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ABSTRACT  

Vehicles are a major source of transportation greenhouse gas emissions and the need to 

accurately quantify and monitor transportation-related emissions from vehicles is nowadays 

essential. Vehicle emissions are complex functions to be approximated in practice due to many 

variables affecting their outcome. The aim of this research is to study factors affecting different 

types of vehicle emissions on Egyptian roads. Models were calibrated using vehicle emissions 

records collected in the period 2018/2019 and data were recorded in the field for eight types of 

vehicles. Emission data were classified into three categories according to the fuel type (Diesel, 

Natural Gas, and Petrol Vehicles). A comparative analysis of various statistical modelling 

techniques was used to predict vehicle emission rates as a function of six independent variables 

for vehicle emissions. The  Linear Regression Model with Link Function of a Log was found 

to be the best generalized regression model to represent the correlation between CO2, CO and 

NOX emissions for Diesel vehicles, whereas the Linear Regression Model with Link Function 

of Identity was a good representative for the relationship of HC emission for Diesel vehicles. 

Natural Gas and Petrol vehicle emissions (CO2, CO, HC, and NOX) were best represented with 

the Linear Regression Model with Link Function of Log. Amongst the studied independent 

variables, changes in the ambient pressure (P) and numbers of rotations per minute for vehicle 

engine (RPM) were found to be directly proportional with gas emission for all the three types 

of vehicles in this study. In addition to these factors, increase of emissions from Diesel vehicles 

was also related to increasing vehicle speed (V), ambient temperature (T) and relative humidity 

(RH), whereas emissions from Natural Gas and Petrol vehicles were found to increase also 

with road grade (G) (both), and ambient temperature (T) (Natural Gas only). 

Keywords: Vehicle emissions; Diesel vehicles; Natural gas vehicles; Petrol vehicles; Multi-

factor emission modelling 
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1. Introduction 

The Egyptian road network carries a variety of vehicle types including petrol, diesel, and gas 

motor vehicles. The rate of increase of vehicles jumped from 2.2% in the period 2000/2005 to 

6.1% in the period of 2005/2010, which was not balanced by an adequate expansion of the 

existing road network. This causes congestions and consequently a general increase of vehicle 

emissions [1]. The transport sector in Egypt contributes with large amount of gaseous pollutant 

emissions such as nitrogen oxides (NOX), carbon monoxide (CO), non-methane organic 

compounds (NMOC), and Sulphur dioxide (SO2) [1]. Globally, research showed that transport 

sector share with an increasing portion from 2010 to 2018, it is responsible for about 14% (8.3 

GtCO2eq), as opposed to the energy systems sector (34%; 20 GtCO2eq), industry (24%; 14 

GtCO2eq), agriculture, forestry and other land uses (AFOLU) (21%; 12 GtCO2eq) and the 

operation of buildings (6%; 3.3 Gt CO2eq) from greenhouse gas (GHG) emissions [2]. 

This figure suggested more strict policies to mitigate car dependence, with the inclusion of 

demand management policies and innovation on technologies [3], [4], [5]. 

Mei et al. [6] measured the exhaust CO, HC, and NOx emissions from five typical light-duty 

vehicles with a portable emissions measurement system under real driving conditions, and 

analyzed the relationships between emission characteristics of regulated gaseous pollutants and 

operating conditions including speed, acceleration, and vehicle specific power. It was found 

that road conditions had an important impact on regulated gaseous emissions, especially for 

HC emissions from both light-duty passenger cars and light-duty diesel trucks. CO, NOx, and 

HC emissions from the test vehicles on urban roads were found to increase by approximately 

1.1–1.5 times, 1.2–1.4 times, and 1.9–2.6 times, respectively, compared with those on suburban 

and highway roads. 

Nobili [7] analyzed how highway geometric design affects fuel consumption and CO2, NOx, 

HC, and CO emissions. As a result, several regression models were calibrated to estimate fuel 



4 

 

consumption and emissions on an entire homogeneous road segment. Results showed that fuel 

consumption and CO2, NOX, HC, and CO emission rates are strongly affected by the sum of 

the absolute deflection angle divided by the sum of the length of the horizontal curves, 

curvature change rate (CCRC) and the average horizontal radius (AR). Fuel consumption and 

CO2, NOx, and HC emission rates increase as CCRC increases and AR decreases. 

A complete modeling framework to estimate road traffic microscopic pollutant emissions from 

easily obtainable macroscopic road topology and traffic information was proposed by De 

Nunzio et al. [8]. Models were able to predict driving behavior and pollutant emissions as a 

function of simple macroscopic features. 

Liu et al. [9] analyzed the influencing factors of road transport carbon emissions under a 

“human-vehicle-environment” perspective. The analysis showed that the type of oil has the 

greatest impact on emissions. For natural gas oil, the emission of one unit of combustion is 

0.329 kg more than that of the same unit of diesel combustion. The service life of vehicles is 

the main influencing factor of road passenger vehicle emissions, due to a decrease of the fuel 

combustion efficiency. The influence of the proportion of secondary trunk roads on the 

emissions is mainly related to the acceleration/deceleration cycles becoming more frequent the 

longer the vehicle at low speed. Increase of vehicle load is also a main factor affecting directly 

the emission of road passenger vehicles.   

Static, kinematics, and dynamics characteristics affects fuel consumption and consequently 

fuel vehicle emissions. As the vehicle weight and dimensions increase, vehicle emissions 

increase accordingly. In addition, it has been observed that vehicles with automatic 

transmissions emit more than manual ones. Similarly, vehicles with more power accessories 

emit more than vehicles with less power accessories [10]. Weather conditions also affect fuel 

consumption. In detail, fuel consumption and emissions increase at low temperatures and with 
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high-speed winds due to aerodynamic losses [10]. For example, in Europe, fuel consumption 

in winter exceeds that in summer by about 15 to 20 percent [5]. Furthermore, emission models 

must be evaluated with multiple vehicle types, to consider the effects of own characteristics 

and emission properties from a larger set of vehicles in a more comprehensive manner [3], [9], 

[11]. 

Barth et al [6] established a methodology to utilise both traffic sensors and microscopic data 

for the estimation of emissions. However, this method neglects road geometry characteristics 

and cannot be used for roads without loop detectors. Models based on this methodology 

consider conditions established in laboratory dynamometer driving tests and were capable to 

estimate various types of emissions [12]. 

