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Abstract 
 

 

 

Myocardial ischemia tops the list of causes of death around the globe, but its diagnosis and 

early detection thrives on clinical echocardiography. Although echocardiography presents a 

huge advantage of a non-intrusive, low-cost point of care diagnosis, its image quality is 

inherently subjective with strong dependence on operators’ experience level and acquisition 

skill. In some countries, echo specialists are mandated to supplementary years of training to 

achieve ‘gold standard’ free-hand acquisition skill without which exacerbates the reliability of 

echocardiogram and increases possibility for misdiagnosis. These drawbacks pose significant 

challenges to adopting echocardiography as authoritative modalities for cardiac diagnosis. 

However, the prevailing and currently adopted solution is to manually carry out quality 

evaluation where an echocardiography specialist visually inspects several acquired images to 

make clinical decisions of its perceived quality and prognosis. This is a lengthening process 

and laced with variability of opinion consequently affection diagnostic responses. The goal of 

the research is to provide a multi-discipline, state-of-the-art solution that allows objective 

quality assessment of echocardiogram and to guarantee the reliability of clinical quantification 

processes. Computer graphic processing unit simulations, medical imaging analysis and deep 

convolutional neural network models were employed to achieve this goal. From a finite pool of 

echocardiographic patient datasets, 1650 random samples of echocardiogram cine-loops from 

different patients with age ranges from 17 and 85 years, who had undergone echocardiography 

between 2010 and 2020 were evaluated. We defined a set of pathological and anatomical 

criteria of image quality by which apical-four and parasternal long axis frames can be evaluated 

with feasibility for real-time optimization. The selected samples were annotated for multivariate 

model developments and validation of predicted quality score per frame. The outcome presents 

a robust artificial intelligence algorithm that indicate frames’ quality rating, real-time 

visualisation of element of quality and updates quality optimization in real-time. A prediction 

errors of 0.052, 0.062, 0.069, 0.056 for visibility, clarity, depth-gain, and foreshortening 

attributes were achieved, respectively. The model achieved a combined error rate of 3.6% with 

average prediction speed of 4.24 ms per frame. The novel method established a superior 

approach to two-dimensional image quality estimation, assessment, and clinical adequacy on 

acquisition of echocardiogram prior to quantification and diagnosis of myocardial infarction.  
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Chapter 1  
 

Introduction 
 

 

In the diagnosis of cardiovascular diseases around the world, transthoracic echocardiography 

(TTE) examination has become the most prevalent method of imaging tool for the assessment 

of myocardium and clinical quantifications (Mitchell et al., 2019). This is due to its low-cost 

(Wang et al., 2018), non-ionizing, nonintrusive and in-vivo examination properties. Hence, 

echocardiography is essential to modern cardiologists as the first-choice imaging tool for point-

of-care diagnosis. Ultrasound imaging is portable, poses little or very minimal risk to health 

and provides clinical capacity for both dynamic or static visualisation but laden with varied 

human interpretations and sub-optimal image quality as its current obvious limits. 

Consequently, it is necessary to clinically assess the quality of images before clinical 

quantification is performed.  

In a TTE workflow illustrated in Figure 1.1, the evaluation of echocardiographic image’s 

quality is a standard clinical practice that underpins the reliability of diagnosis of cardiovascular 

diseases (Sassaroli et al., 2019). It’s considered as a non-trivial process, which is carried out 

manually all in a bid to reduce quantification error, misdiagnosis, and wrong classification of 

patient’s needs. Nevertheless, the success of clinical quantification depends on the quality of 

the image obtained during manual ultrasound scans which in turn depends on the operators’ 

experience (Labs, Zolgharni and Loo, 2021). Currently, the method of image quality assessment 

is a highly subjective process, where an echocardiography specialist visually inspects the 

images and rates an image based on certain features, such as wall definition and clarity of 

anatomical details in the image. Detecting complex heart abnormalities and interpreting hearts’ 

anatomical and pathological features, requires the consideration of many cardiac images 

acquired in a clinical workflow. Although, the dynamic nature of echocardiography presents 

technical challenges in quality assessment beyond those of static images from X-ray, computed 
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tomography, magnetic resonance, and radioisotope imaging (Yoon, Kim and Chang, 2021) 

nevertheless, the adoption of manual evaluation process did not spare further challenges that 

elicit opinion variability and reduce diagnostic reliability of echocardiograms TTE procedures 

(Nagata et al., 2018). Consequently, a more responsive method that can be integrated in a 

unified workflow, where real-time evaluation is done objectively and automatically is thus 

required.  

In this chapter, an overview of echocardiography’s quality image acquisition and the problem 

statement for automating such procedures are presented. Furthermore, the motivation, main aim 

and objectives, and the contributions of this research are enumerated. Finally, the thesis outline 

and research consortium are introduced. 

 

 

Figure 1.1: Automated unified workflow process (echo scan to diagnosis) is entirely manual and involves different 

layers of clinical experts. The new unified workflow can be automated to bridge the gap between acquisition and 

analysis which include automated quality scoring system, real-time assessment, and operators’ optimization 

feedback. This is known as real-time optimization of 2D cardiac specimen quality assessment. 

 

 

1.1 Clinical Context and Problem Statement 
 

The application of clinical echocardiography in modern healthcare has become more prominent 

because it presents rich anatomical details of the myocardium, also for its many pathological 

and low cost of ownership advantages. During transthoracic examination, echocardiograms 

must present an accurate representation of the myocardium, consequently, several shots are 
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required and obtained to enable cardiologists in building an encompassing picture for 

subsequent analysis and diagnosis. Nevertheless, images produced through scattering centres 

do not come with crisp edges (Labs et al., 2020), yielding high possibility for poor quality 

images irrespective of ultrasound equipment in use. Since, interpreting cardiac functions is done 

through whatever quality of echocardiograms obtained, poor images have continually hampered 

cardiac measurement and cardiovascular diagnosis. The absence of integrated tools and 

coherent industrial standardisation to prevent sub-optimal acquisition (Benacerraf et al., 2018; 

Zhou et al., 2018) consequently necessitated the adoption of individually approved standard 

protocol which is prevalent in different clinical laboratories. Acquisition of echocardiographic 

images therefore requires significant experts’ skill which vary with operators’ experience and 

patients’ pathological profiles. Nevertheless, the impact of sub-optimum image quality, 

admitted by (Nagata, Y., et al 2018) remains critical and precipitates measurement variability 

that leads to cardiovascular misdiagnosis. In a bid to enforce reliability standards, cardiac image 

quality assessment is considered paramount, but is currently assessed manually around the 

globe. Unfortunately, manual quality assessment introduces yet another significant drawback 

(Nagata et al., 2018); (Liao et al., 2019) that catalyse opinion variability, additional years of 

training for cardiologists, increase in demand for highly trained operators, and low trigger 

response to patient care. Since echocardiography view is significant to cardiologists but 

cumbersome, how can automated image identification accelerate cardiologists’ workflow? And 

how can objective assessment sufficiently guarantee reliability in cardiac imaging when applied 

to transthoracic examination protocol? Although, these core questions are apparent but further 

raise the need to provide contrasting understanding of the constituents of an image quality with 

respect to two-dimensional echocardiogram and clinical quantifications. It is hoped that the 

solution will encompass the aspect of a two-dimensional image quality assessment and real-

time optimization of echocardiographic image quality to mention but few. The impact of such 

solution will be significant during medical emergencies and routine echo exams in the health 

sector.  

Consequently, the focus of this academic dissertation is based on 2D echocardiogram’s image 

quality assessment rather than 3D or other imaging modalities. Below is the succinct overview 

of several steps involved in the implementation of automated assessment of echocardiographic 

image quality using deep convolutional neural networks. 
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1.1.1 Ultrasound and Scan Process 

Each cardiac investigative process requires an operator taking multiple echocardiogram images 

of a patient which are sent to a cardiologist for careful evaluation. The equipment used in TTE 

is referred to as simply ‘Ultrasound’ which comes in various sizes depending on its intended 

application are employed for myocardial assessment as illustrated in Figure 1.2. During TTE 

exam, several cardiac images from different relevant angles are obtained for analysis and 

interpretation. This becomes part of the cardiologists’ analytical and clinical workflow, 

illustrated in Figure 1.1. Consequently, the acquired images come in mixture of several 

differently apical standard planes (Figure 1.3), and views (e.g., A2C, A4C, PLAX, etc.) 

illustrated in Figure 1.4, to build a complete clinical opinion for diagnosis (Mitchell et al., 

2019); (Thomas et al., 2005). Nevertheless, quantification of cardiac functions, especially 

myocardial ischemia, strains detection and the likes, the apical view and parasternal long axis 

(PLAX) are considered the most paramount to cardiologists’ workflow (Lang et al., 2015). 

These preferred views are unanimously recommended by American Society of 

Echocardiography (ASE), because each of the preferred views presents a combined view of the 

ventricles, valves, and wall cavities essential for quantification and clinical measurements.  

 

 

Figure 1.2 Overview of transthoracic echocardiography assessment process under clinical protocol. 
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Figure 1.3: Illustration of Apical standard planes commonly associated with cardiovascular assessment and 

pseudo-echocardiogram image showing four apical chambers with respective valves. 

 

Nevertheless, the process of scanning and image interpretation require manual human 

intervention, experience, and skilful art to avoid aperture obstructions, echogenicity and 

suboptimal image acquisition and perform critical optimization of image quality. However, the 

ultrasound manual scanning process is slow and can be unreliable during emergency call outs, 

or with multiple patients, thereby inadvertently reducing the possibility for early detection and 

acknowledgement of cardiovascular abnormalities and priority for patient care. Group of expert 

cardiologists manually shifting through hundreds or thousands of cardiac specimens per patient, 

to build prognosis which sometimes are inconclusive, or a re-examination further requested, 

represents significant overhead that can be mitigated by implementing automatic assessment 

and sample characterization pipeline. Therefore, the development of automated view 

classification, objective characterization of cardiac specimens, automated assessment of 2D 

image quality and real-time acquisition optimization guidance are highly desirable and 

discussed in Chapters 4, 5, 6, and 7.  

 

1.1.2 Cardiac Image View Classification 

In clinical practice, echocardiography examinations follow standard protocols requiring various 

views of the heart’s anatomy. Acquisition of different parts of the myocardium requires 

sampling images from multiple windows (Lang et al., 2015) as illustrated in Figure 1.3. Each 

window allows specific anatomical features to be obtained by the transducer position. This 
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would be discussed in detail in Chapter 4. Nevertheless, the analysis and interpretation of 

echocardiographic images begins with view identifications, where the acquired image specimen 

is matched to its corresponding cardiac views. Assessment of cardiac samples is currently done 

by manual process and raises the question of reliability and consistency when a human agent 

sweeps through hundreds of cardiac samples.  

 

 

Figure 1.4: Examples of cardiac views in transthoracic echocardiography showing corresponding traced samples 

with respective echocardiogram specimen: a: apical four-chamber left ventricle focused (A4C-LV), b: apical two-

chamber (A2C), c: Full parasternal long-axis (PLAX-Full), and d: Parasternal short-axis with left ventricle 

focused (PSAX-LV). Figure created from (Lynch and Jaffe, 2006) 

 

Usually, the appearance of acquired cardiac specimens are heterogeneous and different 

anatomical properties as illustrated in Figure 1.3. Firstly, echocardiogram image views would 

depend on patients’ physical characteristics and pathological factors. Also, patients’ supine or 

upright position might introduce subtle variations in echogenicity. Since there is no specific 

marked area to place the transducer on the patient’s body, the appearance-based method cannot 

be applied for the view classification issue as asserted by (G. N. Balaji, Subashini and 

Chidambaram, 2015). Therefore, automatic classification of heart’s views potentially would 

streamline cardiac workflow by aiding clinicians in reducing the inter-user discrepancy, 

improving the accuracy for high throughput of echocardiogram data, and clinical diagnosis. The 

task of automating cardiac views was recently applied to software packages, such as EchoPAC 

and QLAB (Philips), however, they still require some level of human involvement in detecting 

relevant views. The involvement of human interaction makes it near impossible to detect 
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structural features especially in a fast-moving pixelating cardiac frame, and discerning high 

levels of background noise which is associated with echocardiographic frames.  

Therefore, an objective automation of view classification would serve a crucial aspect of 

analysis and be beneficial for pseudo-labelling a large database of unclassified image samples 

(Khamis, Zurakhov et al., 2017). Automation of cardiac view detection was carried out in our 

research group, (IntSav)3, and my contribution was acknowledged as a co-author. Automated 

frame classification would be further discussed in Chapter 4. 

 

1.1.3 Characterization of Cardiac Specimens 

Objective characterization of two-dimensional echocardiograms is one of the potential 

approaches to define global characteristics of domain-specific elements of cardiac specimens 

in terms of anatomical and pathological features (Labs et al., 2020). Anatomy of cardiovascular 

specimens presents enormous complexity to objective functions in terms of dynamic features 

identification and clinical quantifications. This is due to clinical protocol where cardiologists 

not only rely on still images but a fast-moving echocardiogram frame in real-time. Since several 

images are required to build a complete picture of patients’ pathology and summary of diagnosis 

(Mitchell et al., 2019); therefore, several specimens for multiple patients would indicate the 

enormous task of manually assessing several hundreds of specimens prior to diagnosis. But an 

automated system that can objectively allow cardiologist filter-search (e.g., image element-wise 

search) and group specific specimen down to pathological and anatomical relevance (described 

in chapter 5) is certainly beyond the scope of apical view classification. This system could allow 

rapid assessment of functional, anatomic, and pathological features present in each specimen. 

Although the characterization focus is on apical-four specimens, the method can be applied to 

other standard planes and views. 

Currently, there exist no automated solution that offers a comprehensive detailing of 

pathological and anatomical feature detection using twenty-one (21) different domain-specific 

criteria per cardiac specimen. These are capable of aiding cardiologists’ rapid assessment, 

sorting and element-wise search of quality class of echocardiographic images before final 

diagnosis. However, plausible solution using deep learning model have been widely 

demonstrated for cardiac view classification (Abdi, Luong, Tsang, Allan, et al., 2017), quality 

assessment and now it’s been applied to achieve comprehensive image characterization and 
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pseudo-labelling of pathological semi-supervised deep learning model (Chen et al., 2020); 

(Ouali et al., 2020). Automation of cardiac view detection will be discussed in Chapter 5. 

 

1.1.4 Automated Assessment of 2D Image Quality 

A two-dimensional echocardiographic image quality is a domain knowledge paramount to 

myocardial reliable diagnosis. Images produced though scattering centres do not come with 

crisp edges unlike natural images. Therefore, acquisition of echocardiographic images requires 

significant experts’ skills which vary with patients’ pathological profiles. In clinical 

transthoracic examination workflow, strong indication for quantification of systolic function in 

apical four (A4C) and parasternal long axis (PLAX) view is a recommended standard practice 

(Rudski et al., 2010). According to (Lang et al., 2015), these and A2C are recommended 

quantification standards in clinical practice because their spatial orientations are congruent in 

nature, thus offering complementary advantages on heart functional measurement. Nonetheless, 

the clinical process of image acquisition comes with inherent challenges of operator 

skill/experience which cascade many successive analytical problems including diagnostic 

reliability output. These drawbacks remain significant, consequently inhibiting the adoption of 

echocardiograms as a reliable imaging modality for cardiac diagnosis despites its many 

advantages. Currently, echocardiogram’s inherent poor image quality is exacerbated by 

operators’ acquisition skills. Unlike photographic imaging, the benchmark standard for 

objective constituents of quality in echocardiography remains largely undefined. Consequently, 

a subjective process where image quality is manually assessed to determine its clinical and 

pathological relevance becomes the de facto in clinical workflow. Although, this process is time 

consuming, laboriously expensive, and unfortunately introduces major drawbacks that 

precipitate high demand for expert’s and highly trained operators. Furthermore, the impacts of 

subjective standard and manual assessment in echocardiograms have been well documented in 

research literatures, a recent work by (Yoon, Kim and Chang, 2021) aggregated the impact of 

subjective quality assessment to clinical misdiagnosis and poor response trigger to patient care. 

Consequently, an automated assessment is thus required for consistency in image quality, 

reliability, and provide efficient assessment of real-time quality optimization. Moreover, an 

objective assessment system would: 

1. provide reproducible research, quantitative and consistent methods for optimum image 

acquisition, reliable clinical quantification, and better patient care.  
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2. provide quantitative information on the adequacy of the images obtained, a valuable 

real-time tool for researchers, clinical practitioners and  

3. find its significant usefulness as an independent arbitration, either in retrospect or real-

time for global standardisation and benchmarking in echocardiographic imaging.   

It can also provide an independent measure of the reliability a very low image quality index 

would indicate inadequate images, which may be due to poor acoustic windows or patients with 

severe abnormalities 

An objective and quantitative method for image quality assessment is a useful component for 

an operator guidance system, as well as a valuable tool for research and clinical practice. As 

part of an operator guidance system, it can provide quantitative information on the adequacy of 

the images obtained. Therefore, the development of a fully automated, reliable, and 

reproducible pipeline is highly desirable. Automation of image quality assessment will be 

discussed in Chapter 5. 

 

1.1.5 Acquisition and Optimization Guidance 

Echocardiograms’ image quality is paramount to accurate quantification and linear 

measurements of the left ventricle (LV) systolic functions. Accurate linear measurements of the 

LV systolic functions provide major clues to a healthy heart which triggers a corresponding 

diagnostic response for patient cares (Lang et al., 2015). While sub-optimal quality image is 

common in echocardiogram workflow, its impact usually cascades successive issues in 

measurement variability, quantification reliability, and subsequent misdiagnosis (Nagata et al., 

2018); (Kurt et al., 2009). Consequently, operator experience plays a significant role in the 

acquisition of high-quality images prior to quantification and lack of probe skilful manoeuvring 

could exacerbate the possibility for optimal image quality. Since no two cases are the same in 

TTE, varying anatomical pathologies and dissimilar image acquisition skills have added 

significant complexities to image quality (Aschkenasy et al., 2006). This is a well-known 

challenge that currently limits cardiac automation workflow to a manual or at best, semi-

automated domain. Moreover, the possibility of hardware’s limitation in performance 

throughput, and acquisition environment conditions are essential factors that implicitly impair 

acquisition of optimum quality images.  
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To address the some of the problems relating to echocardiographic image quality, optimal 

acquisition, reliability, and operator’s competency, are several research efforts geared towards 

automated assessment of image quality. Almost all the existing implementations of such a 

system were based on weighted average scoring (Liao et al., 2019); (Abdi, Luong, Tsang, Jue, 

et al., 2017a) where operators are fed with a continuous value representing objective quality 

score. However, the problem with such a system of weighted average score index with a single 

value score (even though compared relatively to experts’ ground truth score) is grossly 

incapable of guiding operators to which aspect of quality is lacking in the overall assessment. 

Hence, practical deployability of such a system of assessment is only limited to experimental 

demonstration instead of clinical advantages.  

Furthermore, some countries including the United Kingdom, mandates operators and clinicians 

to take additional years of training courses on echocardiography image acquisition (‘SCoR & 

BMUS Guidelines 2020’, 2020). This is envisaged to provide a level of expertise and clinical 

confidence in the diagnostic art of ultrasonography. Currently, a subjective, manual quality 

control process under the control of a sonographer appears to be the prevailing solution. This is 

performed during the acquisition phase, unfortunately introduces major drawbacks which 

impair diagnosis and patient’s care. Consequently, the acquisition of optimum image quality 

can only be enforced using objective measures rather than human subjective process. A system 

with multiple objectives scoring that exhibits experts’ opinion in the domain-specific areas 

would make an ideal assessment method for real-time optimization, thus providing specific 

feedback, and quality grading score for image adequacy and optimization. Moreover, it would 

allow prospective clinician to learn on the job rather than spending many more years to acquire 

gold standard skill in image acquisition and optimization.  

A significantly valuable tool for researchers, medical health practitioners in the independent 

measure for global standardisation and benchmarking in echocardiography. Real-time 

operator’s optimization guidance will be discussed Chapter 7. 
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1.2 Motivation 
 

Cardiovascular diagnosis, interpretation and intervention procedures using computer-aided 

systems is a fast-growing field of research with infinite potentials to assist clinicians in 

obtaining accurate measurements and identify anomalies with persistent reliability, precision, 

and greater speed. Besides echocardiography as cardiac image assessment tool, many aspects 

of medical imaging and diagnosis have moved to the automatic domain and benefiting from 

automatic quality assessment, but echo images quantification, prognosis and diagnosis has 

remained largely with cardiologist’s subjectivity and varying interpretations. The issues have 

largely been affected by lack of consistency of standards, lack of performance evaluation, 

repeatability and large user variability during image acquisition and post processing phases.  

Fortunately, there are now some promising scientific tools which are based on objective 

metrics; more recent objective quality assessment (IQA) using deep convolutional neural 

network methodology (DCNN), (Abdi, Luong, Tsang, Allan, et al., 2017) have received 

plausible recommendations. The advent of deep learning architecture models provides 

multifaceted opportunity and motivation to employ artificial intelligence algorithms in solving 

the most prominent causes of death of our time (World Health Organization: 2019).  

As already a common knowledge that DCNN model relies on effective but large dataset, 

obtaining a pool of large cardiac dataset, which was highly personalised and prohibited dues to 

UK’s data protection act, could now be obtained under ethical approval from Health Regulatory 

Agency, paving way for exploratory and translatory research in clinical applications and cardiac 

diagnosis. Also, the research latches on the availability of high-performance computing (HPC) 

hardware and consortium of clinical experts to obtain detailed hemodynamic and 

echocardiographic information along with the domain-specific reviews to the extent of gaining 

full understanding of the clinical manifestations of normal or abnormal cardiac functions. 

 

1.3 Aims and Objectives 
 

This PhD project forms part of a larger project which aims at developing a reliable and robust 

pipeline to automate acquisition, analysis, and interpretation of cardiac unified workflow. At 

micro level, the automation of cardiac standard view identification, and image quality 

assessment over acquisition with real-time optimisation is the core objective of this research 

work. A unified system, illustrated in Figure 1.1, thus represents a novel pipeline that automates 
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the process of optimization of manual cardiac acquisition, analysis, clinical measurement, and 

interpretation for the purpose of achieving reliable cardiac diagnosis.  

This thesis has focused on creating domain-specific assessment and standard under the 

supervision and review of several cardiologists and clinicians, namely view classification, 

characterization of cardiac specimen, objective quality attributes, assessment methods, and 

operators’ guidance for specific optimization of cardiac image quality in real-time. The pipeline 

and model should be a lightweight model since integration could be on mobile devices or 

limited memory space hardware, while processing at preferably high speed to allow system on 

chip (SoC) embedding and deployment in real-time applications or in retrospective process. 

Therefore, the main objectives of this study are listed as below: 

● Develop and define coherent clinical and domain-specific attributes of 2D image quality 

required for objective assessment standards.  

● Evaluate and develop a reproducible semi-supervised learning algorithm to extract 

anatomic features for specimen characterization and pseudo-labelling utility for global 

characteristics of cardiac specimen.  

● Develop a quality assessment method that encapsulates multiple quality score indexes 

per cardiac frame. Solution to enable clinician to assess specific image quality in real-

time acquisition or in post-acquisition phase. 

● Develop a robust algorithm or pipeline modality to allow operators feedback for specific 

quality attributes, showing what aspect of image quality that needs to be improved and 

showing the optimised result in real-time before measurement and quantifications is 

performed. 
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1.4 Overview of Contributions 
 

Considering the novel elements of the research undertaken, the main contributions of this thesis 

involve theoretical and practical element and can be summarised as follows: 

(i)  View/Frame Detection 

● Application of the state-of-the-art neural network search (NAS) technique to design 

lightweight DCNN architectures.  

● Large Dataset (PACS) with 14 different cardiac specimens of echocardiographic views; 

consisting of 41,321 images, currently larger than any previous studies.  

● Analysis of model accuracy, computational accuracy, and performance of the developed 

models.  

● Analysis of spatial impact of the input image resolution and size of training data on the 

model’s performance.  

● Analysis of the correlation between the image quality and accuracy of the model for 

view detection. 

(ii)  Characterization of Cardiac Specimen 

● Analysis of independent dataset (EchoLAB - 27, 230) for domain-specific features 

characteristics and ground truth annotations  

● Propose a comprehensive definition of clinically relevant (21) assessment criteria of 

A4C standard views and seven (7) objective characterization of A4C cardiac specimens. 

● Development of DCNN semi-supervised pipeline for pseudo-label annotation process 

of unlabelled A4C cardiac specimens. 

● Repository release of the complete annotated and characterization (A4C) patient dataset 

to allow future studies and external validation of the new approach or methods. 

 

(iii)  Automated Assessment of 2D Image Quality 

● Proposed novel four (4) objective quality attributes for cardiac specimens in A4C and 

PLAX quality assessment.  
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● Demonstrate the feasibility and applicability of four quality attributes framework which 

can be adapted for benchmarking, reference standard of evaluation and objective quality 

scoring of 2D echocardiographic cine loop. 

● Preparation and annotation of large (PACS-1) 33,784 independent echocardiography 

patient dataset showing four attributes of objective quality standard namely: anatomical 

visibility, chamber clarity, depth-gain, and fore-shortening for A4C, PLAX’s 

echocardiograms optimum quantifications.  

● Repository release of experts annotated patient dataset containing A4C, and PLAX to 

allow future studies and external validation of the new approach or methods.  

● Detailed implementation of multi-stream deep learning architecture pipeline to process 

and allow access to specific image attributes in A4C and PLAX view of echo cine loop. 

● Propose quality scores representation using symbolic scores to depict high quality, 

average quality, and high-quality score values. 

(iv)   Acquisition and Optimization Guidance 

● Proposed a fully optimised deep learning (C-LSTM) architecture pipeline that 

simultaneously predicts four independent quality scores and view classification from 

echo sequences. 

● Development of robust real-time quality assessment and optimization pipeline for 4 

specific quality attributes to aid optimum image acquisition and reliable clinical 

quantifications. 

● Provide evaluation of real-time application pipeline suitable for operator feedback for 

data acquisition, and quality optimization in A2C, A4C, and PLAX cardiac standard 

views. 

During this PhD study, part of the outcomes of the research have been published in one journal, 

while other aspects were accepted for publication at several relevant national and international 

conferences with an international award. In addition, three journal paper is under peer-review 

process with Journal of Intelligent Medicine, Journal of Medical Image Analysis, Journal of 

Computers in Biology and Medicine respectively. Publications are listed in Appendix A. 
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1.5 Thesis Structure 
 

This thesis comprises of eight chapters and two appendices. In the first section of every chapter, 

is an overview on the subject in focus, followed by the main body:  

Chapter 2 describes the clinical background of the echocardiogram specimen, physical 

properties of ultrasound imaging and significance of echocardiographic acquisition, different 

types of ultrasound transducers, different imaging modalities and apical views standard. 

Furthermore, the concept and constituents of clinical image quality and method of its 

assessment will be discussed.  

Chapter 3 presents the technical overview of common neural networks classification models 

and the general overview of the state-of-the-art deep convolutional neural network commonly 

applied for image and video regression problems. Moreover, the technical literature review of 

NAS, and semi-automatic search herein known as ‘semi-autoNAS’ solutions will be explained.  

Chapter 4 investigates the echocardiogram frame classification using different deep learning 

methodologies and a semi-autoNAS derived lightweight neural network architecture have been 

proposed suitable for view/frame classification of 14 standard echocardiographic image 

specimen using a large private patient dataset of echo images. This chapter also details the 

performance of three chosen state-of-the-art and semi-autoNAS derived ultra-lightweight 

models that compared with the NAS derived Differentiable Architecture Search (2Cell -

DARTS) model used for view classification.  

Chapter 5 presents details on echocardiographic image quality definition using a public dataset 

CAMUS and large private dataset PACS. It provides justification why single annotation of 

image quality on CAMUS is insufficient for clinical and unified workflow and explores the 

domain-specific quality definition of cardiac specimen, structures, and pathological attributes 

to define objective criteria, a multi-layered annotations dataset providing 4 different attributes 

per image. The chapter also features related work on automated assessment of 2D image quality 

using a proposed multi stream C-LSTM model. Furthermore, it discusses the advantages of 

Spatio-temporal attributes associated with cardiac cine loop and suitable model to extract 

Spatio-temporal features for high-end model performance. Finally compares the results of the 

proposed model with other existing models in the 2D echocardiography.  
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Chapter 6 explores the use case for global framework and quality attributes in 

echocardiographic specimen using semi-supervised model for EchoLAB dataset specimen 

characterization and pseudo-labelling of 2D ultrasound cardiac images. A robust neural 

network architecture has been proposed using ensemble learning architecture which combines 

an ultra-lightweight architecture (semi-autoNAS derived model) and three state-of-the-art in 

the classification of apical four images and provide automatic annotation of a large unlabelled 

ultrasound image samples. The literature review on the semi-supervised application to 

echocardiographic specimens and performance of the implemented pipeline were discussed.  

Chapter 7 provides a complete pipeline model for operator’s feedback, suitable for real-time 

image optimization experiments using PACS-2 Dataset which consist of A2C, A4C and PLAX 

standard views as recommended by ASE. Finally, the chapter discusses the architecture and 

real-time optimization techniques available on the pipeline model.  

Finally, Chapter 8 summarises the work done in this thesis, provides general conclusion, and 

presents future directions in the field of medical imaging. Finally, a list of appendices, 

publications, and the list of references are presented. 

 

 

1.6 The Research Consortium 
 

This study forms part of a larger 3-year British Heart Foundation (BHF)-funded collaborative 

project, focused on developing automated echocardiographic image analysis pipelines, 

involving academic and clinical partners at University of Lincoln, Imperial College London, 

University of West London, and St Mary’s Hospital, London. This research is devoted to the 

development of deep learning models for image quality assessment which involves three 

constituent steps within the unified echocardiographic examination workflow (i.e. development 

of objective quality standard, development of real-time assessment methods for multi criteria 

image quality, and development of operator optimization guidance system), while the work by 

other researchers involved developing, view classification, LV segmentation, strain 

measurements, phase detection, doppler image analysis, and electrocardiogram signal analysis. 
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Chapter 2  
 

Clinical Background 
 

Cardiac functional analysis is an established approach being used to diagnose most 

cardiovascular diseases and presents clinical clues to interventions. Over the past decade, the 

application of medical imaging techniques has facilitated state-of-the-art image-based analysis 

of cardiac functions. For any medical examination of heart’s health, cardiologists rely on 

imaging and analytical technology to measure, quantify myocardium, and signal activities 

within the purkinje network (Gaudet et al., 2016).  In clinical cardiac diagnosis, existing 

technology ranges from Electrocardiogram (ECG), measuring the electrical activity of heart’s 

rhythm; Magnetic Resonance Imaging (MRI) to produce details of heart’s anatomy among 

others; Cardiac Computed Tomography (Cardiac CT) for producing detailed structure of 

internal organs, tissues, and skeletal structure; and Echocardiogram (Ultrasound). Some levels 

of biological risk are involved in deployment of all except the echocardiogram, proving superior 

in terms of non-ionizing in vivo exposure, lower cost of ownership, high temporal resolution, 

and excellent portability. However, the performance of ultrasound imaging technique suffers 

from the limitation of the spatial resolution constrained by the acoustic diffraction and 

limitation imposed by the operating ultrasound frequency (Chen et al., 2021) in contrast to the 

rest.  

