Re Ψ, Im Ψ.

The product S1 × N is toric G2 in a rather trivial way. In particular, we

deduce that the multi-moment map N → R4 induces a homeomorphism

N/G → R4.

Toric Calabi-Yau 3-folds, as defined traditionally, come with a T 3 action

which is Hamiltonian for ω in the usual sense, but does not preserve Ψ.

There is always G = T 2 6 T 3 which acts multi-Hamiltonian in above

sense for (ω,Ψ).

We are particularly interested in toric Calabi-Yau 3-folds that are

asymptotic to the Riemannian cone C (Σ) over a Sasaki-Einstein

5-manifold Σ.

29



Towards classification results

Starting from a toric asymptotically conical Calabi-Yau 3-fold (N, ω,Ψ),

one looks for a non-trivial circle bundle M → N such that

c1(M) ∪ [ω] = 0 ∈ H4(N)

[Foscolo-Haskins-Nordström ’17] then guarantee the existence of a

1-paramenter family ϕε, ε ∈ (0, ε0), of asymptotically locally conical

G2-structures on M.

The G2-manifolds constructed in this way are all toric.

Toric asymptotically conical Calabi-Yau 3-folds well studied, so first

classification results might be feasible and this is work in progress with

Kael Dixon and Simon Salamon.
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