Driving behavioral factors are relatively complex to monitor and require use of improved 

model and methods as well as statistical analyses. Shirmohammadi [13] used a cluster-based 

analysis to investigate into driving behaviors and driving skills in a large sample of tourists of 

different age. Specific subgroups of drivers from safe drivers to unskilled and relatively unsafe 

drivers were identified. Based on annual intentional and unintentional accidents and fines, the 

clusters were therefore ranked, evaluated and analyzed statistically. The results indicated that 

unsafe and offensive behaviour is associated with accident events whilst safest and not harmful 

events are linked to the safe and skillful cluster. 

Shirmohammadi and Hadadi [14] investigated into the effect of behavioral and physiological 

measures for predicting driver’s drowsiness. Aim was to develop an intelligent transportation 

system such as fuzzy logic for preventing fatal traffic accidents by evaluating the lack of 

driver’s arousal level. Drowsy states of drivers were predicted by means of the multinomial 

logistic regression model. The authors found that the most predicted behavioral measure is the 

neck bending angle (vertical). Fuzzy logic also showed that driver’s sleep behavior is affected 

in unsuitable weather, such as rainy conditions. 



6 

 

Sturm et al [15] described three modeling techniques to relate emissions with driving behavior, 

streets conditions, and vehicle-miles travelled (VMT). Parameters considered were traffic 

volume, traffic characteristics, vehicle kinematics (cruising, idling, accelerating or 

decelerating), and vehicle condition (starting temperature, speed, RPM, trip length, frequency 

of trips). In addition, vehicle parameters (vehicle model and year, maintenance schedule, 

engine type and size, emission control devices, accrued mileage, fuel-delivery system), and the 

fuel characteristics (type, volatility, chemical composition) were also studied and tested. 

Moreover, driver behavior, local weather conditions, and land topography were considered. 

Emission models have considered a variety of emission factors (EFs). Marsden et al. [16] 

considered vehicle speed, acceleration, deceleration, cruising speed, idle condition, state of 

repair of vehicle, emission control devices to estimate carbon monoxide emissions. They 

proved that vehicle-exhaust emissions depend strongly on the fuel-to-air ratio. They proved 

also that CO2 increase with very high and very low speeds. In addition, they proved that the 

traffic characteristics especially traffic volume affect with large amount CO and PM emission 

and with small amount CO2 emissions [7].  

Hallmark [17] found in their research study that driving characteristics in term of speeds at 

intersections are affected by queue position, lane volumes, incidents, percent of heavy vehicles, 

and posted link speed. Consequently, these factors affect emissions. Emissions also depend on 

driver’s characteristics such as experience, gender, physical condition, and age. Aggressive 

driving style raise emission rates compared to usual driving [17].  

It is worth mentioning that, as the range of temperature extremes increase per day, emission 

amount increases in that day in both regional and urban traffic. Also, in winter the amount of 

emissions is 50% more than summer [18]. 
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In an earlier attempt by Int Panis et al [19] to model instantaneous traffic emissions with traffic 

speed limit, they found that the speed management impact on vehicle emissions is not related 

to traffic, vehicles and fuel characteristics. They concluded that the active speed management 

had no significant influence on the number of emissions. On a later stage, Int Panis et al [20] 

determined PM, NOx, and CO2 emission reductions as a result of speed management applied 

policies in Europe. Authors compared the impact of urban (microscopic) and regional 

(macroscopic) modeling approaches. 

Ya-Wen and Chi-Hung [21] studied the effect of the vehicle model year on the average vehicle 

emissions. They concluded that relatively old vehicles model year are high emitters and 

contribute significantly to total traffic emissions. On the other hand, they found also that the 

model year is not affected by the site characteristics on the emission of CO, HC, and NO. 

Consequently, they developed a model to relate speed and acceleration of vehicles with (CO, 

HC and NOX) emissions. They stated that CO and HC increase with speed changing from 15 

to 32 km/h. However, with the further change of speed from 32 to 53 km/h, CO and HC 

concentrations were observed to drop slightly. Authors also found that the CO and HC 

concentrations decrease with increasing acceleration. 

Nesamani et al [22] proposed another model that can estimate a set of emission characteristics 

with link speed. The model was developed using multiple linear regression analysis using a 

microscopic traffic simulation model. Results showed that the proposed models performed 

better than current practice especially if traffic sensor data are available as model input. 

Boriboonsomsin and Barth [23] studied the effect of the longitudinal road grade on the vehicle 

fuel consumption and the carbon dioxide emissions. Experimental results proved that this factor 

has lower effects on the fuel consumption rates compared to light-duty vehicles in both short 

and long-distance travels. 
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Zhang [24] explored the model to relate road grades and three traffic emissions, namely, CO, 

HC, and NOX. The author used polynomial regression through the SPSS software. Results 

showed that the R2 of CO, HC, and NOX were 0.9855, 0.8433, and 0.9099, respectively, 

proving fine goodness of fit of correlations for the three traffic emissions with road grades. 

Shu et al [25] tried to estimate a best fit multiple linear regression model to relate CO2 

emissions with allocation factors (e.g., population density, urban area, income, road density) 

together. Authors concluded that the population density affects vehicle CO2 emissions, i.e., if 

the population density increases, this increases the CO2 emissions. 

The Environmental Protection Agency (EPA) set National Ambient Air Quality Standards 

(NAAQS) for six common air pollutants, i.e., ozone, particulate matter (PM), carbon monoxide 

(CO), nitrogen oxides (NOX), Sulphur dioxide (SO2) and lead (Pb). These are commonly 

known as "criteria pollutants". Significant portions of mobile source emissions are composed 

mainly of three of these criteria pollutants primarily CO, NOX, PM and one other class of 

pollutants volatile organic compounds (VOCs) [26]. 

Abou-Senna [27] developed traffic volume curves which to predict emissions per mile. 

Therefore, total emissions were based on a link or group of links with a specific volume or flow 

rate at different parameter settings. The author used a forward stepwise regression approach 

including Volume, Speed, Trucks, Grade, and Temperature. Other two-way factor interactions 

included Speed-Grade and Trucks-Grade in addition to two quadratic effects for the Volume 

and Speed factors. 

Ko [28] documented that as rate of change of curvature of vertical curve "K" increased, the 

fuel consumption decreased while traveling on the curves. The fuel consumption and CO2 

emissions decrease as K increases. 
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Vehicle age and type are major factors in emission modelling, as it typically constraints many 

elements related to the emission generation. These include vehicle engine technology 

(increased efficiency, etc.), emission control technology (catalytic converters, etc.) in addition 

to the maintenance history of the vehicle [25]. 

David [29] projected models to predict CO2 emission rates depending on the vehicle type. 

These models considered the Curvature Change Rate (CCR) of the homogeneous road segment, 

the average speed profile (Vm), and the standard deviation of the average vehicle speed (σVm) 

as the explanatory variables. The author concluded that all these variables affect CO2 

emissions, and these models can be used during the road design and operational stage. In detail, 

it was found that CO2 emission rates increases when the CCR index increases.  