In this chapter, a detailed account of the physics of ultrasound imaging, various imaging 

modalities and significance are discussed. Then, the echocardiogram specimen, fundamental 

challenges of objective characterization and method of quality assessment are explained. 

Finally, a brief overview of the different datasets used in this thesis are provided. 
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2.1 Overview of Cardiac Physiology 
 

Human heart is a life-supporting four-chambered organ responsible for blood and hormonal 

circulation. The heart cavity consists of four chambers: the right and left atrium, and right and 

left ventricles with separating walls to distinguish the right and left blood chambers, this is 

called intraventricular septum (Hinton and Yutzey, 2011). The heart also has one-way valves 

that separate the chambers and the major arteries, which prevent blood backflow into the 

chamber. The aortic valve, separating the aorta from the left ventricle, while the pulmonic valve, 

separating the pulmonary artery from the right ventricle, are known as semilunar valves. The 

two atrioventricular (AV) valves are the tricuspid and mitral valves. The tricuspid valve marks 

the separation between the right atrium and right ventricle while the mitral valve separates the 

left atrium from the left ventricle. Figure 2.1 depicts an Apical Four-Chamber (A4C) view of 

the heart is one view that presents a combined visualisation of all four chambers of the heart. 

The histological decomposition of heart as cardiomyocyte cell (Talman and Kivelä, 2018) with 

three functional layers of connective tissue, the muscles of the heart, and the inner lining of the 

heart which protects the valves and chambers that are called the epicardium, myocardium, and 

endocardium respectively. Further protection is a double-layer, fluid-filled sac known as the 

(parietal and visceral) pericardium, surrounding the heart. The epicardium is joined to the 

myocardium on one side and to the pericardium in several layers, with pericardium fluids. 

While coronary arteries, veins, vessels, and nerves run below the epicardium, the endocardium 

is trabeculated and composed of connective tissue layers – papillary muscles, external purkinje 

network (Labs et al., 2020). The heart pumps out blood in a systolic process with the LV 

contracting to generate the right pressure and squeezes blood out of the heart (Maznyczka et 

al., 2021). This process is followed by a diastole cycle, while the heart relaxes its right ventricle 

chamber is immediately filled with a new volume of blood. These sequences are known as a 

cardiac cycle, which forms a single heartbeat (Figure 2.2). An obvious fact in the length of 

cardiac cycles is influenced by physical and psychological different factors such as exercise, 

emotions, fever, diseases, and some medication heart contract at different rates (Hanft, Korte 

and McDonald, 2007). The normal heart typically beats at around 75 beats per minute, so the 

length of each cardiac cycle is usually less than one second (Hernández-Vicente et al., 2021). 

But during this short time, a lot of pressure changes take place in the heart (Klabunde, 2011). 
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Figure 2.1: Overview Schematic representation of apical four chamber of the heart with corresponding pressure 

level during diastole (D) and systole (S) cycles. Adapted from (Maksuti, E, 2016) and (Mariana Ruiz Villarreal, 

2006). 

 

    

Figure 2.2: Illustration showing the phases of cardiac cycles for atrial and ventricular events with corresponding 

electrocardiogram (ECG/EKG) Wiggers diagram, showing the components of the cardiac cycle. Total length of 

cardiac cycle usually 0.8 seconds can be elevated during physical or psychological activity. Adapted from 

(Hernández-Vicente et al., 2021) and (Klabunde, 2011). 
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2.2 Echocardiogram Acquisition and Assessment 

  
An echocardiogram is a non-invasive examination that uses sound waves to look at the size, 

shape, motion, performance of heart and its valves, pumping capacity, and the location and 

extent of any tissue damage. This procedure is also known as echocardiography (cardiac echo) 

or diagnostic cardiac ultrasound and provides exclusive ability for real-time images of the 

beating heart (Horton, 2010). Echocardiography can allow extracting other measures such as 

measuring the EF, cardiac output, and diastolic function (i.e., how well the heart relaxes) (Cleve 

and McCulloch, 2018). In a patient with a suspected cardiac disorder, echocardiography is 

essential in assessing the motion of wall cavities and to detect some cardiomyopathies such as 

hypertrophic cardiomyopathy, dilated cardiomyopathy, and left ventricular systolic 

dysfunctions (LVSD). Echocardiogram is helpful in the early diagnosis of myocardial 

infarction evaluating the regional wall cavities and motion abnormalities, treatment, and follow-

up in patients with heart failure or in clinical emergencies. Echocardiography exams are 

conducted by trained clinicians, cardiologists or sonographers trained in echocardiography 

(Modin, Andersen and Biering-Sørensen, 2018). Classic echocardiography examination 

procedures, usually between 15 to 45 minutes, starts by applying acoustic gel on patients’ left 

hand chest region and placing a transducer probe in the relevant intercostal window as 

illustrated in Figure 2.3. Usually for cardiac assessment, a phased array transducer can be placed 

in different ‘window’ locations of the chest, and at different angles, to capture the relevant view 

required for diagnosis. The most common echo windows are the parasternal, apical, subcostal, 

and suprasternal as illustrated in Figure 2.4. From each window, an operator can manipulate the 

transducer either by rotating and/or tilting the transducer without moving it to a new window 

(Figure 2.5). These lateral or medial translations can provide significant improvement on the 

image quality obtained or clinical measurement for further functional analysis.  

 The equipment then displays the corresponding image assessed by the operator as apical-two 

chambers (A2C), apical-four chambers (A4C), parasternal long axis image (PLAX), etc. Hence 

the quality of imaged obtained depends on operators’ skill, experience, and patients’ 

pathological or physiological profiles.  
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Figure 2.3: Illustration of Transthoracic Echocardiography (TTE) clinical examination process in the lab.   

 

The adaptation of transthoracic echocardiography (TTE) is the focus of study, although there 

exist other types of echocardiograms significantly useful depending on the potential heart 

problem doctors wish to investigate. Nevertheless, TTE has been famously and frequently 

adapted for clinical echocardiography. The reason could be for in vivo easy access that patients 

need not worry about the procedure unlike TEE where a probe is inserted for clarity. I enumerate 

other types of echocardiograms and their significance in clinical assessment of myocardium. 

(i) Transthoracic Echocardiogram (TTE): During this examination, a trained 

operator spreads acoustic gel onto the chest and presses a device called a transducer 

(probe) against the skin. A high-frequency sound waves is propagated into the areas 

of interest which is then reflected or bounce off the walls and valves of the heart. 

The reflected sound waves known as echoes, is detected by the transducers and 

displays a moving image of the heart’s chambers, walls, and valves on a monitor 

while the scan is accomplished. This procedure is done in vivo and commonly used 

for the assessment of cardiac functions in children and adults. The general 

application is wide in clinical laboratory and during clinical emergencies. Therefore, 

it is logically sensible to evaluate echocardiogram produced under TTE exams.  
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Figure 2.4 The standard recommended transducer positions in transthoracic echocardiography windows to obtain 

images. Imaging windows showing Parasternal, Apical, Subcostal (SC), and Suprasternal notch (SSN). (Mitchell, 

C., et al, 2018). 

 

 

Figure 2.5: Transducer manoeuvring / manipulation for optimum quality image acquisition: sliding in 4 directions, 

tilting sideways, rotating on probe axis, and rocking for optimum contact pressure are the possible translations 

for probes fine-tuning that affects imaging outcomes and quality.  

 

(ii) Stress Echocardiogram: Stress echocardiogram examination known as stress echo 

is to find out if the patient has decreased blood flow to the heart muscle (i.e., 

coronary artery disease). The stress echo uses ultrasound imaging of the heart to 

evaluate the wall motion in response to physical stress. This examination increases 

the heart rate and blood pressure. During this examination, two sets of images will 

be taken including one at rest, and another after working out on a treadmill or 

stationary bike. If the patient's health condition limits physical activity, a medication 

will be injected to simulate the effect of exercise (Prisant, Watkins and Carr, 1984). 

 

(iii) Transoesophageal Echocardiogram (TEE): For TEE examination, the transducer 

instead of being moved over the outside of the chest wall is passed down the 

oesophagus. TEE would allow producing clearer pictures of the heart because the 

transducer is located closer to the heart and the lungs and bones of the chest wall do 



Clinical Background  37 

not block the sound waves generated by the transducer (O’Rourke and Mendenhall, 

2019; Blinn, Margulis and Joshi, 2019). 

 

(iv) Three-Dimensional Echocardiogram (3D Echo): A Three-Dimensional (3D) 

echocardiogram uses either transoesophageal or transthoracic echocardiography to 

generate a 3D image of the heart. This examination includes multiple images from 

various angles. It’s used for recognising problems with heart valves, before heart 

valve surgery for replacement heart valves, or diagnosing heart problems in children 

(Lang et al., 2015). Currently, 3D echocardiography suffers from a considerable 

reduction in frame rate and image quality, and this has hindered its adoption into 

routine practice. When such issues are resolved, automatic analysis of the 3D images 

could also be explored. Meanwhile, 2D echocardiography remains unrivalled and 

clinically relevant, particularly when high frame rates are needed. 

 

 

2.3 Imaging Modalities and Significance 
 

Echocardiographic imaging has evolved from single line pulse-echo where amplitude and depth 

are processed to yield A-Mode echocardiography. In the application of cardiac ultrasound 

imaging, diverse types of mode can be controlled by the operator, each of them conveying a 

specific type of information to the clinician (Bom, N., et al., 2004). There are three basic modes 

used to image the heart which is briefly explained in the following section:  

● A-Mode: In the A-mode presentation of ultrasound images, echoes returning from the body 

are displayed on oscilloscope which presents a graph of voltage representing echo amplitude 

on the ordinate (y-axis) or as a function of time on abscissa (x-axis), hence the term “A-

mode”. With the assumption of a constant speed of sound, time on the x-axis can be 

presented as distance from the ultrasound transducers. Hence, the A-mode reveals the 

location of echo-producing structures only in the direction of the ultrasound beam. It has 

been used in the past to localise echo-producing interfaces such as midline structures in the 

brain (echoencephalography) and structures to be imaged in B-mode. The concept of A-

mode is, however, useful in explaining how pixels are obtained from scan lines in the B-

mode imaging system.  
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● M-Mode (Motion Mode): M-mode has a great spatial resolution (Sarvazyan, Urban and 

Greenleaf, 2013), which is useful for measuring ventricular dimensions in systole and 

diastole. In this mode, motion of the internal organ can be reflected for systolic assessment. 

Its application is also used in cardiac timing and the measurement of dimensions. M-Mode 

displays a one-dimensional image that measures the distance of the object from the single 

transducer at a given moment. The ultrasound shows this information as a 2D image which 

is depth and time. M-mode images have a very high sampling rate, which results in a high 

time resolution. Therefore, very rapid motions can be recorded, displayed, and measured. 

However, in these types of images, the ultrasound line is fixed to the tip of the ultrasound 

sector. It may therefore be difficult to align the M-mode perpendicular to the structures 

which are displayed (i.e., the septum), thus leading to false measurements (Loizou, Pattichis 

and D’hooge, 2018).  

● B-Mode (Brightness Mode): This mode is more commonly known as 2D that allows a 

plane of tissue (both depth and width) to be imaged and displays the ultrasound reflection 

as an 8-bit grayscale image that composed of bright dots representing the ultrasound echoes 

(Sarvazyan, Urban and Greenleaf, 2013). The brightness of each dot is determined by the 

amplitude of the returned echo signal. This allows for visualisation and quantification of 

anatomical structures, as well as for the visualisation of diagnostic and therapeutic 

procedures. The anatomic relationship between various structures is easier to recognise than 

M-mode echocardiographic images. The formation of a B-mode image depends on the 

pulse-echo principle; assuming the speed of sound remains constant, the position of a target 

of interest may be inferred by the time taken from emission to its return to the transducer. 

The limitless number of imaging planes through the heart is possible, however, the standard 

view will be used to assess the intra and extra cardiac structure (Prada et al., 2015). This 

thesis focuses on the principle of B-Mode imaging in echocardiogram. 

● TDI (Tissue Doppler Imaging): Tissue Doppler Imaging (TDI) is a modality that allows 

measuring myocardial velocities to evaluate global and regional myocardial systolic and 

diastolic function. It can also be employed to quantify right ventricular and left atrial 

function (Atzeni et al., 2017). TDI is useful as a diagnostic as well as prognostic tool in 

different cardiac conditions such as coronary artery disease, heart failure (both systolic and 

diastolic), valvular heart disease, cardiomyopathies, and constrictive pericarditis. Also, TDI 

measurements are helpful to recognise patients who will benefit from cardiac 

resynchronisation therapy. Although TDI is reproducible and quite easy to acquire, it is 
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underutilised in routine clinical practice. (Kadappu and L. Thomas, 2015). Figure 2.6 

displays some examples of different modalities used in transthoracic echocardiography. 

 

 

Figure 2.6: Examples of different modalities used in transthoracic echocardiography, showing B-Mode, M-Mode, 

and TDI echocardiograms. 

 

 

2.3 Characterization of Cardiac Specimen 
 

Anatomy of cardiovascular specimens presents enormous complexity to objective functions in 

terms of dynamic features identification and clinical quantifications (Sarvazyan, Urban and 

Greenleaf, 2013). This is due to clinical protocol where cardiologists not only rely on still 

images but a fast-moving echocardiogram frame in real-time. However, a plausible solution 

(Potter and Marwick, 2018);  using deep learning models have been widely demonstrated for 

cardiac view classification (G.N. Balaji, Subashini and Chidambaram, 2015), quality 

assessment (Labs et al. - 2020) and now it’s been applied to achieve pseudo-labelling and 

characterization of cardiac samples in a semi-supervised model (Cozman, Cohen and Cirelo, 

2003); (Shiming Xiang, Feiping Nie, and Changshui Zhang, 2010); (Chen et al., 2020). 

Objective characterization of two-dimensional echocardiograms is one of the potential 

approaches to define the critical features of domain-specific elements of cardiac specimens in 

terms of anatomical and pathological features.  

During transthoracic exam, several images are by default, required to build a complete picture 

of patients’ pathology and summary of diagnosis; however, several specimens for multiple 

patients indicate the enormous task of manually assessing several hundreds of specimens prior 

to diagnosis. An automated system that can objectively allow cardiologist filter-search and 
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group specific specimen down to pathological and anatomical relevance (as described in table 

I & II) is certainly beyond the scope of apical view classification. This system could allow rapid 

assessment of functional, anatomic, and pathological features present in each specimen.  

Although this study focused on apical-four, the impact encapsulates apical-four chamber 

images (A4C) and parasternal long axis (PLAX) images which are the recommended views for 

critical quantification and clinical measurement the principles can be applied to other apical 

standard views. Consequently, objective characterization of these two views are significant 

prerequisites to globalisation standard in objective assessment, implementation of real-time 

optimization, and anatomical function sorting which can speed up clinical process. 

 

2.4 Definition of Objective Quality Attributes 
 

Due to its ubiquitousness and nonionizing advantages, echocardiograms have found its 

significance in antenatal, obstetric, and general diagnosis of myocardial infarction. Although, 

echo image does provide rich information about myocardium, it does not present crisp edges of 

a well-defined resolution when compared to photographic images. Since quality assessment is 

currently done by observer visual assessment, there exists huge variability as to what constitutes 

the quality element of 2D echocardiographic image at most clinical practice.  

While there exists no coherent quality standard of objective image quality by which cardiac 

specimens can be judged, it has been affirmed that accurate diagnosis of the left ventricle 

functions is hugely dependent on the quality of echo images. Consequently, there is a need for 

a coherent global standard of domain-specific criteria for 2D image quality. Mitigation by 

observer visual assessment which is highly subjective thus became the status-quo and requires 

varying incoherent definitions under clinical pathologies. The inherent variations in 

echocardiographic image quality standards indicates the complexity faced among clinicians and 

provides apparent evidence for incoherent assessment under clinical trials, especially with less 

experienced cardiologists. Several researcher including (Luong et al., 2021) admitted there 

exist no reference standard for the evaluation of 2D echocardiographic image quality hence, the 

scale of criteria for 2D image quality, proposed in many publications does not represent expert 

visual assessment, consensus on 2D echocardiographic image quality and failed to meet 

translatory clinical relevance. These are only paramount to the quantification of the left 
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ventricle (LV) functions, which serves the ultimate purpose of cardiac diagnosis or myocardial 

assessment. 

This research defined and presented the analysis of domain-specific quality attributes of 2D 

echocardiogram specimen under: (i) On-Axis, (ii) Chamber Clarity, (iii) DepthGain and (iv) 

foreshortening attributes that can gain translatory advantage in clinical practises (Labs, 

Zolgharni and Loo, 2021). Objective quality attributes employ the use of a multi-stream deep 

convolutional neural network to extract image’s quality features as defined by a set of clinically 

relevant criteria and computes objective quality scores which can be used to arbitrate the quality 

of cardiac specimens in A4C.  

 

 

2.5  Assessment Methods of 2D Image Quality 
 

The assessment of cardiac image quality and the clinical measurements of cardiac functions are 

domain knowledge which is performed using high quality images. In clinical practice, clinicians 

have established that poor quality images have dire consequences on cardiac quantification and 

clinical measurements. During the cardiac cycle, when the LV contracts, the endocardium 

muscle shortens in the longitudinal and circumferential dimensions which can produce a 

negative strain that shows a constrained displacement defined by heart’s cavity and wall 

structure. In this phase, the muscle will thicken or lengthen in the radial direction to produce a 

positive strain (Thomas H Marwick, 2006) while the apical chambers show alternating and 

varying dimensions and volumes. The preferred apical orientation, among other vital quality 

attributes is observed in real-time but can present foreshortening artefacts, hyperechoic or 

hypoechoic among other undesirable acquisition anomalies.  

Currently, the method of image quality assessment is a subjective process, where an 

echocardiography specialist visually inspects the images and decides on what anatomical 

features present in the image to be pathologically relevant. This process is laced with a spread 

spectrum of opinion and decision variability (Nagata et al., 2018) even when an image is 

reassessed by the same operator. These variabilities and uncertainties (Liao et al., 2019) are 

found to impair quantification accuracy of cardiac functions, diagnosis, and the overall quality 

of patient care. Unfortunately, a subjective assessment method is incapable of detecting 

temporal changes in a 2D fast moving pixel data. This is because the amplitude of reflected 
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ultrasound detected by the imaging system can vary considerably over several logarithmic units 

of signal strength, and its well beyond the capacity of human visual perception. (Mitchell et al., 

2019). Therefore, these represent a layer of complexity in the currently adopted assessment 

method in 2D echocardiogram.  

Furthermore, earlier works on quality assessment methods all indicate using a weighted average 

of image overall quality score. Unfortunately, a single score value of objective quality cannot 

provide specific feedback to the aspect of image quality that needs to be optimised. Therefore, 

an assessment method that would be domain-specific showing score values for different 

attributes of image quality criteria would provide a succinct and precise feedback to the aspect 

of image quality needing optimization. Using this feedback can be significant to achieving 

optimum image quality, reproducibility, accurate quantifications and to provide possibility for 

automated diagnosis in clinical practice. 

Rather than obtaining an overall quality score for the image from a weighted average of these 

quality measures, we instead used four defined attributes separately and proposing novel 

approach using four (4) quality attributes and method of assessment in real-time during 

acquisition phase 

The application of objective quality assessment method is one of the objectives that this thesis 

investigated, as it is paramount to image acquisition, quality optimization and overall diagnosis 

of cardiac specimens.  

 

 

2.6  Overview of Dataset Used  
 

Representative multi-centre patient datasets are essential for ensuring that any developed 

models would scale up considerably well to other sites and environments. Therefore, this study 

employed several private and public datasets, originating from different clinical sites and 

acquired by different imaging equipment from various vendors, and representative of real-

world patient population. Table 2.2 provides a summary of the datasets used. Chapter 4, 5 and 

6 will provide the details of each dataset, when dealing with problem-specific data. 
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Table 2.1: Summary of echocardiographic patient datasets used for different applications/tasks including 

classification, segmentation, and Speckle Tracking in this project. 

Dataset Name CAMUS PACS PACS-1/2 EchoLab 

Model Usage 

 
Classification Classification Regression 

Semi-Supervised 

Regression 

Type 

 
Public 

Private 
Private Private 

Source 

 

University Hospital 

of St Etienne 

(France) 

NHS Trust, 

Imperial College 

Healthcare 

NHS Trust, Imperial 

College Healthcare 

NHS Trust, Imperial 

College Healthcare 

Acquisition 

 
GE Vivid E95 

GE and Philips 
GE and Philips Philips iE33 

No of Patients 

 
450 

374 

 
374 61 

Specimen 

 
A2C, A4C 

14 Apical 

Standards 
A2C, A4C, PLAX A4C 

Ground-Truth 1 annotation 1 annotation 

2 Annotations,  

1 Expert and 

1 Accredited. 

2 annotations by 2 

Experts 

No of Frames 

 
1,800 41,321 40,000 27,230 

 

 

 

2.7 Conclusion 
 

This chapter provided the clinical background to cardiology, the significance of 

echocardiograms, image acquisition, different types of echocardiograms and ultrasound 

modalities with a focus on the Transthoracic Echocardiography (TTE) and B-Mode modality. 

Also detailed dataset sources with respective clinical properties. Finally discussed the concept 

of objective quality element in 2d echocardiogram specimen, and the method of assessment in 

real-time. Further experiments on these are detailed in Chapters 4, 5, 6 and 7. 
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Chapter 3  
 

Technical Background 
 

 

The application of deep convolutional neural networks is the bedrock for recent advances in 

artificial intelligent (AI) technology (LeCun, B., and Hinton, G. 2015; Shen, G. et al., 2017; 

Suzuki, 2017). Self-driving cars, virtual assistants like Alexa, Sri, and the healthcare industry, 

have recorded plausible feats which include advanced medical diagnosis and clinical 

echocardiography (Shrestha and Sengupta, 2018).  

Deep convolutional neural network (DCNN) is a subset of Machine Learning (ML) that exhibits 

the ability to learn high-level features from a dataset. Although it requires significant computing 

power (GPU) and large labelled dataset, it can achieve state-of-the-art accuracy, sometimes 

exceeding human-level performance making it best candidate to extract hierarchical features 

(Dean, J., 2016) in complex structure of images like echocardiograms.  

In this chapter, first, an overview of the physics of ultrasound imaging and artificial neural 

networks will be presented, including a brief introduction to DCNN and different approaches 

to neural network design. Then, the general DCNN architectures used to solve classification, 

regression and pseudo-labelling problems will be described. Lastly, an overview of neural 

network architecture search (NAS) and its counterparts will be illustrated. 

 

3.1 Physics of Ultrasound Imaging 
 

Acoustic sound wave above audible frequency range of 20 - 20,000Hz exhibits interesting 

characteristics of propagatable mechanical compression and rarefactions therefore become the 

basis for ultrasound imaging technology. Ultrasound differs from audible sound only in its 

frequency, and it is 500 to 1000 times higher than the sound we normally hear. Sound 
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frequencies used for diagnostic applications typically range from 2 to 15 MHz, although 

frequencies as high as 50 to 60 MHz are under investigation for certain specialised imaging 

applications. Diagnostic ultrasound is used to assess and evaluate patients’ internal organs 

during a clinical procedure, sound waves are propagated in-vivo (Rayleigh 1975), while the 

returned pulse-echo is used to construct image structure. These interactions provide the 

information needed to generate high-resolution, grey-scale images of the body, as well as 

display information related to blood flow (Merritt, no date). Consequently, the physics of 

ultrasound imaging consist of the following principle: 

(i) Propagation of Acoustic Waves: Sound is the result of mechanical energy travelling 

through matter as a wave producing alternating compression and rarefaction. Pressure 

waves are generated and propagated by limited physical displacement of the material 

through which the sound is being transmitted. Changes in pressure with time define the 

basic units of measurement for sound. The distance between corresponding points on 

the time-pressure curve is defined as the wavelength (λ), and the time (T) to complete a 

single cycle is called the period. The number of complete cycles in a unit of time is the 

frequency (f) of the sound. Frequency and period are inversely related. If the period (T) 

is expressed in seconds, f = 1/T, or f = T × sec−1. Furthermore, frequency and 

wavelength have some relationship with propagation velocity of sound (c) which, 

largely determined by the resistance of the medium to compression, is a product of 

frequency (f) and wavelength (λ). Consequently, resistance is influenced by the density 

of the medium and its stiffness or elasticity. In Figure 3.1, propagation speed (velocity) 

can be increased when stiffness increases or by decreasing the density (Jensen, 1991).  

Therefore, when the transmitted acoustic waves (ultrasound beams) transverse specific 

object with dissimilar cavities of acoustic impedance (Table 3.1), can be modelled using 

Snell’s law, and are subjected to one or all the following phenomenon: (a) Acoustic 

Reflection (Rayleigh’s 1975), (b) Refraction (c) Scattering, (d) Attenuation, and (e) 

Transmission as illustrated in Figure 3.2.  
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Figure 3.1: Propagation speed in tissues is determined by the physical properties of tissue which varies 

considerably. Clinical ultrasound probes assumed average propagation velocity of soft tissue of 1540 m/sec. 

 

Reflection: The way ultrasound is reflected when it strikes an acoustic interface is 

determined by the size and surface features of the interface. If large and relatively 

smooth, the acoustic reflection will be like the reflection of light by a mirror. Therefore, 

the amount of energy reflected by an acoustic interface can be expressed as a fraction 

of the incident energy (P); this is termed the reflection coefficient (R). However, in 

cardiology, different tissue naturally offers specific resistance known as acoustic 

impedance and this includes tissues, bones, and fluids (Table 3.1). Acoustic impedance 

denoted by (Z) is determined by the product of the density (ρ) of the medium 

propagating the sound and the propagation velocity (c) of sound in that medium (Z = 

ρc). If a specular reflector is perpendicular to the incident sound beam, the amount of 

energy reflected can be illustrated by Figure 3.2. As with propagation velocity, acoustic 

impedance is determined by the properties of the tissues involved and is independent of 

frequency. Thus, the reflection coefficient R is the ratio of intensity of reflected echo 

beam versus intensity of the incident beam observed at the boundary 𝜌1 , 𝑐1 𝑎𝑛𝑑 𝜌2 , 𝑐2. 

This represents the interface acoustic impedance Z for respective layers 𝑍1 and 𝑍2 given 

by the equations (3.1 and 3.2):  

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 =  
(𝜌2 𝑐2) − (𝜌1 𝑐1)

(𝜌2 𝑐2) + (𝜌1 𝑐1)
           (3.1) 
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𝑅 = (
𝑍2 − 𝑍1

𝑍2 + 𝑍1
)2                                          (3.2) 

 

 

Figure 3.2: Illustrating the relationship between acoustic impedance and reflection coefficient 

 

Refraction: The change in the direction of the incident propagation wave is governed by 

Snell’s law (equation 3.3) and is known as refraction. Refraction occurs when acoustic 

waves transit through a dissimilar medium having dissimilar acoustic impedance properties. 

Refraction is governed by basic Snell’s law in equation (3.3): 

 

𝑠𝑖𝑛 𝜃𝜌 

𝑠𝑖𝑛 𝜃𝑡 
= 

𝐶1

𝐶2
                                    (3.3)      

 

As illustrated in Figure 3.2, 𝜃𝜌 , 𝜃𝜏 represent the angle of incidence and refraction 

respectively. This angle is usually less than the critical angle where refraction causes no 

ultrasound to enter a medium is 90 degrees. 

Scattering: Echocardiograms are formed by scattering centres which occur when the 

reflected acoustic wave becomes equal or smaller than the wavelength of the incident beam 

interacts with a structure of a radically different impedance. Such echo originating from 

relatively small, weakly reflective, irregularly shaped objects, are less angle dependent 

exhibiting the properties of a ‘diffuse reflector’ with different acoustic impedance compared 

to the surrounding tissue. Hence, diffuse reflectors cause ultrasound waves to scatter in all 

directions thus resulting in multiple echoes propagating from the numerous tiny structures. 

Scattering produces echoes with smaller amplitudes while interacting with each other in 
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turn causes both constructive and destructive interference of the waves known as speckle 

which is seen as an irregularity in the grayscale of the image. 

 

Attenuation: The intensity of acoustic amplitude diminishes as beams travel through a 

medium due to depth, scattering and absorption. Transmitted acoustic beams weaken with 

distance and are absorbed when energy is converted to another form of energy or when 

diffusely reflected in a direction other than original direction of propagation (Mézière et al., 

2014). This phenomenon accounts for the attenuation of the plain wave, given in equation 

(3.4) in Nepers or equation (3.5) in decibel. 

 

𝛥𝐴 (
𝑁𝑝

𝑚
) =  𝐴𝜔𝑒−𝛼𝑧                     (3.4)  

∆𝑋(𝑑𝐵) = 10 𝑙𝑜𝑔
𝑋2

𝑋1
                (3.5) 

 

Where 𝐴𝜔is the unattenuated amplitude of the propagating beam at some point in the 

medium, A in Nepers per metre, is the attenuated amplitude assessed at distance z, and 

𝛼 is the attenuation coefficient (Figure 3.3) of the beam travelling in z direction, given 

in nepers/metre or in decibel/length (Napier’s constant at 2.71828 or conversion to dB 

dividing by 0.1151). While delta X is expressed in decibel of some quantity, X1 and X2 

are two different intensity values for amplitude of the transmitted and returned echo 

beams measured in decibel. Both equations are valid for acoustic beam attenuation 

properties of beam waves. 
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Figure 3.3: Illustrating the attenuation coefficient of different mediums. Attenuation occurs as an acoustic beam 

passes through tissue, it loses energy through the transfer of energy to tissue by heating, reflection, and scattering. 

Attenuation can be affected by chosen frequency and the medium’s acoustic impedance. Attenuation also increases 

in proportion to insonating frequency, resulting in less penetration at higher frequencies. 

 

(ii) Image Reconstruction Process: Image data are computed in the ultrasound imaging 

system (Figure 3.4) after listening to the reflected echo using pulse echo demodulation 

or reconstruction process, depicted in Figure 3.5. The demodulator computes the 

envelope and magnitude of the received signal, then initiates log compression and scan 

conversion processes. In the scan converter, image data is held in memory and 

continuously updated with new echo data arriving at the demodulator buffer. Phased 

array probes are essential in echocardiology and account for scan conversion from polar 

to cartesian coordinates with interpolating processes. At the same time, information is 

continuously read out to a video buffer to provide real-time visualisation of the scanned 

images. Consequently, echocardiogram images are displayed on the monitor where 

further onboard processing is carried out to meet specific clinical requirements, e.g., 

enhancement, quantifications, clinical measurements, or data storage. Figure 2.6 

illustrates the hardware setup of trends in clinical ultrasound hardware.  
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Figure 3.4: Overview of hardware and trends in Ultrasound Imaging and diagnosis systems 

 

 

 

Figure 3.5: Echocardiogram Image generation and reconstruction process, showing the stages in pulse-echo 

amplification, envelope detection, down sampling stages and visualisation. 