Harikishan [30] developed a simple exponential regression model between vehicle average 

speed and vehicle emissions of HC, CO and NOX. The author checked how the default MOVES 

emission rates could be successfully replaced for the model to be used in India. 

Within this context, traffic emissions are affected by several variables, which can be 

categorised as travel-related factors, highway characteristics, vehicle characteristics, 

environmental and weather conditions, and other factors. On the other hand, emissions from 

motor vehicles are highly dependent on number of trips and distance travelled, speed, 

acceleration, and traffic volumes. 

Research reported in this paper is envisioned considering major findings, methodological 

directions, and prospects from the above-mentioned studies. A fully comprehensive 

experimental and statistical investigation of critical factors (i.e., road, environment, driver, and 

traffic), and their effect on traffic emissions per vehicle types has been therefore developed by 

a comparative analysis of various statistical techniques.  
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2. Problem Statement and Research Objectives 

The excessive increase of the number of vehicles in Egypt results in a more vehicle milled 

travelled and consequently more emissions. This contributes increasing air pollution with a 

clear environmental impact and a cascade effect on climate change dynamics. In this scenario, 

understanding sources and scale of pollution by traffic emission and the way these are 

interrelated to road, environment. driver and traffic characteristics are crucial for a more 

comprehensive data analysis, problem assessment and the provision of mitigation actions. To 

achieve significant predictions, transport planners need to investigate combinations of different 

scenarios for various amount of vehicle emissions. A model is therefore required to estimate 

different emissions as a function of significant related factors. To achieve this aim, a main 

objective of this research is to estimate the best model to relate emissions with a range of 

different contributing factors. Factors considered in this paper include roadway characteristics, 

vehicle characteristics, environmental characteristics and driving behavior. The study focuses 

on vehicle emission measurements of CO2 (g/s), CO (mg/s), HC (mg/s), and NOX (mg/s). Six 

independent variables were selected in this research (vehicle speed, longitudinal profile grade, 

ambient temperature, ambient pressure, ambient relative humidity and numbers of rotations per 

minute for vehicle engine) which affect directly the vehicle emissions for the vehicles’ 

categories investigated in this study. This study is directed to provide a better understanding of 

critical factors for vehicle emissions, and it is not intended to examine the direct environmental 

effects of the pollutant emissions on the atmosphere and the anthroposphere.  

3. Methodology 

This section presents the methodology and techniques which were applied in this research, data 

sources utilized in the modeling method, and the mathematical approaches for the estimation 

of vehicle emission relationships with the dependent variables. A short description of these 

items is listed in the following sections. Research methodology can be summarized in Fig. 1 
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Fig. 1. The research Methodology. 

3.1. Data Description 

In this research, the available data for vehicle emissions were obtained from the Egyptian 

Environmental Affairs Agency (EEAA) recorded in (November 2017). An on-board Portable 

Emission Measurement System (PEMS) as indicated in Fig. 2 was used to collect the data of 

continuous emissions (time frequency steps of 1s) and the vehicle speed variation in real-life 

conditions at any travelled location [31]. 
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Fig. 2. Portable Emission Measurement System (PEMS) used in this research. 

These data are returned in terms of look-up tables for microscopic emission rate measurements 

(CO2 [g/s], CO [mg/s], HC [mg/s], and NOX [mg/s]), Temperature, Pressure, Relative 

Humidity, Numbers of Rotations per Minute for Vehicle Engine and Vehicle Speed. The raw 

data were collected during various driving cycles for each individual vehicle. Table 1 reports 

the main typological features and information on emission data collected for the eight vehicles 

used in this research.  

A total reading of 48489 of vehicle emission exhaust were recorded for the eight vehicles. A 

bar chart with number of emission readings for each vehicle is indicated in Fig. 3. 
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Table 1 

Vehicle data brand, engine capacity, model year, fuel type and usage (EEAA, 2017). 

Fuel 

Type 

Car 

No 

Car 

Brand 

Usage Readings 

per Car  

Total 

no. of 

Reading

s 

Engine 

Capacit

y (CC) 

Mode

l Year 

Usage 

Diesel 1 Mercedes Bus 2,685 

19,082 

6,000 2,006 Bus 

2 Chevrolet Minibus 12,169 4,500 2,009 Minibus 

3 Toyota Microbus 4,228 2,500 2,010 Microbus 

Natural 

Gas 

4 Daewoo Bus 6,041 
10,327 

6,000 2,010 Bus 

5 Foton Microbus 4,286 2,500 2,013 Microbus 

Petrol 6 Speranza Taxi 6,557 

19,080 

1,600 2,010 Taxi 

7 Isuzu Private 

Car 

7,326 2,000 1,989 Private Car 

8 Jeep 

Cherokee 

Private 

Car 

5,197 3,700 2,008 Private Car 

 

 

Fig. 3. Emission readings for each vehicle utilized in this study (EEAA, 2017). 

3.1.1. Data Classification  

The eight vehicles were classified into three categories according to the fuel type. The first was 

for Diesel Vehicles and included a Mercedes Bus, a Chevrolet Minibus, and a Toyota 

Microbus. The second category was for Natural Gas Vehicles containing a Daewoo Bus and a 
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Foton Microbus). The last category was for Petrol Vehicles and included a Speranza Taxi, an 

Isuzu Private Car, and a Jeep Cherokee Private Car. The total number of emission exhaust per 

vehicle category is illustrated in Fig. 4. 

 

 

Fig. 4. Total emission readings for each vehicle category (EEAA, 2017). 

 

3.1.2. Dependent Variables 

In previous research it was found that the main important vehicle emissions exhaust to 

represent dependent variable measurements were CO2 [g/s], CO [mg/s], HC [mg/s], and NOX 

[mg/s]. In view of this, these parameters were taken as dependent variables in this study. 

3.1.3. Independent Variables  

Six independent variables were selected in this research which directly affect vehicle 

emissions. It is known that a designated design speed is essential in highway geometric design, 

as it is used to establish a variety of design features [30]. However, driver’s interpretation of 

the road geometry and its interaction with the traffic flow is a prominent factor that must be 

accounted for. To this effect, vehicle speed (V) was identified as a key element of travel-related 

factors effect on vehicle emissions in this research, linking designated speed profiles with 
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drivers’ perception of the appropriate design speed. Considering average speed-flow 

relationship conditions and their inverse proportionality, V was also accounted as a 

representative parameter for traffic characteristics. The longitudinal road grades (G) were 

selected to study the effect of the highway characteristics on vehicle emissions. However, as 

the study has been done in the urban area, the longitudinal grade was usually less than 3%. 