 

In the process of ultrasound imaging, human tissues offer some sort of resistance defined by 

acoustic impedance (z) which is the rate of resistance encountered by ultrasound beam. This is 

a physical property of tissues and bones which is dependent on densities measured in kg/m3, 

and speed of sound wave measured in m/s as summarised in Table 3.1. The increase in 

impedance varies with tissue densities and depth which is the reason for huge difference in 

patient pathological and anatomical profiles. The effect of acoustic impedance in medical 

ultrasound becomes noticeable at interfaces between different tissue types (Jensen, 1991). The 

ability of an ultrasound wave to transfer from one tissue type to another presents a subtle 
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acoustic impedance transition in the magnitude of the differential impedance of the two or more 

tissue elements. In medical imaging, pulsed waves are commonly used because they provide 

much improvement in axial resolution. Nevertheless, the continuous wave (CW) analysis also, 

is useful to determine the beam’s diffraction pattern and effects of near and far-field even 

though it provides no information regarding the time domain (Sarvazyan, Urban and Greenleaf, 

2013).  

 

Table 3.1: Summary of material densities and acoustic impedance relating to echocardiograms image acquisition, 

generation, and reconstruction. 

Material Densities (kg/m3) Propagation Velocity 

(metres/second) 

Impedance kg/(m2s) 

Air (@25deg) 1.16 330 0.0004 × 106 

Pure Water (@22deg) 998 1482 1.48 × 106 

Fat 928 1450 1.34 × 106 

Liver 1050 1578 1.65 × 106 

Blood 1060 1584 1.65 × 106 

Muscle 1041 1580 1.71 × 106 

Bone 1600 3360 7.8 × 106 

Heart 1045 1570 1.64 x 106 

 

 

3.2 Cardiac Ultrasound Probes 
 

Ultrasound probes (transducers) are one of the important parts of ultrasound equipment, they 

contain essential electronic and piezoelectric components for the generation and propagation of 

acoustic wave and reception of returned pulse-echo to construct echocardiogram image 

illustrated in Figure 2.8. Since ultrasound transducers work as both transmitter and receiver 

(Figure 2.9), ultrasound probes are used as a listening device to detect pulse-echo reflection; 

they are technically evaluated at design level for performance efficiency (equation 3.6.).  

 

𝑃𝑐
2 = 

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
         (3.6) 

 

In practice, transducers are designed using man-made piezoelectric crystals such as barium 

titanate, lead metaniobate, and lead zirconate titanate (Hendee and Ritenour 2002) with acoustic 

baffles to minimises attenuation coefficient, which values varies with several vendors across 
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the globe. There are three main types of transducers: linear, curved and sector shown in Figure 

3.6. Linear transducers are used primarily for small parts requiring high resolution and typically 

involve shallow depths. Nevertheless, to produce a broader view, sectorial transducers are used. 

These have small footprint and wide far-field view as illustrated in Figure (3.7). Also, available 

for general diagnosis are transducers with 64 piezo elements (arranged in convex or linear 

array), or 128 elements commonly used in sector phased array transducers are best suited for 

echocardiology clinical diagnosis. For abdominal in vivo investigations, curved transducers are 

typically used due to its large aperture. Sectorial phased array transducers provide the following 

advantages: 

● Provides an effective way of accessing cardiac imaging through a narrow gap between 

5th rib known as cardiac window or simply 5th intercostal space  

● Yields a divergent beam in the far field region (critical advantage for partial view) and 

narrow beam in near field. 

● Allows a compromise view of resolution over depth. A disadvantage of poor resolution 

in the divergence far field view than the near field view.  

 

 

Figure 3.6: Typical Transducer Probes. Different vendors bear their own trademarks. Example General Electric 

(GE) probes are common in many clinical practises.  

 

The underpinning concept of echocardiographic imaging is based on the echo-pulse principle 

of the selected transducer probes. The process starts with the generation of acoustic radiated 

time-harmonic pressure field which is usually represented by the Rayleigh–Sommerfeld 

diffraction integral (Zeng and McGough, 2008) described in equation (3.7), followed by the 

spatial impulse response of the transducer probe (pressure field) which account for the intensity 

of propagated pressure beam, can be described as emitted pressure field in a homogenous 
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medium in equation (3.8), Acoustic pressure is then propagated, transmitted and received 

through the transducer equation (3.12). The resulting time delay between transmitted pressure 

field, the impulse response field and reflected signal can thus be summed up in equation (3.13) 

as the close loop detection to determine the transducer distance from the object which is 

required for image reconstruction purposes. Hence, the received scatter field pressure in the 

transducer, provides the information about the depth and angle of received signal are converted 

from polar to cartesian coordinates which is necessary for display. The acoustic spatial impulse 

response pressure field for wave equation is represented by the Rayleigh-Sommerfeld 

diffraction integral equation (3.7) as: 

 

𝑝(𝑥, 𝑦, 𝑧; 𝑡) = 𝑗𝜌𝑐𝑘𝑒𝑗𝑤𝑡∫
𝑆′
 𝑣(𝑟′) 

𝑒−𝑗𝑘|�⃗⃗� |

2𝜋|𝑟 |
𝑑𝑆′               (3.7)      

 

The equation factors in the material or medium density 𝜌, speed of sound 𝑐, acoustic 

wavenumber 𝑘, driving velocity 𝑤, distribution of normal velocity 𝑣, on the rigid baffled 

radiator surface area S’ and the distance between the source and observation coordinate (x, y, 

z; t). While 𝑟  represents the position of the field point in space and 𝑗 remains the imaginary 

electronic unit. The emitted pressure field, in a homogenous medium is then calculated using 

the surface velocity 𝑣𝑛  of the transducer in equation (3.8) thus: 

 

𝑝(𝑟 , 𝑡) = 𝜌 
𝜕𝑣𝑛(𝑡)

𝜕𝑡
∗ 𝑝(𝑥, 𝑦, 𝑧; 𝑡)                 (3.8) 

 

The spatial impulse response of the whole transducer for a linear array can thus be expressed 

in equation (3.9) as:  

 

𝑃𝑟(𝑟 ⃗⃗ , 𝑡) = 𝑉𝑝𝑒(𝑡)𝑡 ∗   𝑓𝑚( 𝑟 ⃗⃗ ) 𝑟 ∗  𝑇𝑝𝑒( 𝑟 ⃗⃗ , 𝑡)                  (3.9) 

 

Where 𝑉𝑝𝑒 is the impulse-echo impulse, excitation impulse response during transmission and 

reception of echo;   𝑓𝑚 is account for the tissue inhomogeneities to density propagation and 

𝑇𝑝𝑒 as the pulse-echo spatial impulse response for transducer geometry and scattered field. 

This can be rewritten explicitly in equations (3.10 and 3.11) as: 
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𝑉𝑝𝑒(𝑡) =  
𝜌

2𝑐2
 𝐸𝑚(𝑡) ∗  

𝜕3(𝑡)

𝜕𝑡3
                  (3.10) 

 

𝑓𝑚(𝑟 ) =  
𝛿𝜌(𝑟 )

𝜌
− 

2𝛿𝑐(𝑟 )

𝑐
                        (3.11) 

  

𝑇𝑝𝑒 = 𝑝𝑡(𝑟 , 𝑡) ∗  𝑝𝑟(𝑟 , 𝑡)                              (3.12) 

 

ℎ(𝑥, 𝑦, 𝑧; 𝑡) = ∑ 𝑎𝑖ℎ𝑖(𝑥, 𝑦, 𝑧; 𝑡)𝑁−1
𝑖=0         (3.13) 

 

Therefore, the received response for a single RF line can thus be calculated by summing the 

response from a collection of scatterers (equation 3.13) which aggregates the impulse response 

from transmitting and receiving transducer and then convolving with the impulse response of 

the transducer (Jensen and Munk, 1997). Therefore, the spatial impulse response of the whole 

transducer surface area; i = 0,1,2 …, N-1 is the index of the element of the transducer array; 𝑎𝑖 

represents the weighting level at element i: ℎ𝑖(x, y, z; t) is the spatial impulse response between 

the element i and the field point (x, y, z). Generally, the scattering strength is determined by the 

density and speed of sound perturbations in the tissue and the surrounding (Cheng et al., 2011). 

 

 

3.3 Echocardiogram Image Resolutions 
 

The ability of ultrasound probes and processing units to distinguish pulse-echo in spatial and 

temporal space is defined by its resolution component and plays a significant role in the choice 

of probes, and the quality of the generated echocardiogram.  

But to acquire high quality images and accurate measurements require operator’s skilled 

competence (Aschkenasy et al., 2006); (Sprawls, 2014) and many years of training experience 

without which exacerbates the reliability issues and increase possibility for misdiagnosis 

(Yoon, Kim and Chang, 2021). Ultrasound image resolution is defined by its spatial and 

temporal resolutions (illustrated in Figure 3.8) which further define the critical ability of 

echocardiogram to accurately show the underlying anatomical changes over time.  
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Figure 3.7: Probes showing typical field of View. (Left): Phased-Array Probe with small aperture to yield a 

divergent far field view, useful application in cardiology, (Middle): Convex Array Probe (curvilinear) with 

divergent beam, useful in abdominal exams (right): Linear Array Probe with wide field of view is suitable for 

vascular and tissue other than heart. (Merritt, no date) 

 

   

Figure 3.8: Illustration of spatial resolution: good and poor axial resolution describes the ability to display small 

targets as separate when two targets are on the path of ultrasound beam. Axial resolution is defined as a half of 

spatial pulse length (SPL) – the shorter the beam the better the axial resolution and lateral resolution, showing 

good and poor resolution respectively. Ability of echocardiograms to present two separate targets perpendicular 

to the beam can be classified as poor, average, or good. The wider the beam, the poorer the lateral resolution. 

 

According to the Consortium for the Accreditation of Sonographic Education (CASE), a 

recognised body that accredits ultrasound courses in UK Universities, it takes a minimum of 

three (3) years to train an operator on freehand probe manoeuvring for high quality image 

acquisition (BMUS, 2021); (CASE, 2019) much more challenging when operators must deal 

with multiple patients in clinical settings (SCoR & BMUS Guidelines, 2020). Evidently, there 

is a direct relationship between the quality of acquired echo images and the operators’ 

experience, objectivity, and consistency in probe manoeuvring, unfortunately, this is a 

persistence occurrence that imposes limitation on optimum image acquisition hence, the 

development of artificial intelligence-based tool for cardiac image optimization discussed in 

this thesis would be of a great importance to cardiologists’ clinical practice. 
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3.4 Deep Convolutional Neural Networks 
 

The concept of deep convolutional neural network (DCNN) enables the possibility of 

identifying discrete or continuous pattern which is associated with our natural and abstract 

worlds. Technically, DCNN consists of several blocks of hierarchical functional nodes (layers) 

which provide logical transformation and each layer’s input going to its adjacent layers. The 

simplest architecture block arrangement usually starts with input and convolution (ConvNet) 

layer and a combination of one or many of the following data transforming layers: Activation 

Layer, Pooling Layer, Batch Normalisation (BN) Layer, Flattening, and Fully Connected (FC) 

Layer (Howard et al., 2017). The art of combining these layers (model architecture) and the 

choice of spatial parameters defined for each layer constitutes a design task usually meant for 

experienced researchers and represents a distinguishing factor between several other model 

architectures. The building block layers can be summarised as follows: 

● Input Layer: The input layer holds the raw pixel values of the input data that in the case of 

the echocardiographic data; the width and height of the input layer are the spatial 

dimensions of a single frame which will be exposed to the network.  

● Convolution Layer: Convolution layer consists of 2 major components; Kernel (2D Filter), 

stride and can accept input data of 1D, 2D, 3D. While 1D is suitable for single dimensional 

input data like voice, text, the latter are suitable for images and videos. This layer holds the 

raw pixel values of the images known as spatial input and consists of a kernel or filter of 

fixed size parameters which slides in a window fashion to perform convolution operation 

on the windowed image thereby extracting spatial features. Several nodes could be stacked 

together depending on the application and perceived complexity in the image, for example, 

medical images do not present clear edges as compared to camera images. Also, padding 

could be applied to the size of the input image to overcome uneven mapping with filter size. 

Consequently, the output of convolution layer thus yields a feature map 𝑎𝑖, 𝑗𝑘
𝑙  as described 

by the equation 3.14 where 𝑎𝑖, 𝑗𝑘
𝑙  is the output feature map of the ith kernels, of convnet l 

layer when the weight matrix 𝑤𝑖,𝑚𝑛
𝑙  convolved with the input feature map 𝑎(𝑗+𝑚)

𝑙−1  of the 

current convolutional layer. 

 

𝑎𝑖, 𝑗𝑘
𝑙 = ∑ ∑ 𝑤𝑖,𝑚𝑛

𝑙

𝑁

𝑛=1

𝑀

𝑚=1

𝑎(𝑗+𝑚)(𝑘+𝑛)
𝑙−1               (3.14) 
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● Activation Layer: The activation layer is a nonlinear function to convert the output of the 

convolutional layer to an output that can be used in the next adjacent ConvNet layer. This 

is a part of regularisation technique used in forward propagation training phase to make a 

nonlinear transformation which allows the estimate of complex functions by mapping the 

estimated values between 0 to 1. Activation acts on sum of weighted input in the form of 

cumulative weight and bias (𝑤1 ∗ 1𝑥 + 𝑤2 ∗ 𝑥2 + 𝑤3 ∗ 𝑥3 +1𝑏) and return the output neuron 

with range constraints i.e., 0 to 1, -1 to 0 as illustrated in the equation 3.15. 

 
Figure 3.9: Illustrating popular activation functions used in this research CNN models Function flatten rather 

quickly, mapping the estimated values between zero and one (0, 1).  

This research work has experimented with different types of activation functions (illustrated 

in Figure 3.9) with ReLU as a best choice yielding best convergence and efficiency for the 

algorithm and pipeline use case. Consensus on ReLU [0 to inf), or its variant LeakyReLU (-

inf to inf) proved these as monotonic functions. Sigmoid (0 to 1) with smooth gradient but 

steeply characteristic along x-axis or SoftMax (0 to 1), best in handling multiple classes and 

predicting output multi-class probability. Also, TanH (-1 to 1) which functions like sigmoid 

but zero cantered, good for modelling inputs with strong negative, neutral, and strong 

positives values. 

𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =  𝑓(∑𝑤𝑖

𝑁

𝑖=0

𝑥𝑖)              (3.15) 
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Nevertheless, ReLU activation function appears to be the most employed activations in deep 

learning models as it can learn fast in the large neural networks (Nair and Hinton, 2010). 

 

● Pooling Layer: Pooling layer object, usually is applied before or after a nonlinearity 

function to convolutional feature map. The choice of pooling filter size is usually smaller 

than the size of the input feature map. Most research experiments go by filter size 2×2 pixels 

with a stride of 2 pixels in both x, y direction. Pooling layers use either 

Average/Maximum/Global kernel function which slides like a window across input data left 

to right, top to button fashion to extract dominant features that are rotational and positional 

invariant in the convolved data. The main function is to reduce the spatial variance of the 

convolutional features, speeds up convergence and in turn reduces the computational power 

required to process data. Average pooling calculates the average for each patch of the 

feature map. This means that each 2×2 square of the feature map is down sampled to the 

average value in the square while max pooling is a pooling operation that calculates the 

maximum value in each patch of each feature map. MaxPool has been found in experiment 

to work better than average pooling especially for cardiac image classification and 

regression problems. Max and Average pooling expressed respectively as: 

 

z f = max {s} = max {s1, s2, …, s n}                  (3.16) 

 

z f   = mean{s} = mean {s1, s2, …, s n}          (3.17) 

 
 

● Batch Normalisation: This layer is also known as Batch Norm (BN) is a layer with 

learnable parameters defined with BatchNorm2d and only active when (batch_norm = true). 

Its primary function is to accelerate convergence by reducing internal covariate shift inside 

each batch. Batch Normalization performs well in reducing the chances for overfitting 

during training phase and comes handy in preventing error propagation into adjacent neural 

network layer. During the model learning phase when the parameters begin to drift, the 

mean and std output by each layer will also change. A change in mean and std of the output 

of one layer will cause a change in mean and std for all following layers. Unfortunately, the 

model has no way of correcting these changes in means and std once training has begun. 

Consequently, the individual observation in the batch becomes significantly different, the 
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gradient updates could appear clumsy and take longer to converge. The batch norm layer 

normalises the incoming activations, scale, and shift across the channel dimension of the 

input then outputs a new batch where the mean equals 0 and standard deviation equals 1 

(Ioffe and Szegedy, 2015). It computes the mean 𝐵𝜇 and variance 𝐵𝜎 , 𝑡ℎ𝑒𝑛 subtracts the 

mean 𝐵𝜇 and divides by the standard deviation of the batch equation (3.20). BN algorithm 

process is computed as follows: 

𝐵𝜇 =
1

𝑁
(∑𝑥𝑖

𝑁

𝑖=1

)                    (3.18) 

     

𝐵𝜎 =
1

𝑁
∑(

𝑁

𝑖=1

𝑥𝑖 − 𝐵𝜇)
2         (3.19) 

 

𝑥 𝑖 = 
𝑥𝑖  −  𝐵𝜇

√𝐵𝜎 +  𝜖
                    (3.20) 

 

Finally, BN then scales and shift each channel of the normalised batch of input 𝑥 𝑖  using 

the learnable parameter filter, denoted as 𝛼, 𝑎𝑛𝑑 𝛽 to yield normalised output in equation 

(3.21). 

𝑦𝑖 = 𝐵𝑁𝛼,   𝛽(𝑥𝑖)               (3.21) 

 

● Dropout: A dropout layer is useful during the training phase to prevent overfitting in neural 

networks. Dropout accepts layer’s activation input and randomly sets a certain fraction of 

inputs referred to as (dropout rate) depicted in Figure (3.10b) are rationalised by setting 

their output activation values to 0 at each training update. The values of inputs that are 

retained are scaled up, so that their sum is unchanged during forward propagation phase. 

The dropout rate is the tune-able hyper parameter that is adjusted to measure performance 

with different values. It is one of the regularisation techniques like cross validation, batch 

size, data augmentation or early stopping. Typical dropout values are set between 0.2 and 

0.5 percent. 
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Figure 3.10: Illustrating a standard neural net with 2 hidden layers before and after randomly applying dropout 

during training phase, reproduced from (Srivastava et al., 2015) 

 

● Fully Connected Layer: Fully connected layer (FC), also known as DENSE layer, where 

each neuron in the input is connected to each neuron in the output layer. Illustrated in Figure 

(3.10a), the FC layer is responsible for computing the predicted layer 𝑙, score by calculating 

the inner products of their input 𝑎𝑗
𝑙−1 with their associated weight parameters 𝑤𝑖,𝑗

𝑙   and 

biases (equation 3.22). FC layer is preceded by FLATTEN operation, an object component 

that converts the feature map of the final pool layer from two-dimensional features into one-

dimension and is fed into a fully connected layer. 

 

𝑓𝑓𝑐𝑖
𝑙 (𝑎𝑙−1) = ∑𝑤𝑖,𝑗

𝑙

𝑛

𝑗=1

 . 𝑎𝑗
𝑙−1 + 𝑏𝑖

𝑙               (3.22) 

 

a) Loss Functions: One of the ways to evaluate the performance of objective function, deep 

learning algorithm either on discrete or continuous values is using loss functions. It provides 

visibility on algorithm current output and the expected output values. Also, can be described 

as feedback signal to guide algorithm performance and for back propagation and 

optimizations. This research used cross entropy loss for classification task, MAE or MSE 

for  regression tasks or a combination of both. Cross entropy 𝐽 loss is a measure of the 

difference of the randomness between two random variables. 

𝐿 =  −∑𝑦𝑖 log(ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − ℎ𝜃(𝑥𝑖))

𝑁

𝑖=1

   (3.23) 
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3.5 Deep Learning Model Architectures 
 

Deep learning models consist of few or several layers of convolution neural networks which 

are made up of hierarchical nodes (layers) of non-linear processing networks for supervised 

learning, automatic feature extractions, transformations, and classification.  The combination 

of these network layers forms the basis for different model architecture in the public domain. 

They are capable of being trained on large sets of labelled data (supervised training) and learn 

complex features directly from data (self-supervised), without the need for manual feature 

extractions. In research literature, neural architectures are created to provide informative 

features for classification or regression tasks. Historically, including LeNet (LeCun, Bottou et 

al., 1998), AlexNet (Krizhevsky, Sutskever and G. E. Hinton, 2014), VGG’16 (Simonyan and 

Zisserman, 2014), GoogleNet (Szegedy, Wei Liu et al., 2015), ResNets (He et al., 2016), 

DenseNet (G. Huang et al., 2017), etc. The summary of the evolutionary trends in common 

DCNN architectures that have been widely used:  

● The LeNet architecture proposed by (LeCun, Bottou et al., 1998) for handwritten and 

machine-printed character recognition in the 1990s. The LeNet neural network contains two 

sets of convolution, activation, and pooling layers, followed by a Fully Connected (FC) 

layer, activation, and another FC layer and finally a SoftMax layer 

● The AlexNet architecture includes eight layers such as five convolutional layers and three 

FC layers. After each convolution and FC layer, ReLU is applied (Krizhevsky, Sutskever 

and G. E. Hinton, 2012); (Srivastava et al., 2014). 

● The VGGNet is a well-known convolutional neural network proposed by (Simonyan and 

Zisserman, 2015) and was used to win ILSVR (Large Scale Visual Recognition Challenge, 

2014) competition. This model makes an improvement over AlexNet architecture 

(Krizhevsky, Sutskever and G. E. Hinton, 2012) by increasing the depth of the network. 

The architecture consists of building blocks of two convolutional layers followed by a 

pooling layer. This block is repeated multiple times, whilst all the convolution kernels are 

of size 3×3. Finally, a stack of convolutional layers is followed by three FC layers. Also, by 

introducing the number of layers (i.e., 11, 16 and 19) different architectures were proposed 

and the VGG '16 with a total of 16 layers as shown in Figure 3.11 recommended to have 

the best performance. 
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● The GoogLeNet neural network was introduced by (Szegedy, Wei Liu et al., 2015) who 

proposed an Inception Module that reduces the number of parameters in the architecture. 

The Inception Module applies multiple convolutional filters for the same input and 

concatenates the result. The network consists of 22 layers. 

 

 

Figure 3.11: VGG16 Model Architecture. Reproduced from (Simonyan & Zisserman, 2015). 

 

● ResNet Residual Network (ResNet) was inspired by VGGNet and won the ImageNet 

contest in 2015, a year after VGGNet opened the floodgates of deep convolutional neural 

networks.  Unlike VGGNet with 16 to 19 layers, ResNet allows extremely deep neural 

networks of 150 layers and is considered a fundamental breakthrough but at computational 

cost of memory. The least version of ResNet in ResNet18 has a total trainable parameter of 

11.174 million and is not regarded as a lightweight embedded architecture. Deep learning 

experiments have revealed that stacking many network layers without changing the network 

structure would diminish the model performance because gradients of network parameters 

will vanish as ConvNet’s depth is increasing. ResNet, which suggested a residual learning 

framework through adding identity-mapping shortcuts (Xie et al., 2017) was a better 

response to such experimental challenges. The ResNet model utilised four modules 

comprising residual blocks, each of which uses several referred blocks with the same 

number of output channels. The number of channels in the first module is the same as the 

number of input channels. Each residual block has two 3 × 3 convolutional layers with the 

same number of output channels. Each convolutional layer is followed by a batch 
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normalisation layer and a ReLU activation function, except the last operation of a block that 

does not have the ReLU. There are 18 layers in total. Therefore, this model is commonly 

known as ResNet-18. By configuring different numbers of channels and residual numbers 

of channels and residual blocks in the module, different ResNet models have been created 

such as ResNet-152 (He et al., 2015). Figure 3.12 illustrates the architecture of ResNet-18. 

 

 

Figure 3.12: Illustration of the ResNet-18 architecture adapted from (He et al., 2016). 

 

● The DenseNet presented by (Huang et al., 2017) that in a feed-forward fashion, connects 

each layer to every other layer. It includes a convolution operation or pooling layers, batch 

normalisation, and an activation function. DenseNet concatenates the output feature maps 

of the layer with the incoming feature maps as illustrated in Figure 3.13.  

 

 

Figure 3.12: A 5-layer dense block showing layers’ input connection [Con = L(L+1)/2]. Each layer accepts 

preceding future-maps as input while its own feature maps become input to subsequent layers. Image adapted 

from (Huang, G., et al., 2017).  
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The significant connection between these architectures is their application in image 

classification, identification, and regression tasks. Although, performance of these architectures 

varies significantly depending on the dataset applied, but they can reduce development time by 

avoiding training the model from scratch. This saves valuable times in modelling and can yield 

impressive accuracy in transfer learning modes.  

Furthermore, the depth of the DCNN network have shown significant impact on the 

performance of the model. Therefore, getting deeper without applying changes in the structure 

can potentially retard model’s performance, leading to loss of information and vanishing-

gradient problem (Liu et al., 2018).  

For classification and regression tasks, this study investigated the performance of most of the 

state-of-the-art models but based on performance and inference times, settled on VGG16, 

ResNet50, and MobileNetV2 suitable for obtained dataset on PACS, PACS-1 and CAMUS 

public dataset. 

 

3.6 Time Series Regression Model 

Regression techniques are widely employed to solve tasks where the goal is to predict a 

continuous value or several continuous values simultaneously. Regression models assume some 

sort of linear or polynomial relationship between dependent and independent variables. 

Although, some tasks, like multivariate regression implemented in this research, do require 

prediction more than a single numeric value, consequently require a complex build of parallel 

stream of subnets known as multi-output regression model. In computer vision, regression 

techniques span a large ensemble of application scenarios such as: image classification (Nafchi 

and Cheriet, 2018), human pose estimation, age estimation, object detection, quality estimation 

(Liao et al., 2019) or analysis of image virality. Besides the normal classification architectures, 

regression could also be formulated as a classification problem (Lathuiliere et al., 2020). In that 

case, the output space is generally discretized to obtain class labels, and a multi-class loss is 

minimised. Conversely, a ConvNet with a fully connected layer replaced with linear or sigmoid 

activation as its final activation layer will function as regression architecture (Lathuiliere et al., 

2020). Several configurations are possible which can extend ConvNets’ input function into 

spatial, and temporal (time) space dimension as utilised in experiment in Chapter 5, 6, 7 and 

are summarised as follows:  
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● Recurrent Neural Network (RNN), introduced by (Elman, J., 1990) is a standard neural 

network that has been extended across time-space by having edges which feed into the next 

time step instead of into the next layer in the same time step (Figure 3.14). RNN algorithm 

is best at recognising sequence data for example, a video frames sequence, speech signal, 

or text (Donahue et al., 2016). It has become the most popular method of performing 

classification or regression analysis on sequences data. Nevertheless, a RNN, expressed as 

ℎ𝑡 = 𝜎(𝑊𝑥𝑡 + 𝐵ℎ𝑡−1), where W and B are the weight matrices connecting the inputs and 

the recurrent outputs Y, shows a major drawback during backpropagation through time. The 

gradient accumulates and explodes or vanishes down to nothing. Consequently, in practical 

applications, a subset of RNN like long-short term memory networks (LSTM networks) is 

highly recommended. 

 

 
Figure 3.13: A Cell structure of RNN, showing how weight matrices connecting the input and the recurrent output. 

 

● Long Short-Term Memory (LSTM), unlike RNN with inherent gradient problems, LSTM 

consists of a unit of logical cell specifically designed to reduce the vanishing gradient 

problem sufficiently to make recurrent neural networks more useful for long-term memory 

tasks like sequence predictions. Thus, allowing deeper networks and recurrent neural 

networks to perform well in practical application. There is a need to reduce the 

multiplication of gradients which are less than zero. LSTM reduces the multiplication effect 

of small gradients by adding processed input to its internal memory state. Therefore, the 

time dependence and effects of previous inputs are again controlled by the forget gate, 

which determines which states are remembered or forgotten (Ullah et al., 2018). Figure 3.15 

illustrate an LSTM cell with two other memory state or gates, i.e., the input 

gate and output gate. 
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Figure 3.14: Structure of LSTM cell diagram showing three inputs: Previous hidden state (Ht-1), Previous Cell 

state (Ct-1) and current cell input (Xt). 

 

● Hybrid Network: A combination of several layers of ConvNet’s with LSTM or C-LSTM 

is often considered especially when the generalisation ability of the default classifier is not 

very satisfying on image sequence data. Consequently, combining the spatial feature-

learning ability of DCNN model architecture with LSTM architecture’s high-level temporal 

dependent features provides best performance for predicting video sequences (Luong et al., 

2021). For 2D echocardiography, deep convolutional neural networks could be used as a 

base model to learn low-level spatial features of 2D cardiac specimen image quality while 

feeding the resultant vector into an LSTM or any of its variants’ model architecture, to learn 

high-level temporal features. This combination provides a combined spatio-temporal value 

estimation or prediction values for sequence of echocardiogram frames. The 

implementation of a hybrid spatio-temporal model architecture is illustrated in Figure 3.16.  

Echocardiograms are sequence frame data stream usually in varying time stamp present a 

spatio-temporal features that is best suited for time series classification. This advantage can 

be harnessed since echocardiogram presents fast moving frames of the myocardium.   

Consequently, justifying the adopting of hybrid network on quality assessment task.  
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Figure 3.15: Illustrating a Hybrid Model Architecture consisting of DCNN and LSTM models to achieve superior 

generalisation, performance, and computational efficiency on sequence of images or video frames.    

 

 

3.7 Semi-Supervised Ensemble Models 
 

Semi-supervised machine learning is a combination of supervised and unsupervised learning 

methods. It uses a small amount of labelled data (Ouali et al., 2020) and a large amount of 

unlabelled data, which provides the benefits of both unsupervised and supervised learning while 

avoiding the challenges of finding a large amount of labelled data. Generally, the motivation 

behind semi-supervised classification is to employ many unlabelled data to help build a better 

classifier from the labelled data (Shiming Xiang, Feiping Nie, and Changshui Zhang, 2010) but 

this is not always the case. Semi-supervised is applicable to classification problem where the 

objective is to pseudo-label unclassified data samples with little available labelled data due to 

challenges in cost, time-tied limitation, data protection, or turn-around overhead. Semi-

supervised learning (SSL) presents a layer of complexity and challenge to 2D echocardiograms, 

neither supervised nor unsupervised learning algorithms can make effective use of the mixtures of 

labelled and unlabelled data. Hence, specialised semis-supervised learning algorithms are required. 

This approach to machine learning is a combination of supervised machine learning, which uses 

labelled training data, and unsupervised learning (Figure 3.17), which uses unlabelled training 

data. This work presents the implementation of a semi-supervised classification algorithm using 

stackable model in ensemble learning framework to implement clustering and label predictions. 
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Figure 3.16: Illustration of Semi-supervised with ensemble learning Architecture adapted for the characterization 

of 2D echocardiograms and pseudo-labelling process. 

 

The ensemble method in semi-supervised provides some sort of confidence and robustness in 

the pipeline. Its general architecture is illustrated in (Figure 3.17) and iteration processes as 

follows: 

(a) The ensemble models are trained on small number of labelled samples that represents a 

minute sample across the domain of label space 

(b)  Model enters second iteration where it predicts on unlabelled samples to yield pseudo-

labelled samples since they may not be accurate 

(c) Predicted labels are linked to the label space and data inputs are linked to the unlabelled 

data samples and are added to the separate buffer to allow spot checking prior to addition 

into labelled samples 

(d) The iteration then pauses prompting action for spot checking on predicted label samples 

before they are finally added into the initial pool of labelled samples. The successful 

samples are then deducted from the pool of unlabelled samples.  

(e) Finally, the model retrain with additional new label samples and this process repeats 

until no unlabelled samples remain. 
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3.8 Overview of DCNN Design Methods 
 

Designing deep convolutional models has been described as a non-trivial task however, requires 

a skilled expertise and experience to design and train. For example, an important consideration 

for adopting any type of model architecture on ultrasound protocol would depend on technical 

details that are specific to general integration and hardware requirements. Design methods are 

essential considerations and components for system integration done through the system 

engineering process. The aim is to unify product’s components and process components into a 

whole unit with the hope of achieving overall system purpose, satisfy use case, and functional 

efficiency.  

A couple of design approaches have been considered, this could be a traditional method of 

calculating parameters for each DCCN component/layers while automating the optimization of 

layers’ learning rate (Semi-Automatic) or using any auto search methods like AutoML or neural 

architectures search method (NAS). Both methods are implemented with choice for adaptation 

based on the evaluation outcomes.  

 

3.9 Semi-Automatic Approach in NAS 
The publicly available state-of-the-art models provides a baseline performance for any 

application using DCNN. For light-weight applications (Vaseli et al., 2019), the search strategy 

adopted was to imitate a physical life scenario where deployment of a specific solution is 

urgently required and where few hours of delay can spell clinical disaster. Such a scenario was 

seen to have played out in the 2019, the beginning of Covid-19 Pandemic. Since automatic 

neural search could take days and weeks to wrap up with suitable architecture models, a semi-

manual approach could become relevant and save the day. The advantage of translating into 

quick deployment and comparative performance accuracy can make a huge difference in life 

scenarios.  

Technical justification for a lightweight model is based on the set of requirements envisaged 

for the deployment of quality assessment algorithm on either mobile platform, for example, 

point of care ultrasound POCUS or on system-on-chip SoC platforms where memory 

requirement is limited to few kilobytes. For the application of clinical echocardiography, the 

justification for a lightweight model can be summed up as follows: 
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o Requirement for low memory application, e.g., POCUS, (<100MB) 

o Low storage pipeline requirements, (i.e., # of parameters < 20 million) 

o High performance data access specification (> 16GB), 

o CPU inference speed (frame per second) (<25ms)  

o Dataset requirements & scalability 

o Low latency remote connection   

 

3.9.1 Lightweight Model Architecture (CardioQNet) 

Manual architecture design which could involve minor to major structural changes of any 

existing state-of-the-art models for adaptation or creating entirely new architecture to solve 

specific problems (Abdi, Luong, Tsang, Allan, et al., 2017). Although, the major disadvantages 

with manually designed models is that they are incapable of continuous improvement in terms 

of data space, after the tuning hyper-parameters converge. However, the advantage could yield 

a lightweight model where numbers of redundant parameters are stripped of to achieve specific 

memory requirement and inference speed. like Figure 3.10, that works on low hardware 

memory specification, improved performance and saves implementation overhead because of 

specific adaptation to a given hardware and problems. Manual search methods implemented 

include a few layered components which can generalize on cardiac dataset (PACS) comparable 

to ResNet18 performance.  

This study explored the manual design of a lightweight model architecture development using 

semi-automatic approach. The design of cell parameters was first implemented in excel 

worksheet to gain insight into the spatial parameters of the input images and memory 

requirements on a given batch size. The architecture search space consisted of a normal cell and 

a reduction normal cell were manually chosen based on persistent evaluation of set of filters 

sizes that defined the convolutional layers. The outcomes of manually chosen parameters for 

each cell was then evaluated and either rejected or chosen based on the performance on the 

specific dataset (PACS or its variants). This process is repeated with hyperparameter 

optimization until no appreciable increase in performance is recorded for the given architecture.  

Although, manual design tool as explained is incapable of predicting the model’s cell 

performance unless it is executed, the numbers of training parameters and required memory for 
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input image can be evaluated without running the model which is a design advantage compared 

to AutoML methods. This process yielded a derived 3 layered architecture we referred to as 

‘CardioQNet’ model, depicted in Figure 3.18. 

To evaluate the derived architecture requires running and fine-tuning the model’s hyper 

parameters until the performance ceiling is reached. Memory requirements is based on the 

spatial size of the input image to each convolution layer and calculated using: 

 

𝑠𝑝𝑎𝑡𝑖𝑎𝑙𝑊𝑖𝑑𝑡ℎ =  
(𝑊 − 𝐹 + 2 ∗ 𝑃)

𝑆
 + 1              (3.24) 

 

Where W is the spatial width of the image to be convolved with kernel size F and padding P 

values divided by the stride S values. This is valid for layers of convolution and max pool layers 

which are used to down sample the spatial dimensions for faster convergence.  

Hyper parameter optimization: Automated tuning and optimization of CardioQNet hyper 

parameters depends on selecting appropriate hyper-parameters values. However, it is not an 

easy task because it requires time and expertise to tune the hyper-parameters to fit the machine 

learning model (Domhan, Springenberg and Hutter, 2015). This study has considered the grid 

search method in the optimization of Hyper-Parameter (HP) for CardioQNet, the proposed 

lightweight model.  

The grid search method is considered as the brute-force way of searching HPs, with defined 

lower and higher bound along with specific steps. Grid search works based on the cartesian 

product of the different set of values, evaluates every configuration and returns the combination 

with the best performance (Zahedi et al., 2021). Its implementation is simple but inefficient for 

large search spaces due to its adjacent boundary values. The problem of inefficiency on a very 

large dataset can grow worse with increased data dimensionality or when label space increases.  

Random search is another common optimization standard method of searching HPs. In the 

random search method, instead of evaluating every configuration, optimization values are 

chosen randomly and repeat this process until the defined resources are over. Random search 

method is by experiment, much faster than grid search but presents no clear path on how optimal 

parameters are obtained (Greff et al., 2017).  

Another practical search method known as manual search is the most basic HP tuning method 

and a typical approach among researchers and students. Different starting values are repeated 
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in the search experiment on an ad-hoc automated basis. An ad-hoc experimentation values could 

benefit from certain domain knowledge or experience, nevertheless, the training process is 

automated and repeated at each given value until a satisfactory or improved result is obtained 

(Elsken, Hutter and Metzen, 2018). Cardiac dataset however, presents anatomical complexities 

with large search spaces making basic manual search an impractical approach. The effect of 

manual parameter tuning on performance was earlier explored by Mohammadi et al (2021) 

where different embedded parameters were combined which improved the accuracy of semantic 

auto-encoder in classification problems (Zahedi, Mohammadi and Amini, 2021).  

 

 

ConvNet Layer1 ConvNet Layer2 ConvNet Layer3 

32: 11x11 32:7x7 64:32x32 

BN BN BN 

32:4x4 32:4x4 64:4x4 

 

Figure 3.17: CardioQNet - The ultralight-weight architecture, derived using semi-automatic neural architecture 

search method. This is optimised for 2-dimensional echocardiographic classification and regression tasks. 

 

With automated hyper parameters tuning procedures, the derived model was then evaluated 

against model performance and accuracy with the publicly available DCNN architectures 

deemed suitable for medical imaging classification tasks. VGG16, ResNet50 and MobileNetV2 

were among those evaluated for baseline performance, and assessment of data, and memory 
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requirements. Memory requirements for ResNet50 were found to be the highest, while the least 

memory requirement was for CardioQNet and are summarised in Table 1.1. Also, the tool 

allows evaluation of trainable parameters to display memory requirements for a given input 

image sizes and epoch's batch sizes. This was done for several conceptual architectures. Hence, 

the 3-layered convolutional architectures named 'CardioQNet' became the derived architectures 

after intensive optimization on the given dataset. Nevertheless, the semiNAS derived model, 

CardioQNet, adequately compared in performance with the selected state-of-the-art (ResNet50, 

MobileNetV2 and Vgg16) Architectures over the given dataset. While 2Cell-DARTS 

architectures claimed to show significant decrease in user memory requirements, CardioQNet 

illustrated in Figure 3.18, shows 93.73% decrease in memory requirement with faster inference 

time and a significant improvement in overall model performance relative to ResNet50 

architecture as shown in chapter 5 (Table 4.1).  

In terms of data space scaling, semi-automatic architecture search is less preferred to fully 

automatic neural search method however, it has been proven that significant advantages in 

semiNAS derived models include immediate conceptualisation and feasibility for agile 

deployment in an inevitable case like pandemic and ad-hoc development. Furthermore, the 

semiNAS method saves design time, computational overhead (expensive to own) and provides 

the ability to check the memory requirement (on a given data samples) for training and back 

propagation which is useful for targeted hardware.  

 

 

3.10 Automatic Neural Architecture Search 
 

The automatic search method otherwise known as neural architecture search (NAS) is regarded 

as a subfield of auto machine learning (AutoML), which application relates significantly to 

hyperparameter optimisation (Feurer, H. et al., 2019) and meta-learning (Vanschoren, J., 2019). 

As expected, ultrasound hardware has stringent memory and storage limitations hence, the 

realisation of an efficient network architecture (NAS), with low integrate-able memory 

requirements, lightweight architecture, and best performance with less human intervention 

comparable to state-of-the-art models is a technological milestone. In experimental outcomes, 

evidence that NAS techniques have outperformed manually designed architectures on some 

tasks such as image classification (Zoph, B., et al., 2016;) or segmentation (Chen, L.C. et al., 

2018) has been established. This precipitates the idea that automated network architecture 
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design is feasible for regression problems, especially for 2D echocardiographic image quality 

estimations. NAS method involves three sequential procedures namely: search space, search 

strategy, and performance estimation strategy (Elsken, J.H., et al., 2018) and enumerated as 

follows: 

(i) Search Space: One of the useable methods in neural architecture search space includes 

all sets of convolution layer configurations stacked on each other in a chain-structure 

which include a sequence of n layers, where the nth layer ln receives its input from layer 

n – 1 and its output will be as the input for layer n + 1. Then, the search space is 

parameterized by the number of layers, (n), type of operations such as dilation (Yu and 

Koltun, 2015), element of deep-wise (Chollet, 2017) convolutions, and hyper-

parameters related operations (Baker et al., 2016).  

Possible implementation of skip connections in NAS has yielded more complex 

architecture with multi-level NAS network solutions (Zoph, Vasudevan et al., 2018; 

Real et al., 2019a) which compares to ResNet, and DenseNet, where previous layers 

outputs are summed (Huang et al., 2017) for improved performance.  

Furthermore, the cell-based method uses two cells as a basic dimensional array; one 

keeps the original input’s spatial dimension and the other keeps the input’s dimension 

that is decreased at every iteration. This method yields significant advantages of epoch-

times, performance, and scalability in comparison with chain-structured methods.  

Another method is based on hierarchical search space (Liu, T, et al., 2018) which 

includes three levels of operations:  set of fundamental operations, the second level 

connects the fundamental operations through a directed acyclic graph, and the third level 

encodes how to connect the second levels and so on. This provides an advantage over 

cell-based methods. This thesis adopted the cell-based search space method for view 

classification model and hierarchical search space approach for regression model. 

 

(ii) Search Strategy: Neural architecture space can be investigated using random, Bayesian 

optimization, Reinforcement learning (RL) (Zoph and Le, 2016; Zoph, Vasudevan et 

al., 2018), gradient-based (Williams, 1992), and evolutionary (Miller, Todd and Hegde, 

1989) search strategies.  
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Experimental records show the competitive performance of Bayesian optimization and 

RL search strategies on CIFAR-10 dataset, even though they are significantly high in 

computational overhead. Research efforts to reduce this overhead have been in the 

public domain since 2013 (Bergstra, Y., and Cox, D., 2013; Zoph, B., and Le, Q.V., 

2016). 

In evolutionary algorithms, a population of the possibly trained network is developed 

and, in every step, at least one model will be sampled from the population and serves as 

baseline where offspring would be generated by adding or removing some layers and 

possibly altering the layer’s hyperparameters, adding skip connections, a process known 

as local operations. Finally, the performance of all the offspring is evaluated and are 

added to the final model structure. (Elsken, J. H. Metzen and Hutter, 2018b). 

It has been affirmed that RL and evolution strategies performed significantly well in 

finding smaller models and in terms of performance accuracy preferred to random 

search strategy (Real et al., 2019a). Therefore, this thesis implemented the evolution 

search strategy for the view classification model. 

 

(iii) Performance Estimation Strategy: One of the performance estimate strategies is 

based on the comparison of the model’s predictions (validation data) with the known 

values of the dependent variable in a dataset (training data). Although, its highly 

improbable that predictions and dependent-variable values are often equal in most cases, 

hence the need to estimate the disagreement in terms of how well the model performed 

on a given dataset. This research work investigated four (4) strategies: lower fidelities, 

learning curve extrapolation, network morphisms or weight inheritance, and one-shot 

weight sharing strategies. 

a. Low fidelities: Low fidelities strategy refers to performance measuring strategy 

where computational overhead is downscale to improve turn around. This strategy 

involves: (i) reduced training (epoch) times, (ii) training with fewer cells and kernels 

per layer, (iii) training on lower-resolution images or (iv) training on a sample of the 

dataset (Zoph, V., et al., 2018); (Klein, et al., 2017); (Chrabaszcz, L., and Hutter, F., 

2017). Consequently, a risk that computed performance will underestimate the 

quality of architecture predictive performance becomes imminent. 
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b. Learning curve extrapolation: Learning curve extrapolation strategy (Domhan, T., 

et al., 2015) is based on the implementation of probabilistic model that is capable of 

extrapolating model’s performance as a function of its number of iterations or 

training time with a view of minimises early termination consequences that could 

occur during model’s training phase. Another variant of this strategy is the 

performance as a function of available training dataset. Learning curve extrapolation 

has been demonstrated to speed up hyper-parameter optimization.  

c. Network morphisms: Involves the adaptation and inheritance of a novel model’s 

weights without altering its network functions (Wei, T., et al., 2016). This allows 

substantial increase in network capacity and maintaining high performance without 

needing training from scratch. Although strict network morphisms may precipitate 

complex architectures by making architectures larger that it needs to be, this can be 

attenuated by using approximate shrinking network morphisms (Elsken, T., et al., 

2018). Overall, it provides the benefit of allowing search spaces without an inherent 

upper bound on the architecture’s size.  

 

3.11     NAS for Classification Model 
 

The evolution of Network Architecture Search (NAS) methods (Pham, H., et al., 2018; Xie, S., 

et al., 2018) have accomplished highly competitive performance in discrete label classification 

tasks (Zoph, B., and Le, QV., 2016). One of the earliest methods applied by Zoph (2016) was 

RNN, as the controller to compose neural network architecture successfully searched variable-

length architecture space. Although RNN can be trained with a policy of gradient method to 

maximise model’s accuracy on architecture space, it does require around 800 GPUs for 600 

hours making this impracticable for real-life scenarios while other alternatives are feasible.  

Another NAS implementation alternative includes learning the structure of CNN using the RL 

and evolutionary algorithms (Liu, C., et al. 2018). This approach uses a sequential model-based 

optimisation strategy, where structures are searched in order of increasing complexity, and 

learning a surrogate model simultaneously, to guide the search through structure space. This 

method proved 8x faster in comparison to Zolph’s RNN method (Zoph, B., et al. 2018).  
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Another competitive model using an evolutionary algorithm known as AmoebaNet-A (Real, E., 

et al. 2019) presented the first controlled comparison of RL algorithms for image classifier 

architecture search, among other methods. Implementing NAS approaches, such as Efficient 

Neural Architecture Search (ENAS) (Pham, E., et al., 2019) or the new Differential 

ARchiTecture Search (DARTS) (Liu, H., et al., 2018), have shown an advantage in reduction 

of cost of search requiring fewer GPU hours compared to ENAS and RL.  

Since CNN architectures mostly contain a repeat of stackable blocks, finding a small optimal 

computational cell with considerably fewer layers, which makes up the building block of the 

final architecture, rather than searching for a complete network constitutes a specific advantage 

in DARTS implementation. Consequently, the search space size is therefore minimised, making 

DARTS a preferred choice for solving real-life problems. Although the success of NAS 

implementation was majorly reported on ImageNet and CIFAR, objective performance of 

DARTS on medical images and other scientific datasets have been significant. The DARTS 

method has been demonstrated to outperform ENAS, since it requires low GPU hours in its 

search process (Liu, H., et al., 2018).  

The application of DARTS method for designing customised architectures to classify echo view 

images was investigated and published in a joint publication ‘Neural architecture search of 

echocardiography view classifiers.’ Authors contributions were duly acknowledged. 

 

3.12 NAS for Regression Model 

It is becoming increasingly important to design complex neural network architectures which 

can enable effective training by stochastic gradient descent to achieve competitive performance 

capable of comparing or exceeding state-of-the-art models. However, developing such an 

architecture model constitutes significant challenges especially, in medical imaging with 

Spatial and temporal features. Regression models are widely employed to tackle tasks where 

the goal is to predict continuous values (Lathuiliere et al., 2020). Just like classification models, 

a regression algorithm consists of several convolutional layers, followed by a few fully 

connected layers, and a linear layer as its final activation function. For regression tasks, the loss 

function employed would either be the mean absolute error (MAE) or mean squared error 

(MSE) used in contrast to the cross-entropy loss function usually associated with classification 
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models. The overall architecture is referred to as a convolutional neural network (ConvNet) 

capable of extracting spatial features, which can be quantified for image’s quality scores.  

It is important to note that echocardiograms include both spatial and time dependent features 

therefore, general models for image classification are les suitable for extracting time dependent 

temporary features that are synonymous with echocardiographic frames. Due to this inherent 

level of complexity posed by echocardiogram frames, neural network algorithm that can 

explore the advantages of both ConvNet and LSTM models for spatio-temporal features is an 

ideal model. Therefore, ConvNet is capable of generalising feature selection for regression (Hu 

et al., 2019) on echocardiograms with limited capability for computational complexity 

involving temporal features unlike the LSTM model or at best, the combination of both derived 

ConvNet and LSTM. This is regarded as a hybrid model of echocardiogram image quality 

assessment.  

In the search for a competitive model for regression tasks, this research is aware that most NAS-

derived networks for classification or for the prediction of continuous quality value are designed 

in DCNN and LSTM hybrid models with a view of exploring the repeatable cells to construct 

the model’s backbone. However, the special case of image quality where several values are 

expected for a frame over time would require a multi-output regression model. In multi-output 

regression, two or more outputs are required for each input sample, and the outputs are required 

simultaneously.  

Since DARTS-based method was the choice for view classification model in section 3.4, 

consequently, it could be rewarding and necessary to use the performance of specific 

downstream tasks to evaluate and search for good neural architectures for regression tasks. 

Therefore, this research has been adopted to encode neural networks with a differential 

architecture search (DARTS) and present an algorithm for hybrid architecture in the regression 

task of echocardiogram image quality. Furthermore, DARTS provided the most competitive 

architecture search methods, it is considered a best compromise since the LSTM model presents 

no elaborate or complicated layers than itself as a single convolutional layer. This analytical 

compromise can also generate satisfactory results in classification or regression tasks. The 

evolved network architectures require less space for network parameters and given the same 

amount of time, yielded a significantly lower error on average. 
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3.13     Conclusion 
 

This chapter has provided some technical background on the principle of ultrasound 

echocardiography and the fundamental theory that underpins the formation of B-Mode image. 

Also, highlighted the advantage of the only in vivo imaging modality compared to MRI, X-ray 

or CT scan imaging. The complexities and challenges of poor ultrasound image resolution and 

the contrasting advantages of 2D echocardiograms in analytical modelling and myocardial 

assessment were discussed.  

Deep convolutional neural network methodology along with the components of model 

architectures was discussed. Also, the state-of-the-art model in public domain were highlighted 

in comparison to a lightweight model architecture where inference speed can support real-time 

assessment was highlighted. Technical justification and the need for designing of new model 

architectures fitting the spatio-temporal requirement of echocardiograms was enumerated.  

Details of relevant algorithm for classification, and regression tasks were discussed along with 

the advantages of supervised and semi-supervised model in medical ultrasound imaging. 

Moreover, an overview of the NAS including search space, search strategy, and performance 

estimation strategy has been discussed.  

Chapter 4 applied semi-automatic search techniques to design an ultra-lightweight, efficient 

neural network (CardioQNet) deployable for real-time emergency scenarios in echocardiogram 

view classification. Then compares the model’s classification accuracy with ResNet50, 

VggNet16, and MobileNetV2.  

Chapter 5 presents the novel formulation of echocardiogram objective quality attributes, state-

of-the-art methods of image quality assessment and proposes a robust architecture to quantify 

the quality score of echocardiograms (B-Mode) frame using multi-stream, multi-output 

regression model.  

Chapter 6 focused on implementing a novel characterization of echocardiogram specimens (in 

explicit clinical terms) for anatomical global feature classification and automatic pseudo-

labelling. The pipeline was implemented in the PyTorch backend to feature ensemble 

architecture for robust and high-performance classification.  
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Chapter 4  
 

Echocardiography Frame Classification 
 

 

4.1 Introduction 
 

In transthoracic examinations, typical clinical protocol demands that the acquisition of several 

echocardiograms obtained at diverse probe positions and orientations is paramount to building 

a complete picture of patient’s pathology and providing several views of the heart’ anatomy. 

During the clinical acquisition workflow, specific probe positions are required to interrogate 

heart tissues in either apical, subcostal, suprasternal or parasternal acoustic windows 

(Ebadollahi, Shih-Fu Chang and Wu, 2004). Consequently, several different orientations of 

echocardiograms are produced, which can be classified into views such as apical four-chamber 

(A4C), apical four-chamber (A2C), parasternal long axis (PLAX) and other relevant views 

which are recommended for linear quantification or clinical measurements (Lang et al., 2015).  

A concerted effort to advance accurate analysis and diagnosis of cardiac functions has therefore 

elicited the inherent gaps in the image acquisition standards, incoherent interpretations, closely 

related features in cardiac specimen and ultimately suboptimal image quality. Hence, the 

analysis of echocardiogram begins with apical view identification or classification. This is done 

in a manual and time-consuming process that requires specialised training and is prone to 

observer variability, inaccurate measurement, and misdiagnosis.  

 

A. Significance 

Ultrasound echocardiography fall within two major classes, a two-dimensional (2DE) or three-

dimensional echocardiography. Although, recent development has resulted in smarter 

transducers and fast image acquisition, 3DE is far less in use in clinical practice compared to 
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2DE. Except in the assessment of left ventricle (LV) where 3DE provided additional 

information where optimum quality images were assured (Ruddox V, et al. 2013), a 2DE 

provides better acquisition response for general practice and during clinical emergencies. 

Today, larger percentage of clinical workflow still depends on 2DE. Hence, 2DE is the 

preferred choice of assessment tool for most myocardial diagnosis. In 2DE, echo images in the 

same apical views compare similarly to each other unless to a well-trained eye therefore, 

distinguishing the elements that constitutes difference can be particularly challenging for an 

operator (Khamis, H., et al., 2017). Therefore, accurate automatic classification of 

echocardiogram views is paramount to several clinical assessments in echocardiography.  

With the application of machine learning and computer vision has improved the accuracy and 

time-efficiency of automated image analysis, particularly automated interpretation of medical 

images (Smistad et al., 2020); (Zhou, S.K., et al., 2006); (Sassaroli et al., 2019). However, 

traditional machine learning methods are implemented using complex processes and tend to 

have restricted scope and effectiveness (Stoitsis et al., 2006) in contrast to deep learning models.  

 

B. Justification 

Experimental investigations have shown that a normal image classification model applied on 

2DE/3DE, echocardiogram specimens could yield a phenomenon performance but significantly 

misleading in terms of classification results. While 3DE attract computational cost in contrast 

to 2DE, several operational and performance factors along with wider acceptance of 2DE have 

obtained research attention and the development of smart solution for 2DE. Therefore, this 

study focuses on 2DE. It is worth to note that echocardiograms consist of background noise 

which are not easily discernible by humans, computational cost in solving such problem is 

lesser and faster on 2DE.  

In development algorithm, the use of successive echocardiogram images feeding a 

classification model in quicker successive frames (known as cine-loop), whose length could 

vary between 1.5 to 2.5 seconds have yielded significant results. Since hundreds of such cine-

loops need to be classified, the convention where some extracted frames are classified could be 

technically insufficient unless the frames are chosen to represent all the inert actions present in 

the cine-loop length. Therefore, a normal image classification task would be unsuitable to 

capture the transient or temporal features in the cine-loop length which is required for adequate 

classification (Ren et al., 2021); (Yang et al., 2018).  
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To prevent miss classification and increase model confidence with stable prediction, time series 

classification algorithm (hybrid model) is thus apparent and required for echocardiography 

frame classification (Barros et al., 2021).  

Current advances in the automated design and application of deep neural networks have resulted 

in increased possibilities when automating medical image-based diagnosis (Coates et al., 2013; 

Bai et al., 2017). In most current clinical practice, images from different modalities are by 

regulation, managed and stored in picture archiving and communication systems (PACS). 

Moreover, add-on echo software packages, such as EchoPAC (GE Healthcare) and QLAB 

(Philips), are available to clinicians at extra costs. These applications claim to allow the 

automation of clinical analysis and diagnosis processes. These add-on packages do this in 

retrospect and may be unsuitable for real-time acquisition and analysis since they necessitate 

human involvement in detecting relevant views. Furthermore, the opportunity to improve 

workflow, guiding inexperienced users, reducing inter-user discrepancy, and improving 

accuracy for high throughput of echo data and subsequent diagnosis are highly advanced 

functions that add-ons package rarely contains in a single version. Therefore, automatic apical 

view classification could be clinically beneficial for pre-labelling large datasets of unclassified 

cardiac specimens (Zhang et al., 2018).  

This chapter focuses on the design method and dataset used to train an ultra-lightweight model 

on classification task using spatio-temporal model derived from semi-automatic NAS 

procedure. Firstly, it presents an overview of time spaced PACS dataset, detailed architecture, 

and model training, then highlighted the analysis of classification baseline studies using state-

of-the-art models and performance of semiNAS lightweight model. Finally, the chapter 

compares model performances of state-of-the-art spatio-temporal models with semiNAS 

derived models. This chapter also highlighted main contributions achieved on apical view 

classification using 2-Cell DARTS and a detailed description of the proposed semiNAS 

classification models. Finally, the experimental setup, results, and discussion are presented 

including the summary.  
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4.2 Related Work 
 

Majority of earlier research on apical view classification of echocardiographic images were 

based on traditional machine learning approach; this is synonymous to manual feature 

engineering process where hand-crafted image features are defined using traditional machine 

learning (ML) techniques. Although, traditional appearance-based have achieved varying 

degrees of classification success but with limited number of cardiac specimens among various 

anatomical views. This is because patients’ heart structures vary based on anatomical profile 

and prognosis (Ebadollahi, Shih-Fu Chang and Wu, 2004).  

Currently, recent success of deep convolutional neural networks in computer vision, and 

particularly for image classification tasks has proved beyond doubt that complex cardiac images 

are capable of objective identification and analytical adequacy. (G.N. Balaji, Subashini and 

Chidambaram, 2015). In the application of deep learning, which is found in newer works, deep 

networks architecture attempts to learn object’s features majorly using discriminative learning 

approaches. 

Some recent work includes Gao et al., who proposed a fused DCNN architecture by integrating 

a deep learning network along the spatial direction, and a hand-engineered feature network 

along the temporal dimension (Gao et al., 2017). The final classification result for the two 

strand-network was obtained through a linear combination of the classification scores obtained 

from each network. Their dataset was obtained from 93 patients and consists of 432 image 

sequences. For each strand of the DCNN network, it took 48 hours to process the derived images 

with an average accuracy rate of 92.1% when classifying 8 different echocardiographic views.  

In a similar study, the view identification pipeline was designed to aid automatic interpretation 

of echocardiograms. The state-of-the-art architecture (VGGNet) was implemented as its 

backbone (Deo et al., 2017). Although six different echocardiographic views were included in 

the study, the class label for each video was assigned by taking the majority decision of 

predicted view labels on the 10 frames extracted from the video. Using the confusion matrix, 

their model accuracy was 97.7%, and no results for single image classification were reported. 

However, in another follow up study, (Zhang et al., 2018), they included 23 views (9 of which 

were 3 apical planes, each one divided into ’no occlusions’, ’occluded left atrium (LA)’, and 

left ventricle (LV)’ categories) from 277 echocardiograms. Unfortunately, the reported overall 

accuracy of the model dropped by 14.5% at an individual image level.  
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Another research work proposed a DCNN model to classify 12 standard B-mode 

echocardiographic views (15 views, including Doppler modalities) using a dataset of 267 

transthoracic studies (90% used for training-validation, and 10% for testing) achieved overall 

accuracy of 91.7% for classifying single frames (Madani, A., et al., 2018), but later, reported 

an improved classification accuracy of 93.64% (Ronneberger, O., et al., 2015).  

Also in a recent study, where a light-weight model was employed (Vaseli et al., 2019), three 

state-of-the-art networks (VGG16, ResNet and MobileNet) were ensembled for classification 

of 12 echocardiographic views. Effective accuracy recorded was 88.1% with a minimum 

inference time of 52ms for echocardiographic images of 80×80 pixels in spatial size. Although, 

the reported accuracies were computed from the average predictions for all constituent frames 

in each cine loop. There was no specific indication of the number of frames present in the cine 

loop. Therefore, further critical evaluation of their models may be necessary and as apparent 

from the provided confusion matrices, a great majority of the reported misclassifications, seen 

as a failure of the models, occurred for parasternal short-axis views. 

In a more recent study by (Azarmehr et al., 2021), NAS-based method (DARTS) was 

implemented on 14 apical standard views. The method uses normal and reduction cells and 

evaluating several spatial input sizes with best image size of 128 x 128 x 3 pixels took 96hours 

of GPU search. The best architecture of 2-cell-DARTS with 0.5million trainable parameters 

became the derived model that yielded prediction accuracy of 96% while the evaluation of 

model with more than 2-cell produced an increased number of trainable parameters that 

consequently account for redundancy and increased inference time. Nevertheless, the 

implemented DARTs method did not account for classification that combined temporal space 

features (Mesmakhosroshahi and Kim, 2012) which is significant and synonymous with 2D 

echocardiograms. Processing cardiac specimens in video rather than single image in label space, 

consist of essential temporal and spatial features which, unless a model accounts for, could 

inhibit model’s final performance (Ren et al., 2021).  
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4.3 Main Contributions 
 

The application of the NAS-based method for Spatio-temporal feature in cardiac specimen 

classification is beginning to attract substantial attention. Although this is common in complex 

action recognition in videos (Ullah et al., 2018), two-dimensional echocardiograms present far 

more complexity in computation overhead and recognition of essential anatomic and 

physiological features. Since transthoracic examination workflow majorly operates b-mode 

cine loop also known as collection of sequential frames in time, they present significant spatial 

and temporal interest of which any inaccurate representation on echocardiogram specimen 

would spell undesirable clinical scenario.  