Numbers of rotations per minute for vehicle engine (RPM), ambient temperature (T), ambient 

pressure (P) and ambient relative humidity (RH) were selected to study the effect of vehicle 

characteristics and weather conditions on vehicle emission, as reported in Table 2. 

Table 2 

Dependent Variables. 

No. Variables Symbol Units 

1 Vehicle Speed V Kilometer Per Hour (KPH) 

2 Profile Grade G Percentage (%) 

3 Ambient Temperature T Celsius (Co) 

4 Ambient Pressure P kilopascal (kPa) 

5 Ambient Relative Humidity RH Percentage (%) 

6 
Numbers of Rotation Per Minute for Vehicle 

Engine 
RPM Value 

 

3.2. Generalized Linear Emission Models  

Generalized Linear Models were introduced by [32]  in an attempt to make the assumptions of 

traditional regression models more realistic and suit real-life conditions more effectively. The 

generalized linear model is a regression model, in which the dependent variable follows one of 

the probability distributions belonging to the exponential family. These models are considered 

less restrictive than the traditional regression models.  Generalized linear models are based on 

a set of assumptions as follows: 
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1- The dependent variables are not required to follow the normal distribution, but an 

exponential distribution is assumed to follow. 

2- The variation is not required to be constant, and Heteroscedasticity is allowed. 

3- It is not required that the between the dependent variable/the independent variables 

relationship must be linear. However, it assumes that a linear relationship exists between 

the Link Function and the independent variables. Therefore, some non-linear models can 

be reconciled using generalized linear models. 

4- Random errors are independent and they are not required to follow a moderate distribution. 

5- Parameters are estimated using the Maximum Likelihood Estimation (MLE) method as 

well as the Ordinary Least Squares (OLS) method. 

Generalized models have been used in many applications as important statistical methods in 

the analysis and construction of models. The generalized linear model differs from the linear 

regression model in that the expected value of the response variable is replaced by the link 

function (g (µ) = ƞ), where ƞ is a linear syntactic of the explanatory variables. The main 

objective of using the link function is to stabilise the error variance. The general formulation 

for generalized linear models is as follows: 

Yi = g (Xi βi) + εi     (1) 

where: 

Xi: represents the set of independent variables affecting the value of the dependent variable Yi. 

g: is the correlation function. This function is used to illustrate the relationship between the 

expected value of the response variable and the explanatory variables. 

εi: is a random error representing the unexpected variables. 

Yi: is the dependent variable. This is a random variable that follows one of the Exponential 

Family distributions, including the following: 

• Normal distribution. 
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• Gamma distribution. 

• Poisson distribution. 

• Binomial distribution. 

• Negative Binomial distribution. 

• Inverse Gaussian distribution.   

• Tweedy distribution. 

The components of the Generalized Linear Model 

The Generalized Linear Model consists of three components, namely:   

1- Random component means the distribution followed by the dependent variable Y, 

where in generalized models it is assumed that the dependent variable follows one of 

the exponential distributions. 

2- Systematic Component (Linear Predictor) (ƞ) means the set of parameters (β) and the 

set of explained variables (x1, x2... xn), and then (ƞ = Xi 
^T β). This component represents 

the regular element. 

3- The Link Function is a function used to link the random component to the systematic 

component, and it is used to indicate the relationship between the expected value of the 

dependent variable and the linear predictor. The Link Function is denoted by the symbol 

(g).  

Where: 

Ƞi = g(µi) 

Ƞi =Xi
Tβ  

g(µi)= Xi
Tβ 

Four model types of generalized linear regression models have been used to test the study 

hypotheses as follow: 

1- Linear Regression with Link Function of Identity. 



18 

 

2- Linear Regression with Link Function of Log. 

3- Gamma Regression with Link Function of Log. 

4- Tweedy Regression with Link Function of Log. 

4. Simple Regression Analysis 

Simple Regression Analysis gives the correlation between each dependent variable 

representing vehicle emission measurements (CO2 [g/s], CO [mg/s], HC [mg/s], and NOX 

[mg/s]) for the three categories according to fuel type and the seven selected independent 

variables. 

4.1. Diesel Vehicle Emissions 

The correlation between dependent variables of Diesel Vehicle emission measurements (CO2 

[g/s], CO [mg/s], HC [mg/s], and NOX [mg/s]) and independent variables were discussed.  

Table 3 provides a summary for a single regression of diesel vehicle emissions. Relationships 

were ranked based on the Adjusted R2 value. In detail, a threshold of 0.500 was selected to 

identify poor vs good relationships. 
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Table 3 

Simple regression analysis for diesel vehicles. 

D
ie

se
l 

V
eh

ic
le

s 

Dependent 

Variable 

Independent 

Variables 

Adjusted 

R2 
Equation Relation  

1- CO2 

Emission 

for Diesel 

Vehicles 

V 0.594 CO2 = 0.176·V – 0.002·V2  Good 

G 0.084 CO2 = 0.016·G + 0.048·G2  Poor 

T 0.523 CO2 = 0.162·T – 0.003·T2  Good 

P 0.521 CO2 = 0.023·P  Good 

RH 0.528 CO2 = 0.128·RH – 0.001·RH2  Good 

RPM 0.638 CO2 = 0.002·RPM + 1.761E-7·RPM2 Good 

2- CO 

Emission 

for Diesel 

Vehicles 

V 0.374 CO = 0.330·V + 0.038·V2  Poor 

G 0.019 CO = 0.737·G + 0.426·G2  Poor 

T 0.169 CO = 2.761·T – 0.051·T2  Poor 

P 0.163 CO = 0.003·P2  Poor 

RH 0.18 CO = 1.798·RH – 0.025·RH2  Poor 

RPM 0.272 CO = 0.008·RPM + 1.802E-5·RPM2 Poor 

3- HC 

Emission 

for Diesel 

Vehicles 

V 0.729 HC = 0.870·V – 0.008·V2  Good 

G 0.116 HC = – 0.028·G + 0.309·G2  Poor 

T 0.688 HC = 0.503·T – 0.004·T 2  Good 

P 0.686 HC = 0.001·P2  Good 

RH 0.671 HC = 0.992·RH – 0.015·RH2  Good 

RPM 0.818 HC = 0.008·RPM + 1.771E-6·RPM2 Good 

4- NOX 

Emission 

for Diesel 

Vehicles  

 