However, given the primary objectives of minimising the neural network size and maximising 

prediction accuracy of a space-time convolution architecture search, this study aims at 

implementing hybrid-architectures method which assess the performance of the new semiNAS-

derived architecture and the classical DCNN with LSTM model for spatio-temporal feature 

extraction and predictions of fourteen (14) different apical view echocardiography standards. 

Finally makes comparison with 2Cell-DART architecture (Azarmehr, N., et al., 2020), 

discussion on translatory advantages and system on chip (SoC) implementations.  

Although some NAS methods have reduced the number of GPU search days required to single 

digits in the image field, directly using 3D convolution to extend NAS to the video field is still 

likely to produce a surge in computing volume (Ren, P., et al., 2021). Therefore, the choice of 

spatio-temporal DARTs method would implement 2D convolution instead of 3D which is 

popular with high-fidelity video action recognition.  

This study used a private dataset (PACS) to design customised network architectures for the 

task of cardiac view classification with inclusion of Spatio-temporal elements. Unlike most 

previous studies, where a specific selection of an image resolution sample was not explained, 

the impact of different input image resolutions on the performance of the model has been 

investigated. Hence, the accuracy of deep learning classifiers is collectively dependent on the 

size of high-quality training datasets and Spatio-temporal features (in the case of 

echocardiogram’s cine loop specimen). Furthermore, this research presents the findings on the 

influence that the size of training data wields on model’s performance for each of the networks 

examined. 
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No matter how ingenious the deep learning model, image quality places a ceiling on the 

reliability of any automated image analysis. Echocardiograms inherently suffer from relatively 

poor image quality, which in effect, impact classification performance. To the best of author’s 

knowledge, no other study has extended the DARTs or semiNAS method to spatio-temporal 

features of two-dimensional echocardiographic frame classification. Considering the above 

points, the main contributions of this chapter are summarised as follows: 

● Inclusion of 14 different anatomical echocardiographic views (outlined in section 4.4 

Figure 4.1); larger than any previous study. Additional cases when only 7 or 5 different 

views were included to investigate the impact of the number of views on the detection 

accuracy were also investigated. 

● Analysis of three well-known network topologies and of a proposed neural network, 

obtained from applying manually derived techniques to design network topologies with 

far fewer trainable parameters and better accuracy for Spatio-temporal view 

classification. 

● Analysis of computational and accuracy performance of the developed models using 

our large-scale test dataset.  

● Analysis of the impact of the input image resolution; 4 different image sizes were 

investigated. 

● Analysis of the influence of the size of training data on the model’s performance for all 

investigated networks.  

● Analysis of the correlation between the image quality and accuracy of the model for 

view detection. 

● Analysis of ultra-lightweight model architecture in Spatio-temporal classification and 

the derived NAS-based classification model. 
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4.4 Methodology  
 

In this section, the introduction of private dataset PACS used for apical frame classification are 

presented, followed by the description of the expert annotation process. This research 

investigates the performance of an optimised lightweight architecture (CardioQNet and 2Cell-

DARTS) described in chapter three section 3.9.1 and three state-of-the-art models (VggNet16, 

ResNet50, MobileNet v2), for echocardiography frame classification. Details of the neural 

network model, training parameters, and evaluation metrics are then provided.  

 

4.4.1 Private Dataset Source (PACS) 

This section introduces PACS private dataset used for the 2D echocardiographic view 

classification in this thesis. A random sample of 374 echocardiographic examinations of 

different patients and performed between 2010 and 2020 was extracted from Imperial College 

Healthcare NHS Trust’s echocardiogram database. The acquisition of the images was 

performed by experienced echocardiographers and according to standard protocols, using 

ultrasound equipment from GE and Philips manufacturers. Ethical approval was obtained from 

the Health Regulatory Agency (Integrated Research Application System identifier 243023). 

Only studies with full patient demographic data and without intravenous contrast administration 

were included. Automated anonymisation was performed to remove all patient-identifiable 

information. The videos were annotated manually by an expert cardiologist (JPH), categorising 

each video into one of 14 classes which are outlined in Figure 4.1.  

Videos thought to show no identifiable echocardiographic features, or which depicted more 

than one view, were excluded. Altogether, this resulted in 9,098 echocardiographic videos. Of 

these, 8,732 (96.0%) videos could be classified as one of the 14 views by the human expert. 

The remaining 366 videos were not classifiable as a single view, either because the view 

changed during the video loop, or because the images were completely unrecognisable. The 

cardiologist’s annotations of the videos were used as the ground truth for all constituent frames 

of that video. DICOM-formatted videos were then split into constituent frames. From each 

video, three frames were randomly selected to account for end-systole and end-diastole frames, 

representing arbitrary stages of the heart cycle, resulting in 41,321 images. The study had earlier 

experimented with 15, 20, 25 and found that 3 frames did not alter the performance of the model 

in the overall assessment. This could be due fair representation of sample space in the dataset.   
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The dataset was then randomly split into training (24791 images), validation (8265 images), 

and testing (8265 images) sub-datasets in a 60:20:20 ratio. Each sub-datasets contained frames 

from separate echo studies to maintain sample independence. The relative distribution of echo 

view classes labelled by the expert cardiologist is displayed in Figure 4.2 and indicates an 

imbalanced dataset, with a ratio of 3% (Subcostal-IVC view as the least represented class) to 

13% (PSAX-AV view as the dominant one). 

 

Figure 4.1: Samples of  14 cardiac views used in this study: apical two chamber (A2C), apical three-chamber 

(A3CH), apical four-chamber left ventricle focused (A4C-LV), apical four-chamber right ventricle focused (A4C-

RV), apical five-chamber (A5C), parasternal long-axis (PLAX-Full), parasternal long-axis tricuspid valve focused 

(PLAX-TV), parasternal long-axis valves focused (PLAX-Valves), parasternal short-axis aortic valve focused 

(PSAX-AV), parasternal short-axis left ventricle focused (PSAX-LV), subcostal (Subcostal), subcostal view of the 

inferior vena cava (Subcostal-IVC), suprasternal (Suprasternal), and apical left atrium mitral valve focused (LA-

MV).  

 

Figure 4.2: Distribution of data used in apical view classification showing class imbalanced on training, 

validation, and test dataset; values shown represents the number of frames per given class 
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4.4.2 Ultra-lightweight Architecture Model 

Echocardiogram’s data comes in a sequence of images known as frames arranged sequentially 

in timesteps, of 1 to 2 seconds frame length. Although image classification models have shown 

great potential in medical imaging (Luong et al., 2021), however, the application of normal 

image classification in echocardiography is limited to 2D echocardiography. This is because 

classical image classification could yield a misleading prediction especially on cardiac frames 

due to the inherent temporal features usually associated with 2D echocardiograms. Therefore, 

the classification task of predicting echocardiographic views is insufficient for clinical 

advantage in the real world. To take advantage of souring performance of deep convolutional 

neural models, the appropriate data for view classification should include images taken in 

timesteps rather than random snapshot of cardiac views.  

Time series classification model hence becomes the essential model used for accurate Spatio-

temporal classification and can increase model confidence on prediction, provide prediction 

stability of a fast-moving echocardiogram frame (Ullah et al., 2018).  

The challenge to post implementation integration engineers however, remains mostly in 

hardware configuration, scalability, storage, speed of operations and memory requirement. 

Majority of the state-of-the-art models each have its memory requirement to function on mobile 

or desktop applications. Since automatic neural architecture search is about finding the best 

possible model architecture to efficiently handle classification tasks, these models are highly 

personalised and may perform poorly on a different dataset compared to the dataset originally 

trained or designed for. Besides, each model with different characteristics in terms of trainable 

parameters, storage requirements, memory requirement and inference speed all should be 

carefully considered for medical imaging application.  

There are several AutoML methods in the automatic search for neural architecture and use cases 

are best to justify the choice of any NAS (Siems et al., 2020). As enumerated in section 3.3.1, 

the justification for the semi-NAS method for lightweight architecture is to replicate a physical 

life-event scenario where deployment of a specific solution is urgently required and where a 

few hours of delay can spell clinical disaster. Such a scenario was seen to have played out in 

the recent Covid-19 Pandemic. Since automatic neural search could take days and weeks of 

GPU’s time to conclude on the search for suitable architecture models, a semi-automatic 

approach, where a model is designed manually, or follow a structural but improved pattern of 

an existing model could become relevant and save the day. The advantage of quick 
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development, meeting stringent hardware integration requirements, and memory limitations 

could become significant and huge differences in clinical practice and real-life situations.  

Partly inspired by the work of (Abdi, Luong, Tsang, Jue, et al., 2017a) light-weight model, a 

further reduction in model learnable parameters and memory requirement was investigated and 

implemented using semi-NAS method described in chapter 3. The new ultra-lightweight 

architecture was developed using a combination of manual methods in excel worksheet, and 

automated optimization of learning parameters. The derived model is herein referred to as 

‘CardioQNet’, which is a semiNAS-based derived regression hybrid model. This is divided into 

two logical blocks, deep convolutional neural network DCNN block for spatial feature 

extraction and LSTM classifier block to elicit temporal features in the cardiac frame sequences. 

The feature extraction process allows weight sharing across convolutional layers while 

extracting the hierarchical feature in the image sequence. Instead of feeding the model with a 

random, single frame per time which is synonymous with classical CNN classification, a batch 

sequence of frames determined by sequence length is fed into semiNAS derived, 3-layer CNN 

architecture which accepts 2D cardiac frames of spatial size 224 x 224 x 3 pixels. The frame 

sequence convolved with the feature extractor and a resultant feature map are fed with 

timestamp into the recurrent layer using Rectifier Linear Units (ReLUs) activation function. 

The recurrent layer consists of a Long Short-Term Memory (LSTM) classification model. The 

purpose of this last layer is to extract temporal features for the sequence of cardiac images as it 

slides through LSTM windows for Spatio-temporal predictions of average weighted 

probabilities. The model was trained on PACS pre annotated dataset using cross entropy cost 

function and adaptive moment estimation (ADAM) as weight’s optimizer. Since LSTM uses 

sigmoid for its internal gating, a fully connected layer is added to act as a classifier layer with 

SoftMax activation function. The architecture is depicted in Figure 4.3. 

.  

4.4.3 Model Training 

The architecture listed in Table 4.1, include top-3 award-winning classification models namely: 

VGG16Net, ResNet, and MobileNet. Each of the model was configured in a CNN-LSTM 

hybrid fashion to extract low and high temporal features from echocardiographic frames. The 

output feature map of the ConvNet feature extraction is flattened and fed into LSTM layer input 

to extract the time-dependent temporal features with the final probabilities vector. Each of the 

models was then trained on PACS dataset including the newly semiNAS derived hybrid model, 
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‘CardioQNet’ illustrated in Figure 4.3. The consideration for selection of the state-of-the-art 

model was based on the number of trainable parameters, least memory requirement for forward 

and back propagations, and performance history in medical imaging classification.  

Image Resolution: The model’s input has a spatial size of [224 x 224 x 3] pixels and is trained 

using a 5-fold cross validation technique to ensure adequate learning on the dataset and 

performance was recorded for each model. Since PACS dataset is slightly imbalanced, an online 

over sampling strategy was implemented to prevent model bias toward the minority class while 

early stopping was implemented to reduce potential overfitting.    

Hyper-parameter optimization: The hyper parameters learning rate was set at 0.002 with high 

momentum 0.95 and decay rate of 0.1every 25 steps and were reproducibly initialised to 

minimise possible deviation in score performance. Optimization of network parameters was 

done via stochastic gradient descent (SGD) with cross entropy loss function at each run. 

Training was initialised and completed as learning curves converged around 50 epochs. 

Batch Selection:  To ensure that each batch has a decent chance of containing each class 

samples, a batch size of 128 was chosen but at the expense of computational overhead cost 

which ran high and limiting operational memory. Consequently, a batch selection of 64 and 32 

were experimented, memory utilisation becomes significantly apparent at batch selection of 64 

at a fixed length sequence of 3 than running a batch size of 32 at the same fixed length sequence. 

Hardware performance difference of 0.18% in terms of computational speed was a negligible 

trade-off that did not affect model's ability to properly generalise new test samples. 

Data Augmentation: Augmentation was applied to allow optimum learning sequences for the 

models; a maximum translation of [-0.05, +0.05] pixels and maximum rotation of 10 degrees 

were applied randomly for horizontal, vertical, and rotational angles respectively. To prevent 

overfitting in the training phase, we applied batch normalisation at each convolution layer, early 

stopping and dropout (rate 0.30) for the training samples. Batch normalisation also helps 

stabilise and speeds up convergence during the training phase.  

Model training was implemented using PyTorch. The experiment was carried out on GPU 

GeForce GTX 970 chipset's Maxwell architecture, featuring 4GB RAM coupled to 1,664 

CUDA cores. Figure 4.1 shows the performance evaluation by confusion matrix. 
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Figure 4.3: The lightweight hybrid architecture in a multi-stream configuration for echocardiography frame 

classification. CardioQNet is used for weight sharing feeding 14 view-specific layers in the LSTM. Numbers of 

kernels in each layer and their corresponding sizes are shown accordingly.  

 

4.5  Evaluation Metrics 
 

The model performance was evaluated using most popular classification metrics as enumerated 

as follows: 

● Model Accuracy: The model performance was evaluated as the number of correctly 

classified samples over the total number of all labelled samples, computed as   

 

𝐴𝑐𝑐µ = 
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑘
𝑖=1 

𝑘
                 (4.1) 

 

● Recall Macro Average (RecM): Recall is the fraction of instances of correctly 

predicted class (tp), and in the binary classification problem recall can be computed by 

the equation 4.2 where tp represents the model correctly predicts the positive class, and 

fn (false negative) is where the model incorrectly predicts the negative class. But for 

multi-class cases, the macro-averaged recall will be computed by an equation 4.3 which 

calculates metrics for each class (k) and finds the mean. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
∑ 𝑡𝑝𝑖

𝑘
𝑖=1 

∑ 𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑘
𝑖=1

                                         (4.2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙µ  =  
𝑅𝑒𝑐𝑎𝑙𝑙

𝑘
                                                      (4.3) 

 

● Precision Macro Average: This metric is defined as the fraction of correct predictions 

for a certain class (tp), and in the binary classification case precision can be calculated 

by the equation 4.4 where tp (true positive) represents the model’s correctly predicted 

test samples, and fp (false positive) is the total number of prediction errors. Precision 

can be extended to capture class imbalance. However, for multi-class cases, macro-

averaged precision is computed in equation 4.5 which gives equal weight to each class 

and averages the overall performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
∑ 𝑡𝑝𝑖

𝑘
𝑖=1 

∑ 𝑡𝑝𝑖 + 𝑓𝑝𝑖
𝑘
𝑖=1

                                   (4.4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛µ =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑘
                                            (4.5) 

 

● Confusion Matrix: Confusion matrix is a two-dimensional graphical matrix that 

presents a performance overview of the classifier on a test dataset. This provides an 

insight into the error being made by a classifier and more importantly the types and 

location of errors that were made in the label space. In its first dimension, list the true 

classes of the test dataset, and in the other dimension, the prediction results assigned by 

the classifier. Effectively, the confusion matrix displays the number of correct and 

incorrect predictions broken down by each class in label space (Grandini, Bagli and 

Visani, 2020). 

● Number of trainable parameters: There are two ways in which model reduction is 

beneficial in deep learning. In the first case, after the model weights are obtained via 

training, model reduction can be used to reduce the resources needed for inference, (Wu, 

2019). There exists larger redundancy with increased number of trainable parameters in 

the model and so does the inference time for view classification. Therefore, the models 

with larger trainable parameters do require larger storage and memory space hence the 
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reduced number of trainable parameters afford integration benefits of faster 

convergence, shorter training times and inference time. 

● Inference latency: Latency is a measure of successful round-trip time for some data 

across the processing medium, in this case of inference, it’s a measure of time a model 

yields a prediction of view classes per image. This is measured on a test dataset, and it 

is dependent on the combination of the central processing unit (CPU), graphic 

processing unit (GPU) (Khan et al., 2019) and number of O(n) complexity in the 

algorithm. Inference time is therefore computed on the number of image processing in 

a loop. 

 

 

4.6   Results and Discussion 
 

The ultra-lightweight semiNAS derived model achieved an average overall test accuracy of 

91.25% on sequence frame classification, without overfitting and test accuracy of 87% on 

image classification with minimum convergence time. Figure 4.4, showing the confusion 

matrices showing actual view labels on y-axis, and neural network-predicted view labels on 

the x-axis by view category for (a) frame classification (b) image classification on semiNAS 

derived model. There is a clearly positive correlation (4.89%) between model performance 

accuracy and frame classification, establishing the hypothesis for video or frame classification 

task preferred to image classification task in 2D echocardiography. Although, the ultra-

lightweight model classification performance lags behind ResNet50, the best performing state-

of-the-art model by 0.02%, and 5.4% in comparison to 2Cell-DARTS models, nevertheless, it 

achieved an interesting performance and computational potentials for on-the-go true 

lightweight model in classification tasks. The CardioQNet model clearly outperformed 2Cell-

DARTS model in terms of inference time, even though 2Cell-DARTS’ memory requirements 

were not assessed.  

Moreover, Table 4.1 detailed the comparison of accuracy by view category for model’s frame 

classification performance, total number of trainable parameters, memory storage requirements, 

and varying training time exhibited by the chosen model for echocardiographic specimen. 

Memory wise, CardioQNet achieved a reduction of 93.72% in comparison to the highest 
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memory demand of Resnet50 which required 7.01 gigabyte memory for 23million trainable 

params, making CardioQNet a possible candidate for mobile integration and point of care 

echocardiography. On the other hand, convergence and training time was high for VGGNet 

with 14.06 minutes per epoch time, while CardioQNet achieved a reduction by 54% in epoch 

time, hence in convergence and inference time.  

On a single frame drawn from all 14 views, the model achieved an average overall accuracy of 

91.25% (Table 4.1), compared to an average of 87.0% on classical image classification. 

Accuracy was decently consistent across the views except with apical four-chamber with apical 

three chamber A3C, PSAX_LV, PSAX_AV, PLAX_TV as a view that is less visually distinct 

from A2CH in Figure 4.6 while Figure 4.5 provides the visualisation of example filters learned 

on PACS Dataset. 

 

  

Figure 4.4: Confusion matrices for semiNAS derived model with input resolution of 224 x 224 pixels. The figure 

showing actual view labels on y-axis and predicted view labels on the x-axis by view category for (Left) frame 

classification (Right) image classification on CardioQNet. 

 

Table 4.1: Comparison of Model’s design properties and performance. The values in bold indicate the best 

performance for each model. CPU* Inference carried out on Intel Xenon® CPU X5650 @ 2.67GHz. 

Evaluated 

Models @ 

batch size 24 

# of trainable 

parameters 

(million) 

Memory 

requirements 

(GB) 

Training 

Time(s)  

per epoch 

CPU*  

Inference 

Time (ms) 

GPU 

Inference 

Time (ms) 

Model 

Accuracy 

(%) 

VggNet 16 17.93 5.35 844 394.19 10.60 89.25 

ResNet 50 23.80 7.01 795 194.70 8.71 92.62 

MobileNet V2 12.71 4.58 443 81.00 6.69 92.52 

2Cell-DARTS 0.55 - 380 - 11.8 96.00 

CardioQNet 2.69 0.44 392 83.79 6.44 91.25 
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On inference time, 2Cell-DARTS model was evaluated on GPU inference which shows little 

competitive advantage compared to the rest of the models. CardioQNet proved to be effective 

both in GPU and CPU inference time. 

This is a significant advantage in evaluating and contrasting model performances. Even the 

least thoughtful model can exceed performance expectation as shown in this case of CardioNet. 

 

Table 4.2: Details of class performance accuracy for 14 classes of selected apical standard classification. 

Class Performance Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

Spatial Input Size [224 x 224] 

A2CH 90.3 90.0 90.0 90.0 

A3CH 90.4 90.0 95.0 92.0 

A4CH_LV 90.3 85.0 92.0 88.0 

A4CH_RV 89.4 88.0 71.0 78.0 

A5CH 90.4 79.0 77.0 78.0 

Apical_MV_LA_IAS 90.3 80.0 92.0 85.0 

PLAX_TV 90.4 89.0 87.0 88.0 

PLAX_full 90.4 94.0 97.0 96.0 

PLAX_valves 90.3 93.0 89.0 91.0 

PSAX_AV 90.3 91.0 93.0 92.0 

PSAX_LV 90.4 97.0 93.0 95.0 

Subcostal_IVC 90.3 97.0 91.0 94.0 

Subcostal_heart 90.3 94.0 88.0 91.0 

Suprasternal 90.4 96.0 99.0 97.0 

 

 

Figure 4.5: Visualisation of some learning filters for 2D echocardiographic example on PACS Dataset. Learning 

filters provide insight to what features are detectable in the given specimens. 
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Figure 4.6: Showing four misclassified samples prediction by semiNAS derived model (CardioQNet) for spatial 

input resolution of 224 x 224 pixels disagree with expert annotation. 

 
 

4.7 Conclusion 
 

In this chapter, efficient CNN architectures and ultra-lightweight (2 Cell-DARTS, CardioQNet) 

performance were proposed for the automated identification of the 2D echocardiographic 

frame. Both DARTS and semi-automatic NAS methods were considered in designing optimised 

architectures for rapid inference while chosen state-of-the-art models were assessed for memory 

suitability and performance accuracy towards integration of echocardiography pipeline.  

Compared with the standard classification DCNN architectures, the proposed models are faster 

in terms of inference, with 93.00% reduction in memory usage but achieved 5.4% less 

comparable in classification performance to DARTS and 2.5% comparable in classification 

performance to ResNet50, MobileNetV2 and VggNet models.  

Such ultra-lightweight models can thus be used for real-time detection of the standard echo 

views. Similar contributions on the 2Cell-DARTS model provide detailed impact of image 

quality and input image spatial size with a conclusion for larger input size resolution yielding 

better accuracy performance. Neural network models with many redundant trainable 
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parameters, require more training data and extended training time to achieve similar 

performances. On the 2Cell-DARTS model, a direct correlation between the image quality and 

classification accuracy was observed while frame classification yielded a significant 

performance accuracy and best inference time in the CardioQNet model.  

Furthermore, it appears that model performance decreases when the class space is scaled up 

and increases with fewer class space. More class category presents additional complexity and 

computational overhead in distinguishing cardiac views. Therefore, it can be concluded that the 

extent of class space in frame and image classification tasks have a direct impact on the 

performance of the deep learning models. This is true for all deep learning models and a point 

of realistic consideration for a fair comparison of classification models.  

For 2D echocardiographic images as input to a model require a minimum of 128 x 128 spatial 

size as established in DARTS model, therefore, lower spatial input size could result in inherent 

loss of relevant anatomical and pathological features, a severe consequence in clinical workflow 

and model accuracy. On the other hand, larger images are thus required for spatio-temporal 

frame classification and other fine-grained applications such feature segmentation, or cardiac 

global features. In this case, 2 Cell-DARTS will fail to compare favourably in terms of inference 

speed and memory requirement and perhaps model accuracy. 

In echocardiograms assessment, inference time is considered a critical factor. Firstly, to provide 

real-time score visualization and updates as frames advanced in cardiac cycles, prediction 

algorithm must be able to keep up with standard rate of frame acceleration otherwise known as 

frames per seconds (FPS). Secondly, to prevent latency or drag on predictions performance 

when deployed in remote or during clinical emergencies. The best candidate on inference time 

is CardioQNet model with GPU-6.44ms, and CPU-83.79ms. This raises the question of 

technical morality associated with technological trends, obsolete process, and exhaustive view 

of automated network architecture search (NAS) and traditional manual approach of DCNN 

design methods. It’s clear that model accuracy of CardioQNet ranked 4th out of five models 

evaluated, it outperformed VggNet16 model. This impressive and objective record of a semi-

automated derived model indicates the possibility for achieving a state-of-the-art performance 

on echocardiogram frame classification when AutoML NAS based model is not part of the 

options. 
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Chapter 5  
 

Image Quality & Assessment Methods 

 
 

5.1 Introduction 

  
A two-dimension (2D) echocardiogram has become the de-facto standard of assessing cardiac 

functions because it presents rich anatomical details of the myocardium. Also, for its non-

ionizing in-vivo advantages have found its significance in antenatal, obstetric, and general 

diagnosis of myocardial infarction. Nevertheless, images produced though scattering centres do 

not come with crisp edges unlike natural images. This inherent limitation in echo image 

resolutions poses a challenge to clinical measurement and interpretation of image features, the 

reason it is solely considered suitable for experts. Therefore, a quality image acquisition is a 

priced clinical enterprise and mostly required for expert’s assessment, quantification of cardiac 

functions and diagnosis of myocardial infarction. 

Acquisition Problem: Acquisition of echocardiographic images requires significant experts’ 

skill which vary with experience and patients’ pathological profiles. In clinical transthoracic 

examination workflow, strong indication for quantification of systolic function in apical four 

(A4C) and parasternal long axis (PLAX) view is a recommended standard practice (Thomas et 

al., 2005). According to Lang et al (2015), these are recommended quantification standards in 

clinical practice because their spatial orientations are congruent in nature, both, thus offering 

complementary advantages on heart functional measurement (Lang et al., 2015). Nonetheless, 

the clinical process of image acquisition comes with inherent challenges of operator 

skill/experience which cascade many successive analytical problems including diagnostic 

reliability output. These drawbacks remain significant, consequently inhibiting the adoption of 

echocardiograms as a reliable imaging modality for cardiac diagnosis despites its many 

advantages. 
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Definition of Image Quality: Specifying echocardiography image quality and methods of its 

assessment is not a trivial issue because image quality is critical to clinical measurement and 

accurate diagnosis (Liao et al., 2019). As the in vivo examination of heart structures gained 

prominence in cardiac diagnosis, it has been affirmed that accurate diagnosis of the left ventricle 

functions is hugely dependent on the quality of echo images. Up till now, visual assessment of 

echo images is highly subjective and what constitutes the element of two-dimensional image 

quality is largely unknown (Sassaroli et al., 2019) hence, the requirement for a domain-specific 

definition under clinical pathologies. While poor-quality images impair quantifications and 

diagnosis, the inherent variations in echocardiographic image quality standards indicates the 

complexity faced among different observers and provides apparent evidence for incoherent 

assessment under clinical trials, especially with less experienced cardiologists. 

 

Figure 5.1: Illustrating tissues identification of Apical-four quality images. The ideal perspective of A4C and the 

position of chamber cavities, valves, and interatrial septum in perspective of clinician. Images show clear 

delineation of cavities for linear measurement and quantifications.  

 

Figure 5.1 are two separate echocardiogram showing apical-four chamber and parasternal long 

axis views. While the relevant anatomical cavities and tissues have been correctly delineated in 

yellow, it not always the case for other images of the same views. This is the case of clarity, 

visibility, and accessibility. The significance of this relates to clinical measurement and 

quantification of cardiac functions. For example, to measure A4C’s left ventricle (LV) cavity, 

say in the diagnosis of cardiac myopathy where cardiologist needs to evaluate the abnormal 

changes of wall or cavities, a linear measurement of LV is one of the required clinical methods. 

but when the cavity edges become blurry in a poor-quality image as illustrated in Figure 5.2, 

measurement then becomes a guess work, and this results in misdiagnosis.  
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Figure 5.2: Typical levels of quality samples in A4C images. (A) Poor quality image due to no visibility on image’s 

apex, may raise pathological concern. (B) Poor quality image due to low chamber clarity, linear measurement is 

estimated can cause misdiagnosis. (C) Poor quality due to projection and missing interatrial septum leading to 

incorrect LV volume depiction. (D) Poor quality due to LV significant off-axis and foreshortedness, would yield 

wrong volume and wall measurement. (E) Poor quality due to blurry cavities, wall, or poor probe selection. (F) 

Poor quality due to indistinguishable cavities, this quality possesses a challenge to linear measurement and 

quantification of myocardial function.   

 

Real-Time Assessment Methods: The existing method of image quality assessment is a 

subjective manual process, where an echocardiography specialist visually inspects the images 

and decides on what anatomical features present in the image to be pathologically and clinically 

relevant. This process is laced with a spread spectrum of opinion and decision variability during 

assessment of multiple specimens (Nagata et al., 2018) and when an image is retrospectively 

reassessed by the same operator. These variabilities and uncertainties are found to impair 
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quantification accuracy of cardiac functions, diagnosis, and the overall quality of patient care. 

Moreover, subjective processes are synonymous with management flaws and cannot be 

implemented in a real-time automated system. The combined effects of these flaws constitute 

a greater risk to life saving intentions of the only non-ionized imaging system. Many research 

efforts to move assessment method into automatic method have not yielded any translatory 

advantages because, the assessment proposed in many literatures are based on weighted average 

assessment which majorly applied in retrospect and would not allow image’s significant 

optimization during acquisition. 

 

 

5.2 Related Work 
Prior to the use of deep convolutional models, several researchers proposed a series of methods 

for quantifying echocardiographic image quality and assessment methods which were enhanced 

by the advent of deep convolutional neural networks. Image quality assessment is generally 

approached by defining a reference image and calculating the deviation of any given image to 

this reference (Wang et al., 2004). However, in echocardiography, this method is not practical, 

since images vary significantly from patient to patient, and it is difficult to define an image with 

perfect quality. Therefore, it is necessary to develop a blind image quality assessment algorithm, 

which does not depend on a reference image. Studies have been carried out on blind image 

quality assessment (Zhang et al., 2016); (Wang and Bovik, 2002) largely focusing on the 

distortion of images due to compression, with some implementing machine learning algorithms 

using edge sharpness and random/structural noise level to evaluate image quality (Nafchi and 

Cheriet, 2018). This approach is difficult to apply to echocardiography because cardiac 

ultrasound does not present well defined edges due to two facts: 2D cardiac images are formed 

by interference pattern of scattering centres presenting an inherent poor resolution; and 

anatomical features do not present crisp edges because the endocardium is trabeculated there 

are papillary muscles, the external purkinje network. Also, epicardium does not present as a 

crisp boundary, either because it is joined to the myocardium on one side, and to the pericardium 

in several layers, including pericardial fluid, on the other. So there exist relatively subtle 

acoustic impedance transitions next to larger ones (Labs et al., 2020). Hence, new measures of 

image quality need to be developed and tested based on the global properties of the 

Echocardiographic images. Meanwhile, the recent success of deep Convolutional Neural 



Image Quality & Assessment Methods  103 

Networks (DCNN) in computer vision tasks (Ungru et al., 2014), there have been few reports 

on the application of deep learning for echocardiographic image quality assessment. 

One of the earliest works on objective assessment of cardiac image quality is Abdi et al (2017). 

He demonstrated the feasibility of quality assessment using convolutional neural network 

model in five apical views using six (6) quality criteria scoring methods (Abdi, Luong, Tsang, 

Jue, et al., 2017a). Since there was no publicly available cardiac dataset to model, the author 

relied on expert’s knowledge for its feature engineering, a high resource intensive process. Abdi 

et al research yielded 85% model accuracy, plausible outcome it was but quality criteria are 

limited and clinically insufficient for transthoracic standard examination practice. The second 

reason being that the defined quality features are assessed in retrospect and do not represent 

experts’ global characteristics for cardia specimens in 2D echocardiographic real-time frames. 