V 0.649 NOX = 1.497·V – 0.020·V2  Good 

G 0.094 NOX = 0.100·G + 0.381·G2  Poor 

T 0.539 NOX = 0.877·T – 0.011·T2 Good 

P 0.54 NOX = 0.175·P  Good 

RH 0.533 NOX = 1.033·RH – 0.012·RH 2  Good 

RPM 0.644 NOX = 0.014·RPM –1.036E-7·RPM2 Good 

 

Single regression showed a strong relation between CO2 emission with the independent 

variables RPM, V, T, P and RH whereas a poor relation was found with the profile road 
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longitudinal grade G. The latter condition could be explained by a rather contained value of the 

longitudinal road grade, i.e., lower than 3%, leading to the assumption of prevailing flat grade 

conditions for the investigated road sections. This is in line with studies showing that, under 

uncongested conditions, operations on longitudinal gradients of 3% maximum slope have 

limited effect on passenger car speeds compared to operations on level terrain [33]. Table 3 

showed a poor correlation between CO emission of diesel vehicles and all the independent 

variables. HC and NOX emissions report the same trend as CO2 emission with the independent 

variables, a strong relation with the independent variables RPM, V, T, P and RH whereas a 

poor relation with profile road grade G. 

4.2. Natural Gas Vehicle Emissions  

Table 4 provides a summary of single regression for Natural Gas Vehicles dependent variables 

emission measurements (CO2 [g/s], CO [mg/s], HC [mg/s], and NOX [mg/s]). The independent 

variables, Single regression, showed a strong relationship between CO2 emissions with the 

independent variables RPM, T, P and RH, whereas a poor relation with vehicle speed V and 

road profile grade G was observed. 

A poor relationship between CO emission for natural gas vehicles and all independent 

variables, HC emission, showed a better representative for the relation with the independent 

variables. NOX emission had a good relationship with the independent variables, RPM, T and 

RH. Poor relation with vehicle speed V, pressure P and road profile grade G was observed. 
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Table 4 

Simple regression analysis for natural gas vehicles. 

N
a
tu

ra
l 

G
a
s 

V
eh

ic
le

s 

Dependent 

Variable 

Independent 

Variables 

Adjusted 

R2 
Equation Relation 

1- CO2 

Emission for 

Natural Gas 

Vehicles 

V 0.463 CO2 = 0.413·V – 0.007·V2  Poor 

G 0.103 CO2 = 0.050·G + 0.185·G 2  Poor 

T 0.623 CO2 = 0.217·T + 0.009·T 2  Good 

P 0.555 CO2 = 0.745·P2  Good 

RH 0.694 CO2 = 0.569·RH – 0.011·RH 2  Good 

RPM 0.793 
CO2 = 0.002·RPM + 5.463E-

7·RPM2 
Good 

2- CO Emission 

for Natural 

Gas Vehicles 

V 0.214 CO = 0.733·V – 0.01·V2  Poor 

G 0.052 CO = 1.086· G + 0.418·G 2  Poor 

T 0.303 CO = 2.680·T – 0.062·T 2  Poor 

P 0.181 CO = 0.097·P  Poor 

RH 0.446 CO = - 0.538·RH + 0.021·RH 2  Poor 

RPM 0.189 CO = 0.011·RPM – 2.474E-6·RPM2 Poor 

3- HC Emission 

for Natural 

Gas Vehicles 

V 0.402 HC = 1.810·V – 0.024·V2  Poor 

G 0.078 HC = 1.176·G + 1.010·G 2  Poor 

T 0.412 HC = 1.532·T – 0.021·T 2  Poor 

P 0.411 HC = 0.271·P  Poor 

RH 0.423 HC = 1.742·RH – 0.024·RH 2  Poor 

RPM 0.482 HC = 0.018·RPM – 8.502E-7·RPM2 Poor 

4- NOX 

Emission for 

Natural Gas 

Vehicles  

 

V 0.407 NOX = 4.891·V – 0.076·V2  Poor 

G 0.067 NOX = 2.379·G + 2.087·G 2  Poor 

T 0.508 NOX = –3.835·T + 0.139·T 2  Good 

P 0.432 NOX = 0.006·P2  Poor 

RH 0.527 NOX = 6.965·RH – 0.134·RH 2  Good 

RPM 0.615 
NOX = 0.028·RPM + 5.061E –

6·RPM2 
Good 
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4.3. Petrol Vehicle Emissions  

Table 5 represents the correlation between dependent variables of Petrol Vehicle emission 

measurements (CO2 [g/s], CO [mg/s], HC [mg/s], and NOX [mg/s]) and independent variables. 

Single regression showed a poor relation between CO2 emissions with all independent variables 

except RPM variable. A poor relation between CO, HC and NOX emissions for Petrol vehicles 

and independent variables was observed. 
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Table 5 

Simple regression analysis for petrol vehicles. 

P
et

ro
l 

V
eh

ic
le

s 

Dependent 

Variable 

Independent 

Variables 

Adjusted 

R2 
Equation Relation 

1- CO2 

Emission 

for Petrol 

Vehicles 

V 0.437 CO2 = 0.108·V –0.001·V2  Poor 

G 0.083 CO2 = 4.850E-5· G + 0.053·G2  Poor 

T 0.392 CO2 = 0.042·T + 0.001·T2  Poor 

P 0.383 CO2 = 0.018·P  Poor 

RH 0.384 CO2 = 0.057·RH   Poor 

RPM 0.696 CO2 = 2.020E-7·RPM2 Good 

2- CO 

Emission 

for Petrol 

Vehicles 

V 0.229 CO = 9.391·V – 0.086·V2  Poor 

G 0.022 CO = 2.001·G + 3.164·G2  Poor 

T 0.197 CO = 10.066·T – 0.164·T2  Poor 

P 0.191 CO = 0.015·P  Poor 

RH 0.215 CO = 11.290·RH – 0.170·RH2  Poor 

RPM 0.222 
CO = 0.153·RPM – 2.887E-5·RPM 

2 
Poor 

3- HC 

Emission 

for Petrol 

Vehicles 

V 0.293 CO = 0.568·V – 0.005·V2  Poor 

G 0.029 CO = – 0.065·G + 0.197·G2  Poor 

T 0.252 CO = 0.696·T – 0.013·T2  Poor 

P 0.248 CO = 0.001·P2  Poor 

RH 0.253 Co = 0.522·RH – 0.007·RH2  Poor 

RPM 0.273 
CO = 0.007·RPM – 9.377E-7·RPM 

2 
Poor 

4- NOX 

Emission 

for Petrol 

Vehicles  

V 0.153 NOX = 0.119·V + 0.002·V2  Poor 

G 0.016 NOX = 0.064·G + 0.139·G2  Poor 

T 0.089 NOX = – 0.009·T + 0.007·T2  Poor 

P 0.084 NOX = 0.050·P  Poor 

RH 0.082 NOX = 0.141·RH – 0.001·RH2  Poor 

RPM 0.205 NOX = 1.104E-6·RPM2 Poor 
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5. Statistical Analysis 

The combined effect of multiple parameters can contribute to increase or decrease vehicle 

emissions, as opposed to considering the effect of individual parameters only. To this extent, 

Multiple Regression Models represent effective analysis tools to evaluate the combined effect 

of these parameters on vehicle emissions. Generalized Linear Models are used to analyze the 

relationship between a single dependent variable of vehicle emission measurements (CO2 [g/s], 

CO [mg/s], HC [mg/s], and NOX [mg/s]) and several independent variables. 

5.1. Results of Diesel Vehicle Emission Models 

Table 6 represents a summary of the relation between Diesel vehicle emission measurements 

(CO2 [g/s], CO [mg/s], HC [mg/s], and NOX [mg/s]) and the independent variables. The best 

model is the one returning lowest values of the goodness of fit indicators and the largest R–

Square value. 
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Table 6 

Generalized linear models for Diesel Vehicles. 
D

ie
se

l 
V

eh
ic

le
s 

Dependent 

Variable 

Generalized Linear Regression Models 

Linear 

Regression with 

Link Function 

of Identity 

Linear 

Regression 

with Link 

Function of 

Log 

Gamma 

Regression with 

Link Function 

of Log 

Tweedie 

Regression with 

Link Function 

of Log 

1– CO2 

Emission 

CO2 (D) = 

0.001* RPM + 

0.061* RH + 

0.028*G 

Log CO2 (D) = 

0.02*RH + 

0.007*G* G 

Log CO2 (D) = 

0.02*RH + 

0.012*G 

Log CO2 (D) = 

0.02*RH + 

0.011* G 

R2 = 0.59 R2 = 0.589 R2 = 0.587 R2 = 0.588 

2– CO 

Emission  

CO (D) = 

0.1169*RPM + 

0.1137*V + 

0.1217*G 

Log CO (D) = 

0.001*RPM + 

0.032*V + 

0.021*P + 

0.068*G 

Log CO (D) = 

0.001*RPM + 

0.018*V + 

0.018*P + 

0.039*G 

Log CO (D) = 

0.001*RPM + 

0.020*V + 

0.021*P + 

0.045*G 

R2 = 0.748 R2 = 0.875 R2 = 0.618 R2 = 0.778 

3– HC 

Emission 

HC (D) = 

0.007*RPM + 

0.197*V + 

0.282*G 

Log HC (D) = 

0.016* V + 

0.014*P 

+0.030*G 

Log HC (D) 

=0.001* RPM + 

0.012* V + 

0.024*T + 

0.002*P + 

0.019*G 

Log HC (D) = 

0.001* RPM + 

0.014*V + 

0.029*T + 

0.021*G 

R2 = 0.664 R2 = 0.684 R2 = 0.558 R2 = 0.629 

4– NOX 

Emission  

NOX (D) = 

0.012* RPM 

Log NOX (D) = 

– 0.005*V + 

0.064*T 

Log NOX (D) = 

0.0001*RPM – 

0.005*V + 

0.064*T 

Log NOX (D) = – 

0.006*V 

+0.06*T 

R2 = 0.284 R2 = 0.418 R2 = 0.36 R2 = 0.398 

 

5.1.1. CO2 Statistical Analysis for Diesel Vehicles 

Analysis of statistics using the generalized regression models showed that all used generalized 

regression models had given acceptable account a goodness of fit with acceptable percent of 

correlation R2 value. The results showed that Linear regression model with Link Function of 

Identity (LRMLFI) was the best generalized regression model as it had accounted a goodness 

of fit with a highest percent of correlation, R2 = 59 %. 
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CO2 (D) = 0.001·RPM + 0.061·RH + 0.028·G   (2) 

5.1.2. CO Statistical Analysis for Diesel Vehicles 

The relation between Diesel vehicle emission CO [mg/s] and independent variables were 

investigated by four models of generalized linear regression models. All used generalized 

regression models have given acceptable account for a goodness of fit with a high percent of 

correlation R2 values. The Linear Regression Model with Link Function of Log (LRMLFL) 

was the best as it accounted a goodness of fit with the highest percent of correlation R2 = 

87.50%.  

Log CO (D) = 0.001·RPM + 0.032·V + 0.021·P + 0.068·G   (3) 

5.1.3. HC Statistical Analysis for Diesel Vehicles 

HC [mg/s] emissions for Diesel vehicles were investigated by four models of generalized linear 

regression models. All used generalized regression models have given acceptable account for 

a goodness of fit with a high percent of correlation R2 value. The Linear Regression Model 

with Link Function of Log (LRMLFL) was the best model in view of the highest percent of 

correlation, R2 = 68.40%.  

Log HC (D) = 0.016·V + 0.014·P +0.030·G    (4) 

5.1.4. NOX Statistical Analysis for Diesel Vehicles 

Analysis of statistics using the generalized regression model by different types of models shows 

that the linear regression model with Link Function of Identity (LRMLFI) and Gamma, 

Tweedie Regressions with Link Function of Log were not appropriate to analyze NOX 

emissions for diesel vehicles. The Linear Regression Model with Link Function of Log 

(LRMLFL) models provided better results, as it accounted for a goodness of fit with an 

acceptable percent of correlation R2 = 41.80%. 
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Log NOX (D) = – 0.005·V + 0.064·T    (5) 

5.2. Results of Natural Gas Vehicle Emission Models 

Four models of generalized linear regression models were used to investigate the relationship 

between Natural Gas vehicle emission measurements (CO2 [g/s], CO [mg/s], HC [mg/s], and 

NOX [mg/s]) and each independent variable, as reported in Table 7. 

Table 7 

Generalized linear models for Natural Gas Vehicles. 