The authors admitted that algorithm based on cardiac view detection of cardiac chambers in 

apical A4C echocardiography did not guarantee good performance in clinical standard of 

healthcare because medical images in 2D consist significant noise and are plagued with features 

of low amplitude signals (contrast) that yield significant challenges in interpreting clinical 

pathologies and quantifications. The approach yields a contradicting detection result on images 

with low contrast-gain and high contrast-gain which reinforce the conclusion on a model that 

combines spatial and temporal extraction to guarantee better classification accuracy. Among 

the most recognised work on automated quality assessment of 2D echocardiograms, are (Abdi, 

Luong, Tsang, Jue, et al., 2017a), (Luong et al., 2021), (Dong et al., 2020), and (Labs, Zolgharni 

and Loo, 2021). Initially, Abdi presented a deep convolution algorithm for detection of 

echocardiogram cardiac view classification in apical four chambers (A4C). The approach 

successfully modelled and generalises cardiac specimens with four apical chambers (A4C) 

demonstrating the feasibility of neural network on 2D echocardiographic images. Although, in 

his follow up publication, which was based on a much better method of continuous values 

regression model, five apical standard views were used, quality scores were estimated based on 

the sequence of echo cine loops which include the end systole, end diastole to produce a single 

quality score per frame per view. The results were impressive with a prediction accuracy of 

86% and a computation time of <1000 sec on a desktop computer. Unfortunately, Abdi’s work 

used a weighted average of quality measures hence, the scores do not provide precise guidance 

to the aspect of image quality that needs to be optimised. On the other hand, Luong’s et al 

(2021) which investigated the mechanically ventilated TTE on hospitalised patients, yielded 

certain improvement in performance but with a much larger dataset to represent wider 
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population distribution. Luong et al., (2021), defined twelve (12) criteria to grade each of the 

nine apical standard view, while computing a continuous single variable score to represent 

objective quality scores for respective apical views. Luong’s regression model achieved overall 

accuracy of 87% with regards to four expert ground truths and sufficiently demonstrated the 

impact of image quality on diagnostic utility. However, Luong’s method of quality assessment 

was similar to Abdi’s in the sense that the unified model produces a single score per image view 

across the nine apical standards considered. Luong admitted there exist no reference quality 

standard for the evaluation of echocardiographic image quality (Luong et al., 2021) but a scale 

of criteria used in many publications did not represent experts’ visual assessment and consensus 

on 2D echocardiographic image quality. Similarly, Dong et al (2020) proposed a generic quality 

control framework on A4C. It considered application of image quality to fetal ultrasound to 

alleviate the challenges in antenatal investigation. The proposed method detailed the assessment 

of image quality using two features namely Gain and Zoom. It was considered as the first 

comprehensive quality control system but significantly lacks adequacy for generalisation of 

quality attributes required for wider use case. Hence, suitability for quality assessment is 

inherently impaired. 

To the best of our knowledge, Dong et al, (Dong et al., 2020) represents the most recent study 

on objective quality assessment, however the study was limited to apical four-chamber plane 

(A4C) and did not include PLAX view nor similar score criteria independently assessable in 

clinical practice. For this reason, assessment could be suitable for quantifying image quality for 

fetal ultrasounds rather than for adult patients. Dong’s argument for focus/zoom attributes 

emanated from fetal cardiology where specific tissue became the focus of an investigation. 

However, these attributes, though important, should be described as elements of clarity. 

Therefore, a zoomed section of myocardium should exhibit the attributes of clarity, instead of 

being considered as an independent factor 

This thesis details the novel definition of clinical standard of domain-specific quality attributes 

for 2D echocardiogram specimen and proposed deep convolutional neural network architecture 

to model four quality attributes as this separately provides the most relevant quality assessment 

information for operators’ feedback during the image acquisition phase. This work is based on 

a multi-stream, multi-output regression model with selective qualitative attributes which are 

progressively distinguished from earlier related work (Labs, Zolgharni and Loo, 2021). The 

advantage of this novel method of quality assessment is that the specific component of quality 

can be optimised, thus potentially guaranteeing clinical real-time feedback and optimization for 
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obtaining optimum image quality in clinical practice. This means that during the acquisition 

phase, the operators can assess specific quality elements independently, as would be indicated 

on each four attributes rather than obtaining a weighted average of quality components which 

is the existing and current assessment method obtainable in the most recent research papers. To 

the author’s knowledge, there are no published methods on attributes of quality and its 

assessment method in echocardiography modelling. This novel approach and quality 

formulations can be used to assess, optimise, and quantify echo images surgically, in real-time. 

 

 

5.3 Main Contributions 
 

Interpreting the results of the proposed architectures in the literature is not straightforward. This 

is because a direct comparison of the models' performance would require access to the same 

patient dataset. At present, no echocardiography dataset and the corresponding annotations for 

the image quality assessment is publicly available. We, therefore, aimed at evaluating the 

performance of deep learning models for the automated image quality assessment using an 

independent echocardiography dataset (PACS) available on request. Although the inference 

time reported in the previous studies reviewed was short enough the make it feasible for real-

time applications, the utility of such systems in the clinical practice would be limited.  

This is because only an overall predicted image quality score is provided by the models. 

Therefore, if employed as part of an operator guidance system, the operator is provided with no 

clues as to why the image is being tagged as low quality, and how to improve it to obtain optimal 

images. A practical quality control report should contain such information.  

In the light of the above related works, we conclude that, although they represent plausible 

contributions, all the criteria used to define assessment are limited in scope and insufficient for 

translatory clinical relevance. However, this research examined all existing quality criteria and 

additional criteria that can easily translate to experts’ subjective assessment. Finally, we 

defined, for the first time, a novel, most comprehensive criteria, and objective attributes by 

which cardiac images can be optimally assessed. The main contribution of this chapter can be 

thus summarised as follows: 
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● Demonstration of the feasibility for a novel, coherent and clinically relevant objective 

standards for the assessment of 2D echocardiographic image which account for relevant 

anatomical profiles, linear and volumetric quantifications of myocardial functions 

● Fresh insight to real-time assessment method that provides access to specific element of 

cardiac image quality for the purpose of image optimization, accurate quantification, 

and diagnosis 

● Annotation of an independent echocardiography patient dataset showing four attributes 

of image quality namely: anatomical visibility, chamber clarity, depth-gain, and 

foreshortening attributes for A4C, PLAX apical standard views 

● Public release of experts annotated patient dataset to allow future studies and external 

validation of the new approach or methods 

● Proposed detailed implementation of multi-stream deep learning architecture pipeline 

to process and allow access to specific image attributes in A4C and PLAX view of echo 

cine loop. 

 

5.4 Methodology I 
 

In this section, a detailed account of two sources of dataset namely CAMUS and PACS-1 were 

explored separately under methodology I and II.  The research critically investigated the 

possibilities of and performance of two objective functions separately, in the assessment of 

echocardiographic image quality. It is hoped that the results in each approach can lead to an 

important discovery and establish technical justification on the best and final approach.  

The first part of scientific methodology is based on CAMUS public dataset and quality 

assessment by classification. CAMUS consist of 2D echocardiographic specimens with end 

systolic (ES) and end diastolic (ED) images and ships with experts’ single score annotation. 

This section details the modelling process of the quality by classification method using the 

public dataset and the use case scenario for clinical advantages. Several state-of-the-art models 

were also investigated along with the ultra-lightweight CardioQNet model.  

Finally, the section compares the result outcomes from state-of-the- art models and the ultra-

lightweight CardioQNet model which was created for this purpose. 



Image Quality & Assessment Methods  107 

5.4.1 Quality Assessment by Classification 

This chapter investigates the use of CAMUS image quality assessment using classification 

approach. Cardiac Acquisition for Multi-structure Ultrasound Segmentation (CAMUS) is a 

fully annotated dataset claimed to be the largest publicly available (Leclerc et al., 2019) two-

dimensional (2D) echocardiographic dataset for clinical quality and segmentation assessment. 

The full dataset was acquired from GE Vivid E95 ultrasound scanners (GE Vingmed 

Ultrasound, Horten Norway), with a GE M5S probe (GE Healthcare, US). No additional 

protocol than the one used in clinical routine was put in place. For each patient, 2D apical four-

chamber and two chamber view sequences were exported from EchoPAC analysis software 

(GE Vingmed Ultrasound, Horten, Norway).  

 

CAMUS Public Dataset Description 

CAMUS public dataset is intended for the evaluation of cardiac segmentation, consists of 

clinical exams from 450 patients, clinically acquired at the University Hospital of St Etienne 

(France). The dataset comprises a wide variation of acquisition settings. For instance, for some 

patients, parts of the wall were not visible in the images; this produced a highly heterogeneous 

dataset, in terms of image quality and pathological cases, which is typical of daily clinical 

practice data. The full dataset was acquired using GE Vivid E95 ultrasound scanners (GE 

Vingmed Ultrasound, Horten Norway), with a GE M5S probe (GE Healthcare, US). For each 

patient, A2C and A4C view sequences were exported from EchoPAC analysis software (GE 

Vingmed Ultrasound, Horten, Norway). At least one full cardiac cycle was acquired for each 

patient in each view, allowing manual annotation of cardiac structures at ED and ES.  

In total, the dataset includes 1800 2D ultrasound sequences (2 chamber and 4 chamber views 

of 450 patients) along with the provided multi-structure annotation (i.e., endocardium (LV-

Endo), the myocardium (epicardium contour more specifically, named LV-Epi), and the left 

atrium (LA)) by one expert at the ED and ES instants (Leclerc, Smistad, Pedrosa et al., 2019). 

An example of images from a public CAMUS dataset with a different range of quality (i.e., 

good, medium, and poor) are illustrated in Figure 5.3. 

Even though the intended use of CAMUS is segmentation, it has valuable contribution to 

quality assessment hence, the adoption of CAMUS to evaluate quality assessment 

classification.  
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5.4.2 Weighted Average Scores Annotations 

Normal classification problem presents the requirement to predict a discrete label sample within 

the label space, this idea can be explored for discretized integers value if thresholds are set for 

numerical boundaries. CAMUS dataset annotation ships with quality score values represented 

by integer values from 0 to 9 for each image specimen. Although, classifying discretized 

samples is not alien to deep learning methods but 2D cardiac samples rated in integer values 

pose significant challenges to both annotator and machine learning model because 

echocardiogram specimens can appear to be similar despite having subtle difference that may 

be considered significant to anatomical and diagnostic considerations. To set the threshold 

values for discretization, cardiologists were consulted, who having examined the specimen 

specified three emerging categories as defined below:  

● Poor Quality with score ranges from 0.0 – 4.5,  

● Average Quality with score ranges between 4.6 – 7.8 

● Good Quality with score ranges between 7.9 – 9 

Figure 5.3 illustrates the emerging discretized class samples for A4C and A2C. Consequently, 

the emerged distribution set apportioned for training and development subsets are illustrated in 

histogram distribution shown in Figure 5.4. 

 

 

Figure 5.3: CAMUS A4C samples of three (3) classes of quality detected on end-systole (ES) frame, 3 classes for 

end-diastole (ED), making a total of 12 classes. Each class ranges from poor quality to high quality with image 

size 256 x 256 x 1. 
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Figure 5.4: Histogram Distribution of CAMUS (20% Test Set), for combined ES/ED A2C and A4C respectively. 

A highly imbalance distribution exists for both apical two chamber (A2C) left and apical four chamber (A4C) 

right. 

 

5.4.3 Classification Model Training 

In this section, a description of a proposed nested model that has been achieved by semi-manual 

optimization technique was partly inspired by the work of Abdi, et al. (2018) is provided.  

The architecture used is an ultra-lightweight deep convolutional model derived from semiNAS. 

This is a 3-layer DCNN architecture which accepts fixed length images of spatial size 224 x 

224. Each of the input images convolved with the three-layered architecture with its respective 

Max Pooling layers ReLU activation to form a 2D feature map. The model operates in the 

temporal domain where image temporal features are extracted for classification of image 

quality. While cross entropy was chosen for loss function equation (5.0), stochastic gradient 

descent function was adequate for weight optimization. The architecture is depicted under 

technical background in chapter 3. 

Batch selection: Computational cost during training phase was not significant with batch 

selection of 14 but shows significant reduction in accuracy and overfitting on higher batch rates. 

The training phase on CAMUS batch of 14 of 6 classes is considered as optimum since this 

produced the best model accuracy than selecting higher batch rates. Also, memory utilisation 

becomes significantly apparent at higher batch selection of 64 than at optimum batch rate. 

Hardware performance in terms of computational speed showed a negligible increase in training 

times and did not affect model's ability to properly generalise new test samples. 

𝐶𝐸𝐿𝑂𝑆𝑆 = −∑𝑦𝑖 log(ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − ℎ𝜃(𝑥𝑖))

𝑁

𝑖=1

   (5.0) 
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Data augmentation: Data augmentation was applied to allow optimum learning sequences for 

the models; a maximum translation of [-0.05, +0.05] pixels and maximum rotation of 10 degrees 

were applied randomly for horizontal, vertical, and rotational angles respectively. To prevent 

overfitting in the training phase, batch normalisation was applied at each convolution layer with 

early stopping and dropout (rate 0.30) for the training samples. Batch normalisation also helps 

stabilises and speeds up convergence during the training phase. 

Over sampling: As clearly illustrated in Figure 5.4, CAMUS dataset was highly unbalanced, 

and would impair model's training result if appropriate generalisation methods were not applied 

during the training process. The solution was to implement a generalisation algorithm known 

as (over-sampling); a technique commonly used to allow minority class to get as much sampling 

as the majority class. This means that all minority classes would be oversampled during the 

training phase, while the majority class would gain as much as sampling rate as the minority 

class under sampled in achieving a balanced dataset. Over-sampling was implemented in 

PyTorch and applied online to all minority classes with good success.  

Hardware resources: The model was implemented on the PyTorch backend. The experiment 

was carried out on GPU GeForce GTX 970 chipset's Maxwell architecture, featuring 4GB RAM 

coupled to 1,664 CUDA cores. 

 

5.4.4 Model Evaluation Metrics 

Similarly, to (Ornstein and Adam, 2021) and (Leclerc et al., 2019), the quality of the data fit 

via model accuracy per fold was assessed using the following metrics.  

Performance Accuracy: Overall accuracy was calculated as the number of correctly classified 

images as a fraction of the total number of images which can be computed as follows: 

 

 

𝐴𝑐𝑐µ = 
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖+ 𝑡𝑛𝑖+ 𝑓𝑝𝑖+ 𝑓𝑛𝑖

𝑘
𝑖=1 

𝑘
                                  (5.1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙µ = 
∑ 𝑡𝑝𝑖

𝑘
𝑖=1 

∑ 𝑡𝑝𝑖 + 𝑓𝑛𝑖
𝑘
𝑖=1

                                      (5.2) 
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Confusion matrix plot: Confusion matrix is a two-dimensional matrix that presents a brief 

overview of the classification performance of a classifier on a test dataset which gives us insight 

not only into the error being made by a classifier but more importantly the types of errors that 

were made. In one dimension the true classes of the test dataset, and in the other dimension, the 

prediction results by the classifier will be assigned. In other words, the confusion matrix 

displays the number of correct and incorrect predictions broken down by each class (Grandini, 

Bagli and Visani, 2020). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛µ = 
∑ 𝑡𝑝𝑖

𝑘
𝑖=1 

∑ 𝑡𝑝𝑖 + 𝑓𝑝𝑖
𝑘
𝑖=1

                                   (5.3) 

 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =  
∑

𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑘
𝑖=1 

𝑘
       (5.4) 

 

Quality classification methods using CAMUS dataset suffer many drawbacks in combined 

classes for ED and ES images. Model achieved 69.23% (Figure 5.6) but 91.23% for apical four 

(A4C) and apical two (A2C) end systolic images combined (Figure 5.5). 

 

 

5.4.5 CAMUS – Results and Analysis 

Some metrics employed in the evaluation of classification performance of the examined and 

proposed classification models in this study includes classification accuracy, confusion matrix. 

Accuracy expressed in terms of number of correct predictions over total number of samples in 

label space while confusion matrix presents graphical overview of classification performance 

on the given dataset. Confusion matrix (Figures 5.5, 5.6) provides insight into what errors were 

made and where in the label space the error exists (Grandini, Bagli and Visani, 2020). 

Furthermore, the model’s performance was compared to VGG16, ResNet50, and MobileNetV2 

in Table 5.1. 
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Figure 5.5: Performance Evaluation: Confusion Matrix for only (ED) cardiac specimen for A2C+A4C on CAMUS 

dataset. The proposed architecture achieved 91.23 percent accuracy on end diastole specimens only.  

 

 

Figure 5.6: Performance Evaluation: Confusion Matrix for the Combined End-Systole and End-Diastole (ED+ES) 

frames on CAMUS (A2C, A4C) dataset. The proposed quality classification model achieved 70.00% accuracy on 

end systole and end diastole cardiac specimens. 
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Table 5.1: The comparison of model performance on combined A2C and A4C of CAMUS public dataset. Echo 

images consist of end-systole and end diastole frames (ES+ED). The ultralightweight (CardioQNet) model shows 

significant appreciation performance over VggNet and better inference speed over all the state-of-the-art models 

evaluated. Performance comparison based on mini-batch size of 24, and 50 epochs per model. 

 VGGNet16 ResNet50 MobileNetV2 CardioQNet 

Optimizer ADAM SGD ADAM SGD ADAM SGD ADAM SGD 

Test Accuracy 63.24 70.00 70.00 68.07 69.15 72.18 70.00 69.44 

Test Loss 0.0325 0.0363 0.0297 0.0301 0.0293 0.0300 0.0306 0.0309 

Network Depth 16 50 53 6 

Total Trainable Parameters 17.93 million 23.77 million 12.70 million 2.7 million 

Run-Time / epoch (sec) 50.38 38.40 27.26 22.90 

Inference Time/Frame (ms) 11.852 9.307 7.261 6.925 

 

Model Performance: The state-of-the-art models (ResNet50, VGG16 and MobileNetV2) 

evaluated on CAMUS quality classification yielded comparative results on Adaptive Moment 

Estimation (ADAM) optimizer for ResNet50 to CardioQNet model. Except for MobileNetV2 

and VGGNet which thrived on SGD optimizer for the same observations. Obvious results from 

Table 5.1, the comparison of model's accuracy indicated a significantly low performance on 

end-systole (ES/ED) frames. This was not the case when considering the end diastolic frame 

(ED) separately from the rests. The end-systolic frames usually indicate the compression of the 

myocardium, this action last over a couple of minutes. Therefore, a varying or dissimilar pixels 

formation can only be represented in a discrete sample within the activity frame length, this is 

known as echo frame, and it contains varying spatial noise. Models’ performance accuracy 

therefore, reflects on the complexities of varying spatial noises, limited volume of data space, 

class imbalanced and model generalizability.  

Test loss values are indicative parameters that training did converge, although each model 

shows a level of overfitting which was controlled by early stopping. This explains why 

stochastic gradient descent (SGD) optimizer slightly appreciated on VGGNet16 and 

MobileNetV2 as opposed to ADAM on ResNet50 and CardioQNet models.  

While MobileNet and CardioQNet showed fast convergence on the dataset, MobileNet’s 

performance accuracy was highest on CAMUS, exceeded its counterparts by 2.8%. Although 

some aspects of echocardiographic specimens considered in this chapter still precipitate 

stringent questions, especially in terms of quality estimation and weighted average score 

predictions, the approach to quality classification would fit a regression task that can provide 

adequate generalization with multiple score values per frame.  
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Also, classical model classification without the advantage of a spatio-temporal feature 

extraction would significantly limit a model's ability to generalise cardiac specimens with 

artefacts and label noise which is synonymous with cardiac samples.  

Apart from highly imbalanced dataset which could potentially impair model's accuracy, 

complex data structures in the end-systolic (ES) frames, and very closely related features in 

cardiac frames could further lower models’ performance as the case was for all models 

investigated as results indicated in Table 5.1. 

Inference time: Although, the inference times achieved by each model is significantly low to 

allow more than 60FPS processing, however, in practice, this may not accurately be so, 

especially when used for remote assessment. Therefore, the lower the inference time quoted the 

better. CardioQNet is in a stronger position on this with capacity for 144 frames per seconds. 

Furthermore, CardioQNet leads in epochs training time as a direct result of having the lowest 

trainable parameters, which effectively avoid redundancy in the trainable parameters in the 

architecture and network depths.   

Finally, the use case scenario for an automatic image quality assessment algorithm in clinical 

setting would consequently require more than a single quality score (known as weighted 

average score) value on cardiac frame and solving the quality classification by regression 

method would be suitable for unified workflow or translatory advantages in the healthcare 

industry. Going forward, it’s obvious that a new cardiac dataset consisting of multivariate 

annotations per echo cine loop is highly desirable for the implementation of automatic quality 

assessment in clinical practice.  

In this scenario, each specimen would be classified based on the experts’ opinion score for 

aspect of quality of an image. This novel idea was conceived, discussed further, and 

implemented in method II.  
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5.5 Methodology II 
 

In this section, a detailed account of a variant of picture archiving and communication system 

dataset known as PACS-1 dataset is given. PACS-1 dataset contains echocardiographic samples 

of A4C, and PLAX specimens randomly drawn to constitutes essential dataset for research 

purpose. This second part methodology provides analytical justification for the assessment of 

quality elements by regression and modelling of the anatomical characteristics for objective 

quality standard framework.  

It is evident by experimental results that prediction of quality scores using classification model 

does not enjoy high level accuracy in terms of model performance and inference, hence, 

regression models that predict continuous values with the specific breakdown of quality 

elements would require a new set of criteria that is measured by multiple numeric scores. These 

are significantly relevant for echocardiographic image quality assessment. Therefore, PACS-1 

dataset with multiple score annotations, ultimately became relevant for image quality 

assessment. 

 

5.5.1 Quality Assessment by Regression 

In this section, a detailed account of a variant of picture archiving and communication system 

dataset known as PACS-1 dataset is given. The original PACS dataset contain 14 apical views 

out of which A4C, and PLAX specimens were randomly drawn to constitutes PACS-1 dataset.  

At present, no echocardiogram dataset with the corresponding multivariate scoring method for 

A4C/PLAX image quality assessment is publicly available. This novel scoring approach 

provides specifically new insight to the aspect of echocardiographic image element lacking 

optimum quality characteristic instead of a single score annotation. Therefore, this research 

work aimed at preparing our own dataset (echocardiograms and corresponding ground-truth) 

for model developments and training. Importantly, are the essential and novel definition of 

quality attributes that are necessary for objective assessment of 2D image quality using PACS-

1 private dataset and the clinical justification for the collective elements required for objective 

standard assessment of image quality in A4C and PLAX views. 
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PACS-1 Private Dataset Description 

The study population consisted of a large random sample of echocardiographic studies from 

different patients (age ranges from 17 and 85 years), who were recruited and had undergone 

echocardiography between 2010 and 2020. A total of 11,262 DICOM formatted videos was 

extracted from Imperial College Healthcare NHS Trust's echocardiogram database. Ethical 

approval was obtained from the Health Regulatory Agency for the anonymized export of large 

quantities of imaging data. It was not necessary to approach patients individually for consent 

of data originally acquired for clinical purposes. The images were acquired during examinations 

performed by experienced echocardiographers, according to the standard protocols for using 

ultrasound equipment from GE Healthcare and Philips Healthcare manufacturers. Automated 

anonymization was performed to remove the patient-identifiable information from 

echocardiographic videos. A neural network model, previously developed and detailed in 

chapter 4 was then used in identifying and separating different echocardiographic view to obtain 

A4C and PLAX required for quality assessment modelling. This resulted in a total of 33,784 

frames from different patients: 15,476 and 18,308 frames for A4C and PLAX, respectively.  

 

5.5.2 Multivariate Quality Attributes 

The inherent limitations imposed by classification model on 2D image quality and results of 

the evaluation on CAMUS’ quality assessment method has precipitated the discovery of 

multivariate quality assessment method as a proposed and alternative solution in image quality 

assessment to the weighted average quality assessment (WAQ) method, which imposed 

limitation on objective models. The usage of a weighted average score system which evaluate 

the overall quality prediction of an image is terribly insufficient for real-time objective grading, 

optimization or as feedback for operators’ guidance system.  In weighted average scoring 

system investigated, objective model can only predict a single score value to depicts overall 

quality score for an echo image. This is grossly lacking in specific quality element of the image 

under assessment, hence its insufficient in real life practices. In other words, there are no 

associated clinical advantage in such approach.  

Therefore, for the first time in the history of echocardiogram objective quality assessment, 

images with view-specific scoring criteria were proposed and defined to encapsulate the 

myocardial anatomical and pathological profile. These are known as domain-specific criteria 

of two-dimensional (2DE) echocardiogram image quality. This proposal was put forward to the 



Image Quality & Assessment Methods  117 

consulting clinical experts and considered a plausible solution for at National Heart and Lung 

Institute, London.  

Unlike a single weighted average method which, after modelling, could not provide the 

indication for specific quality and reason why cardiac specimen is tagged as poor quality or 

provide critical path to optimization other than relying on operator subjective skill for manual 

optimization. 

The novel modality provides new insight into how 2D echocardiograms should be quantified 

or graded. Sine our focus was on A4C and PLAX with reason given above, we defined 23 

domain-specific criteria (Table 5.2) which was grouped under four (4) pathological and 

anatomical descriptions namely: Anatomical Visibility, Anatomical Clarity, Signal Depth-Gain 

and Foreshortedness. These are enumerated below as follows:  

 

(a) Anatomical Visibility:  

Unlike photographic images, ultrasound images are formed by interference patterns of 

scattering centres that do not present clear edges, but inherently poor lateral and axial 

resolutions (Labs et al., 2020). Hence, the magnitude of visibility on chamber cavities for both 

A4C and PLAX frames can be thought of in terms of correct slicing of heart’s apex, within the 

acceptable clinical projection of anatomical structures either with sharp or blurred edges of 

amplitude structures. Equations (5.5), (5.6) describe the rotation of a frame vector in two-

dimensional spatial distribution where 𝑥1𝑦1 represent on-axis projection, taking arbitrary 

centre 𝑥𝑐, 𝑦𝑐, off-axis 𝑥𝑝, 𝑦𝑝 can thus be mitigated from β known angle to improve anatomical 

visibility. In A4C, emphasis is placed on apical orientation, echogenicity of the left ventricle 

chamber, mitral and atrium valves (Mitchell et al., 2019). Although the LV apex is not 

visualised in PLAX, emphasis is placed on the anatomical echogenicity and clinical orientation 

of the right ventricle, left ventricle, the pericardium positions, and the aortic valves. These are 

clinically relevant features experts rely on for quantification, clinical assessment, and diagnosis. 

 

𝑥1 = (𝑥𝑝 − 𝑥𝑐) 𝑐𝑜𝑠𝛽 − (𝑦𝑝 − 𝑦𝑐) 𝑠𝑖𝑛𝛽+ 𝑥𝑐        (5.5) 

𝑦1 = (𝑥𝑝 − 𝑥𝑐) 𝑠𝑖𝑛𝛽 − (𝑦𝑝 −𝑦𝑐) 𝑐𝑜𝑠𝛽+ 𝑦𝑐          (5.6) 
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(b) Anatomical Clarity: 

Left ventricle clarity is a define the contrast between the tissue and image background noise. 

Echocardiogram’s apical chambers of any zoomed region can only present rough boundaries 

and contractive edges. Kurt et al., (2009), have demonstrated the impact of contrast 

echocardiography, however, with respect to quantification, cavity clarity is visualised by 

several distinguishable fast-moving pixel’s formations during cardiac cycles. This attribute, 

therefore, addresses the degree of distinguishable pixel element representing the endocardial 

border cavities or clear distinction between the intraventricular septum, valves, any trabeculated 

pericardial fluids and endocardial walls. Cardiac frames with very high contrast or very low 

contrast represent the extreme end of the spectrum and pose significant challenges (Nagata et 

al., 2018), (Kurt et al., 2009) with newly qualified clinicians. Equation (5.7) describes the root 

mean squared (RMS) contrast, 𝐶𝑖,𝑗 which does not depend on angular frequency content or 

spatial distribution as suited for 2D cardiac frames and given by the difference between the 

standard deviation of normalised pixel intensity 𝐼𝑖,𝑗,  and mean normalised intensity 𝐼,̂ of a given 

anatomical pathology; where (i, j) represents the i-th and j-th element of 2D image size 𝑀,𝑁; A 

very high contrast could generate artefacts and potentially obscured essential anatomical 

details. Unfortunately, some images with low contrast do have significant anatomical details 

required for clinical measurement hence the need to assess each image on the merits of clarity. 

 

𝐶𝑖,𝑗 = [
1

𝑀𝑁
∑ ∑(𝐼𝑖,𝑗 − 𝐼)2]

1
2            

𝑁−1

𝑗=0

𝑀−1

𝑖=0

(5.7)   

  

(c) Signal Depth-Gain: 

Depth-gain is peculiar to 2D echocardiography, and it represents a measure of intensity of 

discrete signal samples of a specific region of interest. The intensity of the image signals 

becomes susceptible to depth changes, sector width and patient anatomical differences. 

Although the use of high frequency probes can yield better resolution intensity at shallow tissue 

depth penetration (Sassaroli et al., 2019), low frequency probes give the opposite effect. 

Consequently, signal gain at the image apex (near field) usually possesses strong intensity of 

high amplitude and could become excessively low at the far field region of the cardiac frame. 

In the same way, excessive gain can present as pulmonary fluid in some cases (Dong et al., 

2020) and images with very low gain attributes but bear significant anatomical details or 
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noticeable artefact are not ignored in clinical practice. Equation (5.8) describes the intensity of 

reflected beam, which is associated with depth gain; where 𝑑2𝜙 represent the luminous flux of 

the infinitesimal area of source 𝑑𝛴, dividing by the product of 𝑑𝛴, infinitesimal solid angle 𝑑𝛺𝜉  

and 𝜃𝜉 angle between the normal 𝛺𝜉 to the source 𝑑𝛴. While luminance is the photometric 

measure of the pixel luminous intensity per unit area of light at a given area of interest, 

brightness therefore is the subjective impression of the object of luminance 𝐼𝑖,𝑗 and is measured 

in candela per square meters cd/m2. Clinical significance therefore assesses and score’s 

potential introduction of artefact from excessive gain, incorrect depiction of true anatomical 

tissues or obscurity of relevant anatomical details which is relevant for measurements.  

 

𝐼𝑖,𝑗 = 
𝑑2𝜙

𝑑𝛴 .  𝑑𝛺𝜉 𝑐𝑜𝑠𝜃𝜉
              (5.8) 

 

(d) LV Foreshortening: 

Apical foreshortening is a distortion of heart’s apical visibility that occurs during image 

acquisition. Basic definition of apical foreshortening specified as central misalignment of image 

plane with LV apex, However, this seems too simplistic when considering the possibility of 

skewed projection of image plane and LV’s apex with respect to perspective transformation. 