N
a
tu

ra
l 

G
a
s 

V
eh

ic
le

s 

Dependent 

Variable 

Generalized Linear Regression Models 

Linear 

Regression 

with Link 

Function of 

Identity 

Linear 

Regression 

with Link 

Function of 

Log 

Gamma 

Regression 

with Link 

Function of 

Log 

Tweedie 

Regression 

with Link 

Function of 

Log 

1– CO2 

Emission 

CO2 (N) = 

0.004*RPM – 

0.103*V + 

0.004*P 

Log CO2 (N) = 

– 0.013*V + 

0.011*P 

Log CO2 (N)= 

0.001*RPM – 

0.018*V + 

0.009*P 

Log CO2 (N) = 

0.001* RPM – 

0.019*V + 

0.026*T 

R2 = 0.638 R2 = 0.604 R2 = 0.545 R2 = 0.593 

2– CO 

Emission  

CO (N) = – 

0.148*V + 

0.467*RH + 

0.812*G 

Log CO (N) = 

0.064*RH + 

0.042*G 

Log CO (N) = 

– 0.014*V + 

0.015*P + 

0.033*RH + 

0.034*G 

\Log CO (N) = 

– 0.007*V + 

0.077*RH + 

0.065*G 

R2 = 0.544 R2 = 0.630 R2 = 0.418 R2 = 0.531 

3– HC 

Emission 

HC (N) = 

0.014*RPM + 

0.16*RH + 

0.581*G 

Log HC (N) = 

0.004*V + 

0.046*T + 

0.021*RH + 

0.029*G 

Log HC (N) = 

0.004*V + 

0.043*T + 

0.019*RH + 

0.02*G 

Log HC (N) = 

0.004*V + 

0.043*T + 

0.02*RH + 

0.023*G 

R2 = 0.320 R2 = 0.347 R2 = 0.338 R2 = 0.340 

4– NOX 

Emission  

NOX (N) = 

0.045*RPM + 

0.23*V + 

0.586*P – 

2.288*RH + 

1.104*G 

Log NOX (N) = 

0.009*V + 

0.043*P – 

0.038*RH + 

0.009*G 

Log NOX (N)= 

0.001*RPM + 

0.007*V + 

0.043*P – 

0.051*RH + 

0.026*G 

Log NOX (N) = 

0.001*RPM + 

0.007*V + 

0.043*P – 

0.047*RH + 

0.019*G 

R2 = 0.487 R2 = 0.480 R2 = 0.413 R2 = 0.448 
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5.2.1. CO2 Statistical Analysis for Natural Gas vehicles 

Analysis of statistics using the generalized regression models showed that all used generalized 

regression models returned acceptable account for a goodness of fit with a good percent of 

correlation R2 value. The results showed that the Linear Regression Model with Link Function 

of Identity (LRMLFI) was the best generalized regression model, as it accounted for a goodness 

of fit with the highest percent of correlation R2 = 63.80%. 

CO2 (N) = 0.004·RPM – 0.103·V + 0.004·P    (6) 

5.2.2. CO Statistical Analysis for Natural Gas vehicles 

CO [mg/s] emission for Natural Gas vehicles were investigated by four models of generalized 

linear regression models. All used generalized regression models provided acceptable account 

for a goodness of fit with a high percent of correlation R2 value. This excludes the Tweedie 

Regression with Link Function of Log model (TRMLFL), which was found not suitable in 

analyzing CO [mg/s] emissions for Natural Gas vehicles. 

The Linear Regression Model with Link Function of Log (LRMLFL) was the best model as it 

was given the highest percent of correlation R2 = 63% with account a goodness of fit values.  

Log CO (N) = 0.064·RH + 0.042·G    (7) 

5.2.3. HC Statistical Analysis for Natural Gas vehicles 

Analysis of statistics using the generalized regression model by different types of models shows 

that the Linear Regression with Link Function of Identity (LRMLFI), the Gamma Regression 

with Link Function of Log (GRMLFL) and the Tweedie Regression with Link Function of Log 

(TRMLFL) were not appropriate in analyzing HC emissions for Natural Gas vehicles. The 

Linear regression model with Link Function of Log (LRMLFL) provided the best model of 

regression, as it accounted for a goodness of fit with an acceptable percent of correlation R2 = 

34.70%. 
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Log HC (N) = 0.004·V + 0.046·T + 0.021·RH + 0.029·G   (8) 

5.2.4. NOX Statistical Analysis for Natural Gas vehicles 

The Linear Regression Model with Link Function of Log (LRMLFL), the Gamma regression 

with Link Function of Log (GRMLFL) and the Tweedie Regression with Link Function of Log 

(TRMLFL) were found not suitable in analyzing NOx emissions for Natural Gas vehicles. The 

results showed that the Linear regression model with Link Function of Identity (LRMLFI) was 

the best generalized regression model as it accounted for a goodness of fit with an acceptable 

percentage of correlation R2 = 48.70%. 

NOX (N) = 0.045·RPM + 0.23·V + 0.586·P – 2.288·RH + 1.104·G  (9) 

5.3. Results of Petrol Vehicle Emission Models 

The relation between Petrol vehicle emission measurements (CO2 [g/s], CO [mg/s], HC [mg/s], 

and NOX [mg/s]) and each independent variable was investigated by four models of generalized 

linear regression models, as reported in Table 8. 
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Table 8 

Generalized linear models for Petrol Vehicles. 
P

et
ro

l 
V

eh
ic

le
s 

Dependent 

Variable 

Generalized Linear Regression Models 

Linear 

Regression with 

Link Function 

of Identity 

Linear 

Regression with 

Link Function 

of Log 

Gamma 

Regression 

with Link 

Function of 

Log 

Tweedie 

Regression with 

Link Function 

of Log 

1– CO2 

Emission 

CO2 (P) = 0.001* 

RPM – 0.015*V 

+ 0.014*G 

Log CO2 (P) = – 

0.006*V + 

0.010*G    

Log CO2 (P)= – 

0.006*V + 

0.008*G 

Log CO2 (P) = – 

0.006* V + 

0.007*G 

R2 = 0.501 R2 = 0.497 R2 = 0.498 R2 = 0.496 

2– CO 

Emission  

CO (P) = 

3.523*V + 

0.682*P + 

5.428*G 

Log CO (P) = 

0.020*V + 

0.047*P + 

0.042*G 

Log CO (P) = 

0.027*V + 

0.116*T 

+0.011*P + 

0.033*G 

Log CO (P) = 

0.027*V+ 

0.045*P + 

0.046*G 

R2 = 0.45 R2 = 0.451 R2 = 0.42 R2 = 0.442 

3– HC 

Emission 

HC (P) = 

0.198*V + 

0.043*P + 

0.139*G 

Log HC (P) = 

4.254E-5*RPM 

+ 0.015*V + 

0.017*P + 

0.014*G 

Log HC (P) = 

0.022*V + 

0.014*P 

Log HC (P) = 

6.817E-5*RPM 

+ 0.020*V + 

0.015*P + 

0.017*G 

R2 = 0.61 R2 = 0.51 R2 = 0.42 R2 = 0.45 

4– NOX 

Emission  

NOX (P) 

0.004*RPM + 

0.095*V – 

0.087*RH + 

0.157*G 

Log NOX (P) = 

0.024*V – 

0.004*RH + 

0.062*G 

Log NOX (P) = 

0.001*RPM + 

0.018*V – 

0.008*RH + 

0.041*G 

Log NOX (P) = 

0.001*RPM + 

0.019*V – 

0.006*RH + 

0.043*G 

R2 = 0.22 R2 = 0.37 R2 = 0.36 R2 = 0.365 

 

5.3.1. CO2 Statistical Analysis for Petrol vehicles 

Analysis of statistics using the generalized regression models showed that all used generalized 

regression models returned an acceptable account for a goodness of fit with an acceptable 

percentage of correlation R2 value. The results showed that the Linear Regression Model with 

Link Function of Identity (LRMLFI) was the best generalized regression model providing an 

acceptable percentage of correlation R2 = 50.1%. 