This potentially alters LV volume and shapes become geometrically incongruent (Ünlü et al., 

2019). To add to the complexity, foreshortening could occur in either of the cycles hence, both 

diastolic and systolic cycles are considered during frame real-time assessment. Smistad et al., 

(Smistad et al., 2020), have described the importance of real-time detection of apical 

foreshortening. For instance, foreshortening can result in inaccurate quantification of ejection 

fraction (EF) (Labs et al., 2020) or prevent the detection of crucial pathology especially in the 

apical region. We refer to this undesirable transformation in terms of the product of 

homogenous properties given in equation (5.9). In the PLAX view, however, where LV apex 

visibility is not required, visible apex of the LV could be taken as ‘false-apex’ (Mitchell et al., 

2019), therefore counts as LV foreshortening. From a clinical standpoint, eliminating 

foreshortedness is paramount for anatomical assessment and diagnosis of many ailments 

including cardiomyopathy.  
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𝐼𝑥,𝑦,𝑧 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 

1

𝑑
1

] [

𝑥
𝑦
𝑧
1

] =  [

𝑥
𝑦
𝑧

− 
1

𝑑

] => (−𝑑 
𝑥

𝑧
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𝑦

𝑧
 )    (5.9) 

 

 

5.5.3 Multi-Layer Annotation Process 

To establish the ground-truth scoring for neural network developments and testing, A manual 

score criteria was established based on the specific pathological and anatomical features, these 

were done under the supervisory team consisting of cardiologist, sonographers, and an 

atrioventricular (AV) specialist in what we describe as the consortium. 

The entire A4C and PLAX echo cine loops were independently studied and manually annotated 

by two professionals: an experienced cardiology expert and an accredited professional. Using 

a custom-made program (Figure 5.7), purposely developed in MATLAB which closely 

replicated the interface of echo hardware. The program allows each echo cine loop to playback 

the length of frames allowing visual inspection of the cine loops and functions to control the 

animation of the loops. Each cine loop is visually evaluated against the criteria in Table 5.2 

while using score slider to assign visual score on each attribute. Thus, quality score is assigned 

and recorded. This is repeated for each defined attributes in Table 5.2 yielding four different 

scores per frame. Consequently, annotation records are created automatically in MATLAB file 

(.mat) format after each cine loop. Each echo cine has a corresponding .MAT file that is stored 

in a protected folder or drive.  

Score attributes range from 0 to 9 to allow specificity and fair assessment of A4C/PLAX apical 

standard. Consequently, three frames were randomly drawn from each video and split into 

training (27,028 frames), and testing (6,756 frames) sub-datasets in 80:20 ratios. Figure 5.9 

summarises the sample distributions for A4C and PLAX with categorical characteristic using 

experts’ score range values of 0 - 4.5, 4.6 - 6.5, 6.7 - 9.9 classified as poor, average, and good 

quality respectively. This level of quality classes is illustrated in Figure 5.8.   
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Figure 5.7: Visual-aid utility program – Implemented in MATLAB for subjective assessment of ground truth 

annotations, labelling and scoring: 1,600 echo cines were independently studied and scored prior to extraction. 

Cine with scores less than 0, or negative score were discarded. The average scores for the entire cine loop were 

automatically recorded. This process repeats for each of the four quality attributes defined. 

 

 

Figure 5.8: PACS Dataset: The three emerging quality levels used. Poor Quality, Average Quality and Good 

Quality represented in the legend for both A4C and PLAX standard view specimens. 
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Figure 5.9: Summary of data distribution for A4C and PLAX cardiac frames, indicating three categories of quality 

levels based on experts scores values: Frames with max scores of 4.5, 6.5 and 9.9, are classified as Poor Quality, 

Avg. Quality, and Good Quality, respectively. 

 

Table 5.2: View-specific scoring definition. The quality of each view was evaluated according to several criteria; 

each criterion consisted of several attributes with independent scores but yielding a maximum score of 10 points 

for each criterion. 

A4C  PLAX 

Assessed Element per Attributes Manual Score 

awarded 

Assessed Element per Attributes Manual Score 

awarded 

ANATOMICAL VISIBILITY:  ANATOMICAL VISIBILITY:  

Correct Axis, Apical Segment 6 Left Ventricle (LV) Visible 5 

Interventricular Septum Visible   2 Right Ventricle (RV) Visible 3 

Interatrial Septum Visible   2 Full Segment Pericardium Visible 2 

ANATOMICAL CLARITY:  ANATOMICAL CLARITY:  

LV Cavity clarity, clear edges 4 LV Cavity Clarity 

(distinguishable border) 

4 

Distinguishable Valves 3 LV Anteroseptal Wall Clarity 3 

Distinguishable Septum Wall 3 LV Inferolateral Wall Clarity 3 

SIGNAL DEPTH-GAIN:  SIGNAL DEPTH-GAIN:  

Image Sectorial Gain 4 Sectorial Gain 4 

No Excess Gain 3 No Excess Gain 3 

Minimum Artefacts 3 Minimum Artefacts 3 

LV FORESHORTEN:  CAVITY FORESHORT:  

LV Apical Segment present 4 No-Apex Diastole 5 

Normal-Shaped Diastole 3 No-Apex Systole 5 

Normal-Shaped Systole 3   
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5.5.4 Regression Model Training 

Details of the well-known and state-of-the-art network architectures investigated in this study 

can be found in relevant resources: MobileNet (Howard et al., 2020), ResNet (He et al., 2015) 

and VggNet (Simonyan and Zisserman, 2015) along with its hybrid versions.  

The architecture used in this study, is based on a multi-stream, multi-label regression model, 

featuring CardioQNet as weight weight-sharing module and four (4) sub-node model 

architectures fused together in TensorFlow API to simultaneously train and make predictions 

in a multi-label, multi-class fashion. The model accepts variable/fixed length sequence frames 

of spatial size 224 × 224 x 3 sequence convolved with each parallel convolutional layer of each 

sub-model to compute spatial feature map, F given by equation (5.10), which is fed into a time 

sequence module (LSTM) for temporal feature extraction. Each convolution layer features an 

activation function of type - Rectifier Linear Units (ReLU) (Nair and Hinton, 2021), equation 

(5.11). Each node was dedicated to extract specific anatomical features relating to criteria 

defined for A4C and PLAX standard views in Table 5.2. The components of the sub-node 

architecture are logically optimised for specific quality attribute and adapted based on best 

performing architecture against each quality attribute. The model is illustrated in Figure 5.10, 

and detailed as follows:  

(a) The spatial module consists of four parallel convolutional layers, dedicated to extraction 

of hierarchical features on each of the defined quality attributes. These are termed as 

quality-specific layers, receiving their inputs from a weight sharing convolution 

architecture CardioQNet. Each quality-specific layer features batch normalisation (Ioffe 

and Szegedy, 2017), between each ConvNet layer except the third layer which missed 

out on max pooling (Wu and Gu, 2015), and dropout of 0.5 (Srivastava et al., 2014). 

The output is flattened, and the sequence is fed into the temporal module.  

(b) Temporal module consists of an LSTM layer, used to extract temporal features. It 

accepts vector data from each adjacent module to compute mean score on frames’ 

sequence data. Features are based on fast changing pixel intensity between consecutive 

frames, which could result in spatial noise where sudden increase in varnishing 

gradients can be apparent, especially during training phase. Therefore, output layers 

were configured differently to include dense layer, batch normalisation and dropouts of 

0.5. This was noted to offer resilience against noisy labels and reduce variance in the 

image/frame data.  
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The choice of architecture construct Table 5.3 was based on the performance data, memory 

requirement, and inference speed which are significant for real-time quality assessment and 

future operators feedback implementation. The model was trained with a k-fold cross validation 

technique to ensure adequate learning on the dataset and performance was recorded for each 

model. The hyper parameters learning rate was set at 0.002 with high momentum 0.95 and 

decay rate of 0.1 every 24 steps and were reproducibly initialised to minimise possible deviation 

in score performance. Training was initialised with 32 batch size and completed as learning 

curves converged around 40 epochs.  

Data augmentation was applied to allow optimum learning sequences for the models; a 

maximum translation of [-0.05, +0.05] pixels and maximum rotation of 5 degrees were applied 

randomly for horizontal, vertical, and rotational angles, respectively. To prevent overfitting in 

the training phase, we applied batch normalisation and dropout. A multi-label optimization 

approach was adopted (Díez et al., 2015), and the model was trained simultaneously using four 

quality attributes with mean absolute error as the cost function. 

 

𝐹(𝑖,𝑗)𝑘
𝑙 = ∑∑𝑤𝑖,𝑚𝑛

𝑙  𝐹(𝑗+𝑚)(𝑘+𝑛)
𝑙−1

𝑚

𝑗=0

𝑛

𝑖=0

           (5.10) 

𝑓(𝑥)𝑟𝑒𝑙𝑢 = 𝑚𝑎𝑥(0, 𝑥)                                 (5.11) 

 

 

Figure 5.10: Multi-Stream Neural Network Architecture used in this study, returning a prediction for each of the 

four quality attributes. Each ConvNet is identified by its objective function: visibility, clarity, depth-gain and 

foreshortening attributes respectively. 
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Table 5.3: Network architecture summary. Numbers in the _K: w x h represent the number of kernels per layer, 

and kernel size in w x h respectively.  

CardioQNet Quality-Specific Layers 

Shared Layers Visibility Clarity Depth-Gain Foreshorten 

32: 11x11 32: 3x3 16: 3x3 32: 3x3 16: 3x3 

MaxPool 32: 3x3 Batch Norm 32: 3x3 16: 3x3 

32: 7x7 MaxPool MaxPool Batch Norm Batch Norm 

MaxPool 64: 3x3 32: 3x3 MaxPool MaxPool 

64: 32x32 64: 3x3 Batch Norm 64: 3x3 32: 3x3 

MaxPool Batch Norm MaxPool 64: 3x3 32: 3x3 

ReLU Max Pool 64: 3x3 Batch Norm Batch Norm 

 Dense 512 Dense 128 MaxPool MaxPool 

   Dense 512 Dense 512 

 

 

5.5.5 Model Evaluation Metrics 

Since the model uses multiplex variables for each score attributes, the output score was 

normalised to [0 ~ 1] vias sigmoid activation, equation (5.13) and model error was individually 

evaluated using MAE in equation (5.12), by taking the sum difference between cardiologist's 

ground truth scores (QGT) and model's predicted score (QP). Minimal error therefore, indicates 

best fit. Average model’s performance in terms of accuracy was computed to allow fair 

comparison with any similar regression model in equation (5.14). 

 

𝑀𝐴𝐸 =  
∑ | 𝑄𝐺𝑇𝑖 − 𝑄𝑝𝑖|

𝑛
𝑖=1

𝑛
                                   (5.12) 

 

𝑓(𝑥)𝑠𝑖𝑔𝑚𝑜𝑖𝑑 =
1

1 + 𝑒−𝑥
                                            (5.13) 

 

𝑀𝑜𝑑𝑒𝑙𝑎𝑐𝑐 = 1 − (
∑ |𝑄𝐺𝑇𝑖 − 𝑄𝑝𝑖|

𝑛
𝑖=0

𝑛
) ∗ 100        (5.14) 
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5.6 Results and General Discussion 
The results presented here include the findings and summary on echocardiogram dataset quality 

by classification and regression task using semiNAS derived ultra-lightweight model. While 

model performance in the classification tasks were compared to the state-of-the-art method on 

CAMUS and PACS dataset, the results provided technical insight to quality assessment 

modelling and presents clinical justification as follows: 

  

5.6.1 PACS-1 Image Quality by Regression  

Cardiac echo frames are laced with significant complexities among which are patients varying 

anatomical and pathological differences, these complexities are reflected in each fast-moving 

echo frame therefore, the model's inference speed is very critical to assessment and real-time 

operators’ guidance. Hence, implementing a customised model that can successfully generalise 

with high confidence, and speed would be counted a success in objective automated assessment. 

Our model’s measured mean accuracy of 96.20% and 2.52ms inference speed reinforces the 

viability for real-time feedback on specific quality per frame. The error distribution per quality 

attribute is depicted in Figure 5.11, while the model performance for visibility, clarity, depth-

gain, and foreshortening attributes yields 94.4%, 96.8%, 96.2% and 97.4% of image quality, 

respectively. Samples of predicted cardiac frames in Figure 5.12 indicate the objective scores 

for visibility, clarity, depth-gain and foreshortedness automatic score generated by the model.  

 

Figure 5.15: Error distribution on the difference between experts ground truth and model predictions per model’s 

quality attributes.  
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Figure 5.12: Sample of predicted images with respective objective scores. visibility (VS), clarity (CL), depth gain 

(DG), foreshortening (FS) and overall quality score (AS) are used to assess cardiac image quality during 

acquisition under clinical conditions.  

 

Table 5.4: Comparison of quality attributes model’s accuracies using selected state-of-the-art model and 

CardioQNet 

 REGRESSION ACCURACY (%) Inference 

Time (ms) 
MODEL DATA VISIBILITY CLARITY DEPTHGAIN FORESHORT ACC. 

VGGNET16 92.30 97.20 98.40 89.20 94.28 30.760 

RESNET50 89.45 92.25 87.40 92.20 90.32 19.526 

MOBILENETV2 92.35 88.22 95.82 90.64 91.76 15.802 

CARDIOQNET 94.40 96.80 96.20 97.40 96.20 2.52 

 

5.6.2 Baseline Results and Discussion 

The results of each state-of-the-art model, shown in Table 5.4, vary substantially on each 

attribute even though each retains its original hyperparameters. This indicator proved that each 

of the state-of-the-art models is incapable of delivering similar performance in terms of 

inference speed for real-time deployment. Inference speeds of 30.76ms, 19.53ms, and 15.80ms, 

was achieved by VggNet16, ResNet50, and MobileNetV2 respectively. The best value being 

2.52ms for CardioQNet model. Making CardioQNet best candidate for real-time deployment. 

To put this in perspective, a 60FPS video require 16.67ms inference time. Technically, the 

maximum achievable frame on VggNet16, ResNet50 and MobileNetV2, worked out as 32FPS, 
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51FPS, and 63FPS respectively. Although, an excess of 300FPS is possible on CardioQNet, 

this may be quite low in practice. Furthermore, the results of model performance are consistent 

across the four quality attributes with CardioQNet. This is not true for all the state-of-the-art 

models evaluated. This study recorded the lowest performance accuracy on ResNet50 with 

90.32% followed by MobileNetV2 at 91.76% while CardioQNet exceeded all by 4.4% in 

performance accuracy. These figures support the evidence for implementing the 

ultralightweight model (CardioQNet) for any real-time quality assessment algorithm. 

Echocardiogram’s assessment requires a real-time, fast-moving, and contractive anatomical 

properties. Therefore, any real-time assessment solution must exceed or match the ultrasound 

equipment frame rate or speed.  

 

Table 5.5: Summary of comparison on similar quality assessment model’s performance found in recent literatures.  

Studies by Author Abdi et al., (2017) Luong et al., (2020) Dong et al., (2020) Current Study (2021) 

Ultrasound Source Philips and GE Philips iE33 platform 

Philips S51 frequency 

5–1 MHz 

Shenzhen Maternal 

and Child 

Healthcare Hospital 

GE Healthcare 

(Vivid.i) and Philips 

Healthcare (iE33 

xMATRIX) 

Study Population - 3, 157 patients - 11,262 

Ground Truth 

annotations 

2 expert 

annotations 

1 level 3 echo 

cardiographer 

1 radiological 

Expert 

4 annotations each   

by AV 2 experts  

Defined  

Quality Criteria 

13 12 6 23  

(Table I) 

Assessment Methods 1 

 (Weighted Score) 

Method grossly 

insufficient of 

clinical advantage 

1 

(Weighted Score) 

Method grossly 

insufficient of clinical 

advantage 

2 

(Zoom, Gain) 

Focus on foetal 

ultrasound, adult 

not implemented 

4 

Specific Scores 

(Visibility, Clarity, 

Depth Gain & 

Foreshortening) 

Relevant to TTEs 

Std Views considered 5 

(A2C, A3C, A4C, 

PSAXA, PSAXPM) 

9 

(PLAX, A2C, A3C, 

A4C, PSAX-A, PSAX-

M, PSAX-PM, SC4 & 

IVC) 

Limited to  

(A4C only) 

A4C & PLAX  

(Apical views relevant 

to TTE standards) 

Input Size 200 x 200 Not specified 224 x 224 227 x 227 

Sample Size 6,916 14,086 2,032 33, 784 

Model Accuracy 

achieved 

85.0% 87.0% 93.52% 96.2% 
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5.7 General Conclusion 
 

This Chapter has presented the clinical significance and feasibility of developing an automated 

quality assessment in two-dimensional echocardiographic images. Also proved beyond 

reasonable doubt that weighted-average model for quality scores is insufficient for clinical use 

cases in a unified TTE workflow. Therefore, a quantitative method that is relevantly defined 

for cardiac image quality standard can thus provide useful and specific feedback for an operator 

guidance system as well as a valuable tool for research and clinical practice, first to act as arbiter 

reference to clinicians, secondly, to accelerate the learning curves for those in training. Also, it 

can provide specific information on the adequacy of the images obtained in retrospect, which 

could be universally relevant for a lifesaving procedure during the point of care or emergency 

services. 

In this study, we have considered the prominent apical views (A4C, PLAX) as recommended 

for clinical use, for cardiac diagnosis, linear measurements, and quantification. Since this is the 

first time a comprehensive attribute of quality is thus defined and applied to cardiac frames, our 

work can be compared to existing works on quality assessment, (see Table 5.5.), in terms of use 

case functionality, accurate feasibility, clinical application, and assessment modality. 

Consideration should be given also, to domain-specific image quality and clinical advantage 

rather than model performance on the existing record in quality assessment.  

This research has considered four distinctive image quality (attributes) objective standard and 

a novel method of accessing such attributes. Nevertheless, this study does not claim 

exhaustiveness in terms of quality criteria and define attributes, because the author is aware that 

different laboratories are at liberty to adopting what is considered best practice in their region 

or by legislation. Therefore, we intend to expand on these attributes in cardiac specimen 

characterization in chapter six.  

Finally, the study used the annotation provided by two experts, a cardiologist who provided 

reference and supervision with an accredited annotator. The intra-observer variability can be 

examined in future, by obtaining additional annotations from either human experts or through 

reinforced learning to build more larger quality standard framework. 
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Chapter 6  
 

Global Framework for Image Quality 
 

 

6.1 Introduction 
 

Transthoracic cardiac exam usually begins with patients’ assessment, followed by ultrasound 

imaging protocol where high quality images at several views are acquired and quantified for 

linear and volumetric measurements. Although, A2C, A4C and PLAX have become clinically 

relevant to quantification and clinical measurements, the focus of this investigation and 

experiments in this chapter is on apical-four chamber (A4C) cardiac specimen. The 

methodology can be applied to other standard apical views.  

The anatomy of cardiovascular specimens presents enormous complexity to subjective and 

objective functions in terms of dynamic features identification, measurements, and clinical 

quantifications. This is due to clinical protocol where cardiologists not only rely on still images 

but a fast-moving echocardiogram frame in real-time. However, plausible solutions using deep 

learning models have been widely demonstrated for cardiac view classification (G.N. Balaji, 

Subashini and Chidambaram, 2015); (Ornstein and Adam, 2021); (Azarmehr et al., 2021), 

quality assessment (Dong et al., 2020); (Luong et al., 2021); (Yang et al., 2018); (Labs, 

Zolgharni and Loo, 2021) and now it’s been applied to achieve pseudo-labelling and 

characterization of cardiac samples in a semi-supervised model (Chen et al., 2020); (Shiming 

Xiang, Feiping Nie, and Changshui Zhang, 2010).  
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6.1.1 Significant Impact of Experts’ Annotation 

The annotation of cardiac specimen is one of the significant step and requirement to build an 

objective model on, either for classification or regression task. The process involves that 

machine learning researcher specify at least a label (class label) or multiple labels for an action 

or an image prior to model development. This is true for all classification and segmentation 

tasks of deep learning algorithm. Unfortunately, annotation process is an expensive venture 

both in turnkey resources, time, and financial cost. For example, it took 14 months to complete 

manual annotations for 11,262 samples of PACS dataset. This requirement has inhibited many 

objective applications and still hampering the development of many echocardiography studies 

till now. Either for being too expensive, or require specialist input with associated professional 

costs, monotonous and time-consuming processes are some of the reasons.  Therefore, there is 

a high stake in proposing far reaching quality attributes for global framework without the 

efforts, available dataset and strong will for extending quality attributes beyond the one 

discussed in chapter 5 of this research.  

In my early research (chapters 4 and 5), the detailed of objective function used for classification 

and identification of 14 apical views was given. Moreover, the implementation of multivariate 

quality assessment method where four domain-specific quality attributes were defined, and 

prediction made per echocardiographic frame was documented. This chapter, seek to build on 

this and extend quality attributes beyond four domain-specific attributes in order to meet global 

framework or standard.   

 

6.1.2 Automatic Annotation Possible? 

An objective characterization of two-dimensional echocardiographic specimen is one of the 

potential approaches to define image critical features or extended feature of domain-specific 

elements of quality. In previous work on classification, we have applied an objective function 

to classify 14 different apical views and achieved state-of-the-art accuracy. However, that work 

was based on image label, typically involving human-powered tasks completed over a period 

of a year. For any larger dataset involving complex annotation and labelling, it would translate 

to much bigger efforts and higher coast with considerable length of time to implement.  

Considering the anatomy of cardiovascular specimens’ potential complexities, the question is 



Global Framework for Image Quality  132 

how can a reinforced learning algorithm be applied to echocardiogram characterization and 

labelling? 

As previously highlighted, object labelling or annotation are predetermined prior to model 

training, the labelling process is cumbersome and expensive in time and cost. Nevertheless, it’s 

one process you cannot bypass especially with echocardiogram varying anatomical and 

pathological profiles. 

 

6.2 Clinical Use Case 
 

During transthoracic exam, several images are required to build a complete picture of patients’ 

pathology and the summary of diagnosis; however, several specimens for multiple patients 

indicate the enormous amount of echo image that must be generated and stored. The task of 

manually assessing several hundreds of specimens prior to diagnosis constitute bottleneck in 

the administrative workflow.  

An automated system that can objectively allow cardiologist filter-search and group specific 

specimen down to pathological and anatomical relevance (listed in Table 6.1) would constitute 

a priced tool, but such facility is certainly beyond the scope of apical view classification. 

Nevertheless, to the best of the author’s knowledge, there exist no automated solution for a 

comprehensive pathological and anatomical feature detection which is capable of aiding 

cardiologists in rapid assessment, sorting and offering coherent domain-specific 

characterization or echocardiographic element-wise search. With this solution, experts can 

sweep through a class of images using seven (7) different clinical standards defined by domain-

21 specific criteria in Table 6.1 as well as the quality class of any images before final diagnosis. 

This is believed to be a significant advancement in echocardiogram image and quality 

assessment.     

 

6.2.1 Image’s Element-Wise Search 

To provide objective aid to cardiologists’ workflow, there exist feasible solutions for apical 

view detection (Huang et al., 2021); (Smistad et al., 2020) which helps sort out different images 

depending on the image plane and views known as standard views. Nevertheless, this is a 

limited function and it’s not different from searching up an image by textual descriptor   
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Several researchers have indicated the importance and impact of manually assessing hundreds 

of cardiac images by experts, to determine clinical relevance and diagnostic values (Nagata et 

al., 2018); (Sprawls, 2014). Although, the focus in this study encapsulates the apical-four 

chamber images (A4C), as one of the recommended views for critical quantification and clinical 

measurement (Lang et al., 2015); (Mitchell et al., 2019). However, the principle can be applied 

to other apical standard views or any discrete label functions. Global feature characterization 

could allow rapid assessment and element-wise search of functional tissue, types and quality 

grading of valves, any anatomic, or pathological (within the scope of criteria) features present 

in each cardiac specimen.  

The outcomes of this method could yield significant impact when expanded on other cardiac 

standard views. Therefore, defining a comprehensive objective property (characterization) for 

cardiac images would require a man-machine effort and many hours to implement.  

It a common knowledge that machine learning could be applied to the most persistent task 

which is possible within the confine of human cognitive space. For element-wise search 

algorithm, objective characterization of cardiac samples needs to be extended beyond four 

quality attributes earlier implemented in chapter 5.  A new measures of image quality need to 

be developed and evaluated against the defined ‘global framework’ properties of the two-

dimensional echocardiographic images. Therefore, this study investigated semi-supervised 

learning to build intelligent algorithm for automatic annotation of cardiac frames.  

 

 

6.3 Related Work 
 

Objective image quality has been a priority of researchers for decades, but for two-dimensional 

echocardiograms, there are but limited publications achieved. This is due to general challenge 

in the availability of sufficient cardiac datasets, which unfortunately are highly personalised 

and require layers of ethical processing and approval for any research study. Some of the 

prominent earlier research on two-dimensional objective quality measurement using artificial 

intelligence (AI) models include four plausible works: namely, (Dong et al., 2020); (Labs et 

al., 2020); (Huang et al., 2021); (Sassaroli et al., 2019). 

The authors presented an algorithm based on cardiac view detection and the approach 

successfully modelled the detection of apical chambers (view classification) of fourteen cardiac 
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standard views which include A4C echocardiography but admitted that the approach did not 

guarantee good performance when images consist of significant noise or the unavoidably 

images with low contrast pathologies. The result yields a contradiction detection result on 

images with low contrast-gain and high contrast-gain which reinforces an alternative 

investigation using spatiotemporal regressor for improved performance and prediction 

accuracy.  

To the best of my knowledge, the most recent work on automated quality assessment, is the 

work by (Luong et al., 2021); (Dong et al., 2020); (Abdi, Luong, Tsang, Jue, et al., 2017a) and 

(Huang et al., 2021). However, Abdi’s work was based on a regression model implemented to 

elicit automatic quality scoring. A single score was used to determine the strength of quality 

features in cardiac samples. Although Abdi's and Luong’s defined numbers of objective criteria 

for two-dimensional echocardiograms, they did not include sufficient domain-specific criteria 

or searchable element-wise characteristics which renders their characterization less useful for 

cardiologist prioritize in clinical workflow.  

Luong had admitted that universal reference standard of evaluation of echocardiographic image 

does not exist and that the scale of criteria used in many publications do not represent experts’ 

standard assessment and consensus on 2D echocardiographic image quality (Luong et al., 

2021). Nevertheless, Luong work was based on average weighted score method (AWS), is the 

clever way to avoid annotation of cumbersome cardiac samples. Unfortunately, AWS is known 

to be insufficient of translatory advantages in clinical workflow. Average weighted score 

method of objective assessment is incapable of assisting ultrasound operators identify the aspect 

of image quality attributes that require immediate optimization.  

Similarly, Dong et al., (2020)., proposed a generic quality control framework where 

characterization of A4C for foetal ultrasound resulted into zoom and image gain attributes. It 

was considered the first comprehensive quality control method with possibility for clinical 

consideration. Unfortunately, its application is limited to foetal ultrasound and lacks significant 

adequacy for generalisation of quality attributes required for wider use cases. 

In this study, the definition of seven (7) domain specific attributes of apical-four image view 

(A4C) with focus and consideration for clinical and pathological relevance was achieved. It is 

believed that the defined attributes represent adequate characteristics of apical-four standard 

views. While other cardiac views would require additional or separate characterization, these 
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objective attributes could potentially be used to formulate clinical assessment method relevance 

for different apical views standard as may be required in different clinical lab protocols.  

Nevertheless, in medical imaging literature, semi-supervised learning (SSL) methods which are 

associated with cardiac samples are rare. This is because classification of cardiac samples in 

the medical domain is subjected to cardiologists’ visual assessment and interpretation and real-

life scenario dataset require utmost and professional attention for clinical arbitration. Therefore, 

a shift into automated classification would be considered significant, radical, and historical. 

Moreover, to implement an automatic classification of cardiac samples would require a 

consensus of an expert's standard of reference which is non-existent till now. In the author’s 

earlier work (Labs, Zolgharni and Loo, 2021) proposed a coherent standard for quality attributes 

and assessment methods using domain-specific scores can be further applied for sample 

characterization to aid clinicians’ assessment during clinical exams and diagnostic process.  

The implementation of SSL is broadly classified into pseudo-labelling, adversarial learning, 

consistency-based and graph-based methods. This section provides a review of relevant works 

from the application of pseudo-labelling on two-dimensional echocardiograms. 

To the author’s knowledge, there is no currently published work on objective characterization 

of two-dimensional echocardiograms using global attributes in the characterization of domain-

specific criteria and assessment method in echocardiography modelling. This novel approach 

in echocardiograms image quality characterization is suitable for the implementation of specific 

quality assessment in retrospect or real-time optimisation. 

 
 

6.4 Main Contributions 
 

This work is distinguished from (Luong et al., 2021); (Dong et al., 2020); (Abdi, Luong, Tsang, 

Jue, et al., 2017a) and (Huang et al., 2021) as it’s based on domain-specific characterization, 

featuring three-state objective assessment criteria (Table 6.1). The advantage of this novel 

method encapsulates the clinical and pathological characteristics of the two-dimensional 

cardiac image required for objective assessment and quality optimization. In view of the above, 

this research concludes that earlier works presented plausible contributions, but characterization 

were too limited for objective consideration for clinical workflow, and assessment criteria are 
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too limited in scope therefore, earlier works (without exception) are insufficient of translatory 

advantage in clinical practice. Our main contribution therefore can be summarised as follows: 

● Analysis and annotation of independent dataset (EchoLAB) for domain-specific 

image characteristics covering 21 anatomical and pathological criteria 

● Definition of clinical relevance, seven (7) objective characterization for global 

framework of 2D echocardiographic specimens in A4C standard views. 

● Proposal of semi-supervised deep learning pipeline feasibly demonstrated for 

pseudo-label annotation process for 2D echocardiographic images 

● Public release of complete annotated patient dataset to allow future studies and 

external validation of the new approach or methods 

 

 

6.5 Methodology 
 

This work is based on elicitation, clinical review, and response from a consortium of experts, 

cardiologist and researchers who collectively evaluated the independent dataset for objective 

characterization and prepared initial ground truth annotation for our semi-supervised learning 

model.  

The advantage of this novel characterization method for two-dimensional cardiac image 

provides details of domain-specific, acceptable standard of objective elements of A4C for high 

repeatability factor and a non-biased clinical measurement.  

This section provides details of the (EchoLAB) independent dataset description, followed by 

objective characterization of image quality with expert opinion scores. Finally, this chapter 

details the implementation of an objective model for automatic pseudo-labelling procedure 

using a robust combination of ensemble and semi-supervised learning model.  

 

6.5.1 Dataset Preparation (EchoLAB) 

The study population consisted of a random image sample of 27,230 apical-four 

echocardiography from earlier studies of patients with age ranges from 17 and 85 years, 
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recruited from patients who had purposely undergone echocardiography with Imperial College 

Healthcare NHS Trust. The acquisition of the images had been completed by experienced 

Echocardiographers using ultrasound equipment from GE and Philips manufacturers according 

to the standard protocols. Ethical approval was obtained (System identifier 243023) from the 

Health Regulatory Agency. Patient automated anonymisation was performed to remove the 

patient-identifiable information. To establish domain-specific evaluation of comprehensive 

anatomical details and expert ground truth annotation (Figure 6.1), the specimen was randomly 

selected for clinical characterisation, and referred to as ‘EchoLAB’ private dataset. Finally, up 

to 15% of total image specimens were annotated for model development purposes (ensemble 

semi-supervised pipeline) for a complete ground truth labelling process ready for evaluation 

and quality assessment method pipeline illustrated in Figure 6.2. 