CO2 (P) = 0.001·RPM – 0.015·V + 0.014·G   (10) 
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5.3.2. CO Statistical Analysis for Petrol vehicles 

CO [mg/s] emissions for Petrol vehicles were investigated by four models of generalized linear 

regression models. The Linear Regression Model with Link Function of identity (LRMLFI), 

the Gamma Regression with Link Function of Log (GRMLFL) and the Tweedie Regression 

with Link Function of Log (TRMLFL) were not found appropriate in analyzing CO emissions 

for Petrol vehicles. The Linear Regression Model with Link Function of Log (LRMLFL) was 

the best model as it returned an acceptable percentage of correlation, R2 = 45.10%, with account 

for a goodness of fit values.  

Log CO (P) = 0.020·V + 0.047·P + 0.042·G    (11) 

5.3.3. HC Statistical Analysis for Petrol vehicles 

Analysis of statistics using the generalized regression model by different types of models shows 

that the Gamma Regression with Link Function of Log (GRMLFL) and the Tweedie 

Regression with Link Function of Log (GRMLFL) were not appropriate to analyze HC 

emissions for Petrol vehicles, whereas the Linear Regression with Link Function of Identity 

(LRMLFI) and the Linear Regression Model with Link Function of Log (LRMLFL) provided 

acceptable regression models. Results showed that the Linear Regression Model with Link 

Function of identity (LRMLFI) was the best generalized regression model as it accounted for 

a goodness of fit with an acceptable percent of correlation R2 = 61%. 

HC (P) = 0.198·V + 0.043·P + 0.139·G   (12) 

5.3.4. NOX Statistical Analysis for Petrol vehicles 

The Linear Regression Model with Link Function of Identity (LRMLFI), the Gamma 

Regression with Link Function of Log (GRMLFL) and the Tweedie Regression with Link 

Function of Log (TRMLFL) were not suitable in analyzing CO emissions for Petrol vehicles 

NOX [mg/s]. Emissions for Petrol vehicles were investigated by four models of generalized 
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linear regression models. The Linear Regression Model with Link Function of identity 

(LRMLFI), the Gamma Regression with Link Function of Log (GRMLFL) and the Tweedie 

Regression with Link Function of Log (TRMLFL) were not appropriate in analyzing NOX 

emissions for Petrol vehicles. The Linear Regression Model with Link Function of Log 

(LRMLFL) was the best model as it returned an acceptable percentage of correlation R2 = 37% 

with account for a goodness of fit values.  

Log NOX (P) = 0.024·V – 0.004·RH + 0.062·G   (13) 

6. Conclusion, Recommendations and Future Research 

In this research, road, environment, driver, and traffic factors affecting different types of 

vehicle emissions on Egyptian roads were studied. Vehicle emission records collected in the 

period 2018/2019 for eight types of vehicles were used for model calibration. Emission data 

were classified according to the fuel type into three categories (Diesel, Natural Gas, and Petrol 

Vehicles). A comparative analysis of various statistical modelling techniques was used to 

predict vehicle emission rates as a function of the identified independent variables. 

The following conclusions were drawn based on the results and analyses carried out in this 

study. 

• For Diesel vehicles it was generally found that the increase of vehicle speed (V), 

ambient temperature (T), ambient pressure (P), ambient relative humidity (RH) and the 

numbers of rotations per minute for vehicle engine (RPM) increase the emissions. 

These variables showed a good relationship with CO2, HC and NOX emissions, whereas 

a poor relationship was found with the profile road grade (G), as the average vertical 

gradient for the selected roads was comparable to prevailing flat grade conditions. 

• For Natural Gas vehicle emissions: 
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- overall analyses indicate that the increase of ambient temperature (T), road 

grade (G), ambient pressure (P) and the numbers of rotations per minute for 

vehicle engine (RPM) lead to increasing vehicle emissions. 

- CO2 emissions showed a good representative relationship with ambient 

temperature (T), ambient pressure (P), ambient relative humidity (RH) and 

numbers of rotations per minute for vehicle engine (RPM), whereas a poor 

relationship was found with vehicle speed (V) and profile road grade (G).  

- NOX emissions showed a good representative relationship with ambient 

temperature (T), ambient relative humidity (RH) and numbers of rotations per 

minute for vehicle engine (RPM). Conversely, a poor relation was showed for 

vehicle speed (V), ambient pressure (P) and profile road grade (G). 

• For Petrol vehicle emissions: 

- overall analyses indicate that the increase of numbers of rotations per minute 

for vehicle engine (RPM), ambient pressure (P) and road grade (G) are the main 

elements affect the vehicle emissions mostly. 

- CO2 emissions showed a good representative relationship with numbers of 

rotations per minute for vehicle engine (RPM). However, a poor relation was 

observed with vehicle speed (V), ambient temperature (T), ambient pressure 

(P), ambient relative humidity (RH) and profile road grade (G). 

• Poor correlation was observed between the following pollutant/vehicle types against all 

the independent variables:  

- CO emissions of Diesel vehicles; 

- CO and HC emissions of Natural Gas vehicles; 

- CO, HC and NOX emissions of Petrol vehicles. 
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It is recommended to apply the Generalized Linear Regression Model with Link Function of 

Log (LRMLFL) and that with Link Function of Identity (LRMLFI) technique for vehicle 

emissions. These were found the best generalized regression models to represent the correlation 

between different vehicle emission independent variables, RPM, RH, G, V, P, and T with a 

correlation R2 ranging between 34.70% and 87.50%. 

The environmental impact of heavy-duty vehicles cannot be neglected in the modeling process. 

It should be modelled separately based on engine types. Awareness should be also increased 

amongst drivers in terms of vehicle emission causes and how to be constantly in focus to 

safeguarding the environment. 

Future research could task itself to study the effect on vehicle’s emissions of additional driver 

behavioral variables, e.g., acceleration and deceleration, as well as road geometric properties, 

e.g., cross-section characteristics, and direct factors related to variability of traffic conditions. 
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