 

 

Figure 6.1: Apical four chamber images with annotation for chamber cavities (atrium, ventricles), Mitral valve, 

Tricuspid valve, interatrial and interventricular Septum. 

 

 

6.5.2 Objective Characterization and Scoring 

As the pace of change in AI and objective quality assessment continue to accelerate towards 

clinical use case acceptance, integration of such systems continues to pose significant 

challenges in the scope of acceptance and relevance in a unified workflow. The criteria defined 

for two-dimensional echocardiograms in many literatures appear to be too limited in scope and 

use case, consequently, none of the proposed assessment methods found acceptance with 

healthcare experts. But recent advancement in objective characterization has the potential to 
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move cardiac image quality assessment from its infancy where limited criteria is applied to 

characterise cardiac image, which is highly domain specific to a full-fledged, meaningful, and 

clinically relevant objective standard of assessment. The expertise and experience of member 

of the clinical consortium: cardiologist, clinician, sonographers, and deep learning researchers, 

were harnessed for the study which yielded seven (7) domain-specific characterization of two-

dimensional echocardiogram in A4C as follows: 

(a) Anatomical projection 

(b) Intraventricular septum visibility 

(c) Valves visibility 

(d) Left ventricle clarity 

(e) Image sector gain 

(f) Foreshortening diastole 

(g) Foreshortening systole 

Each of characterization attributes could be used separately or in partial combination to satisfy 

respective requirements in clinical workflow or in the implementation of automated quality 

assessment pipeline. Details of domain specific characterization are summarised in Table 6.1 

for A4C. 

 

6.5.3 Domain-Specific Experts Annotation 

Two experts independently provided seven (7) separate annotations for 4,000 echocardiogram 

specimens representing 15% of total randomly drawn cardiac image samples. To reduce the 

finite possibility of set of images falling outside the coverage of label space, I adopted additional 

sampling method by assessing each randomly drawn cardiac specimen and apply stratification 

to ensure fair representation of pathologies and abnormalities before ground truth scores (QGT) 

is assigned using twenty-four (21) opinion scores criteria summarised in Table 6.1. Since each 

characterization factor has a total score of 10, discretization was applied for score range of 4.6, 

7.6, 10 as poor, average, and good quality respectively. This was done to prepare multivariate 

regression model for the training and inference process described in section 2.5.  
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Table 6.1: Domain-Specific Characterization of global attributes on Apical Four (A4C) Image Quality Assessment 

Domain sp. Characterization Objective Criteria EOS Assessment Description 

Q1 CLINICAL 

PROJECTION 

Apex wholly On-axis 6 Domain-specific requirement for on-axis 

projection of four apical chambers & 

intraventricular septum 
Apex partially On-Axis 3 

Apex severe Off-Axis 1 

Q2 INTERATRIAL/ 

INTERVENTRICULAR 

SEPTUM VISIBILITY 

Wholly visible 6 Clinical requirement for wall assessment, 

measurement, and strain quantifications Partially visible 3 

Not visible 1 

Q3 AORTIC/MITRA 

VALVES VISIBILITY 

Wholly Visible 6 Clinical requirement for valves 

assessment, measurement, and 

regurgitation quantification 
Partially visible 3 

Neither visible 1 

Q4 LEFT-VENTRICULAR 

CLARITY 

Highly Distinguishable 6 Clinical requirement for cavity 

assessment, strain measurement, and 

ejection fraction quantification 
Average Distinguishable 3 

Poorly Distinguishable 1 

Q5 SECTOR  

DEPTH-GAIN 

Adequate depth-gain 6 Anatomical and pathological 

requirements for additional decision-

making process  
Poor depth-gain 3 

Excessive depth-gain 1 

Q6 FORESHORTENING 

DIASTOLE 

Minimal 0 Clinical requirement for assessment of 

ejection fraction, cardiomyopathy, 

crucial pathologies & apex visibility   
Average -4 

Excessive -6 

Q7 FORESHORTENING 

SYSTOLE 

Minimal 0 Clinical requirement for assessment of 

ejection fraction, cardiomyopathy, and 

clinical quantification.   
Average -4 

Excessive -6 

 

 

6.5.4 Semi-Supervised Boosting Model 

The choice of boosting ensemble strategy implemented in this project incorporate semi-

supervise algorithm aimed at performing automatic annotation of unlabelled samples in the 

characterization of cardiac specimens. Boosting strategy can combine weak classifiers to obtain 

the effect of a strong classifier model and improve model performance and accuracy.  

The implementation consists of four classifiers of a known performance (since they were 

evaluated in earlier work) to offer a high degree of generalizability for the implementation of 

cardiac characterization and auto-labelling process. This ensemble architecture illustrated in 

(Figure 6.3), is a choice for the implementation of pseudo-labelling algorithm for two major 

reasons: combination of known high performance state-of-the-art models and CardioQNet 

model which is considered as new ultra-light weight architecture and to ensure high-

performance accuracy with comparable convergence and correlation.  
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The block diagram of the boosting ensemble model illustrated in (Figure 6.2) is the core 

architecture used for the classification of global attributes on cardiac specimens. Due to the 

inherent complexity in fast moving cardiac frames which requires both space-time components, 

individual classifiers may not provide satisfactory results, as the echocardiographic data is 

highly heterogeneous and noisy (Zhang et al., 2016); (Zhang et al., 2021).  

Rather than finding the best single model classifier, consideration for multiple classifiers is 

applied through boosting ensemble learning methods to achieve a robust layered network 

architecture, stronger generalizability and obtain better classification accuracy.  

Echocardiogram’s specimen mostly dominated by noise, (i.e., low signal-to-noise ratio), 

artefact and hardware induced noise, ensemble architectures provide majority voting which is 

derived from stacking the optimised model along with two notable state-of-the-art models for 

semi-supervised ensemble learning.  

 

Figure 6.2: Illustrating the semi-supervised learning using ensemble architectures (VGG16, ResNet50, 

MobileNetV2 and ‘CardioQNet’) with majority voting algorithm Adapted for self-supervised Architecture on 2D 

Characterization Pipeline.  

 

The final output value which is a class label 𝑌𝑘 of the ensemble is computed using an averaging 

voting scheme common with regression models. While in classification mode, priority is given 

to the majority votes prediction when a specific class labels have more than half of the 

classifiers votes as illustrated in equation (4.2). There is a possible instance when prediction is 
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considered void if class votes do not meet the criteria of majority votes, in such case, there is 

no prediction and the model retry the iteration process until class votes meet the prediction 

criteria. In a multi-class scenario, where Q is referred to as pre-trained classifiers, while each 

classifier yields specific prediction per input data, a total of N classifiers, the ensemble decision 

will be correct if at least [Q/N + 1] classifiers choose a correct label.  

Generally, semi-supervised models offer dual advantages in discrete label and performance 

spaces. It potentially can increase a model's ability to generalise on similar data with 

exceedingly high performance as well as providing correct predictions for unknown, unlabelled 

samples. Semi-supervised algorithm involves two major iterations: training of a supervised 

model using few categorised labelled subsets of the training samples and inferring pseudo-

labels for the unlabelled portion of the test data. Consequently, the model re-combines newly 

auto-labelled samples and initially labelled data and recalculates development samples for 

subsequent training iterations in a case of k-fold test sets. It is effective and works well for cases 

with low-density separation of categorical labelled classes. However, it can also reinforce errors 

learnt by the initial model, which is why I implemented spot checking procedures along the 

iteration to effectively correct potential errors. Worthy to note that a handful of researchers have 

applied pseudo-labelling to cardiac samples due to the reason given above. 

 

A. Data Splitting and Data Augmentation 

In this experiments, labelled data pool was at minimum 15 percent, (supplied with limited 

annotated specimens) compared to unlabelled specimens of 23,149 and this may be insufficient 

to provide adequate representation in data search space required for deep learning models. 

Medical ultrasound images bear significant pathological and anatomical features which are 

critical for clinical measurement, classification, and diagnosis. Therefore, we adopted a k-fold 

validation for the ensemble learning portion and semi-supervised inference on the unlabelled 

pool while we split the labelled samples LF into LT and LV (training and validation) in 80:20 

ratio for the purpose of training. Also, data augmentation was applied to provide stability and 

improve model learning accuracy. Data augmentation on training samples increases the 

diversity of the training set using realistic transformations and creating new training samples 

from original samples without changing the scope of label space. For each round of 5-fold 

inference, after label propagation had taken place, training, and validation LT + LV samples 

grows until last inference iteration when XU pools equals zero.  
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B. Model Training  

The pipeline task is to learn with the limited augmented labelled samples LF, then utilise the 

abundant pool of unlabelled samples XU to improve generalisation of 2D echocardiogram 

characterization and pseudo-labelling. The entire pipeline process and iteration is illustrated in 

(Figure 6.3). The classification target associated with 𝑋𝐿 is denoted as  𝑌𝐿, where  𝑌𝐿  is 

associated with only one of many labels (i.e., maximum configuration of 3 unique classes). For 

a given training dataset, we have LF labelled samples {(𝑥𝑖 , 𝑦𝑖)
𝐿} = 1LF and XU unlabelled 

samples {𝑥𝑖}
U = 1XU with XU not equal to LF. Model training starts with labelled samples 

(𝑋𝐿,   𝑌𝐿) using (𝑥, 𝑦) 𝑤ℎ𝑒𝑟𝑒 𝑥 𝜖 (𝑋𝐿 ,   𝑌𝐿) 𝑎𝑛𝑑 𝑦 being the corresponding categorical label.  

The model training implementation considered a batch of input sample 𝑥, where 𝑥 is taken as a 

single 2D image or an array of 2D slices and applied random transformation of 10 degrees 

rotation and translation of 5% each during training phase, yielding an expanded dataset to obtain 

prediction of category label  ŷ  which is evaluated using the mean absolute error (Grandini, 

Bagli and Visani, 2020), and error rate (combined error type I and II) metrics (K B and J, 2020) 

as detailed in Table 6.3.  

This process is followed by inference on unlabelled samples XU, while each prediction is 

evaluated against the sigmoid activation curve between [>0.95 and < 0.05] and added to the 

initial pool of labelled samples LF while deducting {𝑥𝑖}i, from the unlabelled samples XU.  

Since k-fold validation method was implemented, subsequent inference iteration can be paused 

momentarily to allow additional inspection in the process known as spot-checking procedure, 

where predicted label is evaluated against the label samples to allow addition or prevent 

addition of label samples. Consequently, the inference iteration process continues yielding a 

deduction in the unlabelled samples XU until the last unlabelled batch samples are predicted and 

added to the pool of annotated samples. 

 

C. Spot Checking  

Usually, the assessment of hearts function using 2D echocardiogram requires special attention 

and so does the opinion on image quality. Most objective models f(x) does require large samples 

to train on, unfortunately, a self-learning model in contrast, usually must consider its training 

on a pool of limited labelled samples. Consequently, accuracy and subsequent inference 

iteration are usually not at their best measure.  
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Indeed, the result of several experimental values obtained and analysed on inference process 

have proved that propagation error in label space can only be reduced rather than eliminated. 

This is because, two different images may assume a similar RMS value or yield similar learned 

features in some dataset like 2D echocardiogram.  

One of my experimental investigations had consider the use of basic image dataset containing 

Bees, Cats and Dogs; this was applied on the semi-supervised learning (SSL) architecture 

described in this section. The model accuracy was great, but few images still manage to slip 

through the wrong label classification despite. 

However, in a bid to minimise deviation error in the entire self-learning and prevent propagation 

of classification error in the subsequence process, a new approach that would reinforce 

confidence in model classification and inference loop must be considered.  An example of this 

is applied in manufacturing plant where each component and system integration are passed 

through quality assurance using spot-checking methodology.   

The author therefore proposes a spot-checking process in the inference loop, where model’s 

iteration is paused momentarily to evaluate inference threshold for all the incoming new labels. 

This usually can happen after the inference loop is initiated. At this moment, all new incoming 

samples with respective new target values (pseudo-labelled) are automatically visualised (on-

the-fly), for evaluation. The user can either proceed with automatic addition of new label 

samples into the original label space or re-adjust the threshold values to restart the process as 

deem fits. The original threshold values for this model encompasses three categories in the label 

space, ranging from 0 < score <= 0.4500; 0.4501 score <= 0.7500; 0.7501 < score <= 0.9999 

for class label poor, average, good quality respectively.   

Since the k-fold validation method is implemented for the training loop, the inference loop is 

consequently grouped accordingly. Each inference group occurs after model training and 

validation phases and completes the SSL pseudo-labelling cycle. i.e., the auto-annotated 

samples as illustrated in Figure 6.3. 

This means that each pseudo-labelling cycle is isolated before the next training phase is 

initiated. Therefore, halting the iteration (which can be released without terminating the user 

session), is essential for on-the-fly inspection of newly labelled samples. Consequently, an 

erroneously classified samples can then be isolated or new threshold values assigned to 

accommodate model deviation on the group samples. This method was implemented and has 
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yielded significant results. Furthermore, the novel method could provide additional layer of 

quality measure with a view of reducing subsequent error in the propagated label space.  

The impact of spot checking on label space was investigated on test dataset (i.e., Bess, Cats, 

Dogs). The inference accuracy recorded on known label space yielded 82.13% without the spot-

checking process and 89.30% with spot checking, respectively. This equates to 7.17% 

improvement on model generalizability with the implementation of spot-checking on this 

specific dataset. For 2D echocardiogram, the improvement could be very significant due to the 

varying frame contents in pathological and anatomical features.   

 

 

Figure 6.3: Illustration of a robust semi-supervised pipeline implemented for pseudo-labelling process in objective 

characterization of 2D-echocardiogram samples. 
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6.6 Evaluation Metrics – Ensemble Model 
 

This study employed several metrics in the evaluation of ensemble model performance; these 

include average voting method, classification accuracy, inference latency in (ms) and numbers 

of trainable parameters for the use of system memory.  

● Voting Method: In practical terms, deep convolution neural classifiers are generally 

correlated (Zhang et al., 2021) especially when they are trained on the same data, 

however, it is not out of place to assume for an ensemble model that each classifier’s 

output is statistically independent of each other. Therefore, the probability that each 

classifier in ensemble stacking technique, makes a correct prediction can thus be 

summed up using binomial distributions stated in equation (4.1): 

 

𝑃𝑥 = ∑ (𝑥
𝑇) 𝑝𝑥 (1 − 𝑞)𝑇−𝑥

𝑇

𝑥=[
𝑇
𝑛
+1]

                             (4.1) 

 

Where P is the binomial probability of mutually exclusive outcome of either success p 

or failure q, x is the number of times for a specific outcome within T number of trials 

within (𝑥
𝑇) number of combinations. Voting method assesses the collective classifier 

prediction for class labels is given in equation 4.2. 

𝑌𝑘 = ∑𝑄𝑖
𝑘(𝑥)

𝑁

𝑖=1

> 0.5 ∑ ∑𝑄𝑖
𝑘(𝑥)      

𝑁

𝑖=1

𝐿

𝑘=1

(4.2) 

 

Where N is the maximum discrete classifier in the list {𝑄1 …𝑄𝑁} are combined to predict 

𝑌𝑘 class label from set of L possible label space  {𝑌1 …𝑌𝐿} yielding a rejection or no 

prediction unless class label 𝑌𝑘 receives more than half of the total votes.  

● Model Accuracy: The model performance was evaluated as mean absolute error 

(MAE) for the collective models in the ensemble classifier. The regressor voting 

ensemble fits three model regressors on the unlabelled samples and averages each 

individual prediction to form as final prediction. Model accuracy is evaluated in 

equation 4.3 as: 
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𝐴𝑐𝑐µ = 1 − (
∑ |𝑄𝐺𝑇𝑖 − 𝑄𝑃𝐷𝑖|

𝑛
𝑖=0

𝑛
) ∗ 100        (4.3) 

 

● Training Time: Training times are affected by the number of convolution layers, 

number of its training parameters, image spatial size and hardware processing power. 

Excessive number of trainable parameters in each network can create redundancy and 

prolong training time per epoch or convergence. All computations were carried out on 

GPU GeForce GTX 970 chipset's Maxwell architecture and featuring 4GB RAM 

coupled to 1,664 CUDA cores. A batch of 6 samples were favoured for each training 

phase for 50 epochs per k-folds. The ensemble model takes a total of 8hrs GPU time for 

each characterization. This is repeated for each of the seven (7) global characteristics 

on apical four chamber (A4C) image specimens.    

 

6.7 Results and Discussion 
 

Similarly, to Wen et al. (2019) and Baker et al. (2017), the quality of the data fit via model 

accuracy per k-fold was assessed on ensemble training in direct sequenced with pseudo-

labelling process and spot-checking procedure to minimise error propagation in subsequent 

training phases. It’s apparent that model performance on generalisation improves with 

increased pool of samples as indicated in Table 6.2, Table 6.3, and Figure 6.4 while model error 

grows less and less with improved generalization per folds (Table 6.4). 

 

Table 6.2: Summary of ensemble semi-supervised model accuracy on pseudo-labelling inference for A4C cardiac 

specimens.  

Apical Four (A4C)  

Global Characteristics 
Fold-1 

(10%) 

Fold-2 

(18%) 

Fold-3 

(22%) 

Fold-4 

(24%) 

Fold-5 

(26%) 

Mean 

Accuracy 

ON-AXIS PROJECTION 98.08 98.37 98.73 99.06 99.24 98.70 

SEPTUM VISIBILITY 98.81 98.71 98.80 99.10 99.14 98.91 

VALVES VISIBILITY 98.30 98.17 98.77 98.87 99.09 98.64 

LV CLARITY 98.48 98.43 98.88 99.04 99.05 98.78 

DEPTH-GAIN 97.83 98.33 98.49 98.87 99.07 98.52 

FORESHORT DIASTOLE 97.45 98.29 98.64 99.05 99.08 98.50 

FORESHORT SYSTOLE 97.53 98.27 98.86 99.06 99.13 98.60 
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Table 6.3: Pseudo-labelling standard error distribution across k-Fold samples expressed in Mean ± SE for sample 

characterization of Apical-four (A4C) global attributes. SE taken as SD/Sqrt (fold test samples). 

[Mean ± SE] Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 

ON-AXIS 

PROJECTION 
0.1105 ± 0.0141 0.0943 ± 0.0092 0.0754 ± 0.0077 0.0625 ± 0.0059 0.0509 ± 0.0046 

SEPTUM 

VISIBILITY 
0.0765 ± 0.0124 0.0746 ± 0.0097 0.0823 ± 0.0089 0.0500 ± 0.0054 0.0471 ± 0.0045 

VALVES 

VISIBILITY 
0.1105 ± 0.0174 0.0903 ± 0.0108 0.0673 ± 0.0063 0.0676 ± 0.0043 0.0558 ± 0.0042 

LEFT-VENT 

CLARITY 

0.0949 ± 0.0134 0.1018 ± 0.0098 0.0721 ± 0.0070 0.0533 ± 0.0046 0.0599 ± 0.0041 

SECTOR 

DEPTH-GAIN 

0.1237 ± 0.0103 0.1009 ± 0.0092 0.0876 ± 0.0067 0.0641 ± 0.0052 0.0482 ± 0.0044 

FORESHORT 

DIASTOLE 

0.1558 ± 0.0172 0.1130 ± 0.0082 0.0936 ± 0.0086 0.0573 ± 0.0053 0.0483 ± 0.0041 

FORESHORT 

SYSTOLE 

0.1691 ± 0.0190 0.0987 ± 0.0088 0.0683 ± 0.0061 0.0502 ± 0.0044 0.0540 ± 0.0044 

 

Table 6.4: Showing the mean and standard distribution on global attributes of apical-four (A4C) samples, across 

7 attributes of domain-specific quality, expressed in Mean ± SD for each three-quality class characterization. 

 On-Axis Projection Septum Visibility Valves Visibility LV Clarity 

Q1 0.0706 ± 0.1095  0.0646 ± 0.1114 0.0801 ± 0.1226 0.0858 ± 0.1158 

Q2 0.0866 ± 0.1159 0.0561 ± 0.0973 0.0816 ± 0.1083 0.0667 ± 0.0879 

Q3 0.0789 ± 0.1169 0.0776 ± 0.1340 0.0752 ± 0.1126 0.0766 ± 0.1111 

     

 Image DepthGain Diastole Foreshorten Systole Foreshorten  

Q1 0.0775 ± 0.0975 0.0982 ± 0.1333 0.0865 ± 0.1125  

Q2 0.0881 ± 0.1038 0.0915 ± 0.1036 0.0836 ± 0.1037  

Q3 0.0891 ± 0.1019 0.0912 ± 0.1080 0.0940 ± 0.1129  

 

 

Figure 6.4: Comparison of process accuracy for different global characterization attributes of cardiac specimens 

in apical-four chamber image using ensemble with semi-supervised learning. Plots indicated consistent model’s 

generalizability with high performance and model accuracy which is congruent in proportion to increased data 

samples across the k-folds.  
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It is clear from the result of model accuracy for each respective characterization standard 

attributes that on-axis attributes top the list in best performance 99.24% on the last k-fold and 

LV- clarity attributes with 99.05%. The model ability to generalize has not been diminished for 

any of the considered attributed.  

For valve-visibility, has shown a decline in model performance at the second phase of model 

inference, with 98.17% compared to other attributes on the list. This feature is assumed to be 

one of the critical aspects of myocardium, they are clinical essential for performance assessment 

of cardiomyopathy in hospital patients. Model performance was low on limited sample space 

but improved with additional new labels in the auto label pool. This means that echocardiogram 

quality classification would require careful and decent volume of data space for any meaningful 

generalization and results. This is the point where incremental k-fold validation becomes 

relevant. It assures a minimal error propagation in the adjacent folds and allow the assessment 

of what volume of data pool could be injurious or impair the classification or regression tasks.     

  

6.8 Conclusion 
 

The inherent constraints in deep learning development and algorithm are the problem with 

dataset availability and correspondent annotations otherwise known as ground truth. This is 

especially true in echocardiography domains, that lack of annotated data and the general data 

restriction on personalised diagnostic medical details are inherent problem facing AI 

researchers. Saripalli et al., (2020) had been demonstrated that medical image data annotation is a 

critical feature to objective development and the requirement for experts’ skills in echocardiography 

domain is a priced endeavour. One solution proposed in this research is reinforced learning using 

SSL. Although this has been widely used in relation extraction of photographic images, little 

has been demonstrated on 2D echocardiograms. Therefore, healthcare application using 

reinforced learning are, up till now very sparce. The is specific to medical imaging, because 

they are complex and require domain expertise for interpretation and annotations. The novel 

solution proposed, thus adequately provided a lead way, where an unsupervised algorithm 

latched on boosting learning to generalize on limited label space and produce automatic 

annotation for majority of unlabelled samples in semi-supervised boosting pipeline. 

In contrast to individual classifiers as a semi-supervised model, it is evident that semi-

supervised learning in ensemble mode has the logical and technical potential for a robust 
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pipeline process in the classification of medical image samples and has thus yielded very 

satisfying results as indicated by the global characteristic curve in Figure 6.4.  

Majority of semi-supervised models in literature have provided comparable results but are 

adapted for classification of high-fidelity or non-medical images than adapted for 2D 

echocardiograms. This is because medical images are highly personalised and inherently 

complex for classification models. Nevertheless, the primary aim for semi-supervised models 

have been to improve and optimise the generalizability of model’s performance but this study 

has extended the application to pseudo-labelling of more complex dataset for apical four 

chamber images for the purpose of characterization of cardiac global features.  

Each fold featured a finite pool of samples which increased when new pseudo-labelled samples 

were added from unlabelled samples space. The mean standard error reduces as data size 

increases with each training routine as shown in Table 6.3 and is consistent across the five-fold 

and the objective global attributes.   

While Table 6.4 showing the precision of measurement in the mean standard deviation relating 

to discretized class category across the seven attributes, low error rates on the label space 

indicated a good model fit for the unlabelled samples and the ability to distinguish and 

propagate minimal error to achieve the high-level accuracy. The inference error was drastically 

minimised by the implementation of spot-checking algorithm. This provided a layer of 

confidence in auto-labelling process and help reduce error furth in the adjacent k-fold validation 

process and in label propagation.  

Therefore, ensemble learning in a semi-supervised model could be useful in real-time 

classification of cardiac samples and provide a reliable process for medical image classification. 

The significant of this solution provides essential clinical use case for cardiologist and clinicians 

during echo exams or unified workflow. We find this novel approach to be data efficient, scalable, 

and generalizable for echocardiogram annotation task, which ordinarily are very costly for huge volume 

of global quality framework and unified application in the Healthcare sector. 
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Chapter 7  
 

Feasibility for Real-Time Optimization 
 

 

7.1 Introduction 
 

A two-dimensional (2D) echocardiography has become a widely accepted standard for 

assessing cardiac functions (‘Rudski et al. - 2010), (Mitchell et al., 2019) and plays a vital role 

in detecting heart abnormalities even during medical emergencies. The most important 

consideration however, is achieving optimum image quality which is essential to a reliable 

quantification of the left ventricle (LV) systolic functions. In the past decades, several efforts 

have been geared towards echocardiographic image quality and assessment methods. 

Unfortunately, many of such solution did not gain translatory advantage in clinical practice, 

either because the adopted criteria were insignificant or did not meet experts’ expectation in 

clinical assessment. 

In our earlier publication (Labs et al., 2020), we enumerated the significance of domain-specific 

criteria for grading echocardiographic image quality in apical-four (A4C) and parasternal long 

axis (PLAX). Also demonstrated the feasibility of a machine learning algorithm to quantify and 

assess echocardiogram image quality in real-time or in retrospect. The clinical application of 

such methods employed a domain-specific definition of quality elements that effectively 

constitute a standard of objectivity when adopted by clinicians. It lays the foundation for the 

possibility of a real-time echocardiogram optimization of image quality, assessment methods, 

reliable measurement, repeatability in quantification, objective interpretation, and better 

diagnosis. 
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Significance of Real-Time Optimization  

Since image quality is inherently subjective with strong dependence on operators’ experience 

level and acquisition skill, this means that a less experience ultrasound operators is prone to 

acquiring poor quality echo images which can impair diagnostic accuracy (Liao, Z. et al 2019). 

Therefore, to implement an objective system where operators are guided through acquisition 

process will constitute a tool of clinical significance to cardiac reliability and diagnosis. Such 

system tool will have to rely on a set of domain-specific quality standard and feedback 

mechanism to provide objective assessment prior to clinical measurement and quantifications.   

In the clinical practices, preference for cardiac image in apical-two (A2C), A4C and PLAX 

standard views have gained recognition from healthcare experts. Therefore, diagnostic 

outcomes are derived from the linear measurements and volumetric quantifications of these 

standard views. Nevertheless, obtaining any of such complex views during medical 

emergencies or where unwell patients are hardly oriented in dorsal decubitus could present 

additional layer of complexity. Such instance is inherent in medical practice and potentially 

exacerbates operators’ skill in the acquisition of optimum image quality. The possibility of 

achieving or acquiring an optimum image quality becomes less and less when dealing with 

multiple patients in a prolonged TTE exams.    

Moreover, echocardiography image quality can be affected during TTE outside the laboratory 

setup. For example, at point of care or at frontline medical deployment. Research has shown 

that clinicians are prone to obtaining a sub-optimal image quality of limited value when larger 

volumes of diagnostic data are generated, especially during medical emergencies or pandemic 

(Luong, C et al., 2020). However, to overcome these inherent limitations, a real-time 

optimization algorithm which can provide quantitative information on the adequacy of the 

images while allowing operator to improve on the specific element of quality is proposed.  

 The impact of such system on TTE examination could accelerate the learning curve of 

ultrasound operators and provide significance to accurate diagnostic of pulmonary disease and 

cardiac infarction (Nagata et al., 2018), (Labs et al., 2021). 
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Clinical Use Case 

A unified transthoracic (TTE) exam workflow can be illustrated in (Figure 7.1), consisting of 

six (6) major processes of which are classified into three phases namely: Acquisition and 

Optimization, Functional Analysis, Interpretation and Diagnosis phases.  

Typical clinical workflow usually begins with manual echo scan of patient who is undergoing 

transthoracic exam, standard echocardiogram in either of the 14 apical views are generated by 

the operator. This is known as the image acquisition process and is regarded as the critical phase 

in a unified workflow where reliability, variability and accurate quantifications are determined 

correctly or otherwise.  

This phase is followed by view identification since different views are usually required to build 

an adequate examination profile. Consequently, several images are thus generated for each 

patient, but each quality is subjected to operators’ subjective assessment and are entrusted to 

produce optimum images. This however does not happen due to the one or combinations of 

reasons given above.  

Before a diagnostic decision is made, the images must pass through phase detection where the 

start of systole and diastole is accurately identified.  The clinical impact of optimum image 

quality can prevent the propagation of analytical error in the adjacent process. Acquiring 

optimum image quality is paramount to consistency and reliability of phase detection process, 

segmentation, measurement quantification and indeed diagnosis of myocardial infarction.  

This should be noted that a poor image quality yields poor outcomes in the successive process 

of the unified workflow. Most importantly, good image quality produces excellent outcome and 

ease of the processing overhead of subsequent phases in the workflow. 

Therefore, to enforce clinical protocol and quality compliance, an objective quality control 

process is necessary. An objective image quality assessment is thus required during acquisition 

phase, providing specific feedback for image adequacy, and allowing qualitative optimization.  

Optimum image quality is also paramount to the linear measurements of the left ventricle (LV) 

systolic functions that provide major clues to a healthy heart which triggers a corresponding 

diagnostic response for patient care.  
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Figure 7.1: Illustrating unified workflow that details significant automated processes from acquisition to 

diagnosis. Optimization should occur before the analytical stage to guarantee optimal image quality before 

clinical measurement and quantifications.  

 

Although the inference data reported in the previous studies were adequate for real-time 

optimization, yet the utility of such systems in the clinical practice would be limited. This is 

because a single score to denote overall image quality score is provided by the models. 

Such scoring system is grossly incapable of guiding operators to which aspect of quality is 

lacking in the overall assessment and optimization protocol. Hence, practical deployability of 

such a system is limited to experimental demonstration instead of translatory advantage. If 

employed as part of a real-time optimization or operator guidance system, the operator is 

provided with no clues as to why the image is being tagged as low quality, and how to improve 

on specific element of quality in the acquired image would become time-consuming and guess 

work.  

A practical quality optimization report should contain such information which possibly breaks 

down the specific attributes of image or frame quality, and updates on the quality while 

optimization progresses is the novelty in this chapter. Therefore, the optimization utility 

provides clinical insight on objective standard per quality element of ultrasound’s image during 

acquisition phase. Also, a method of accessing the specific quality attributes for the purpose of 

optimization of image quality before quantifications.  
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7.2 Related Work 
 

Cardiac images vary significantly from patient to patients, and it is difficult to define an image 

with perfect quality compared to non-medical imaging pathology. Consequently, it is 

considered impracticable to define a reference image with which can be measured by 

calculating its deviation (Wang and Bovik, 2002); (Wang et al., 2004).  

Similarly, Zhang et al., (2016) universal quality index approach which largely focused on 

distortion of compression, with some implementing machine learning algorithms using a 

random or structural noise level to evaluate image quality, provided an overall quality score 

that cannot be implemented for real-time optimization. The specific element of image quality 

must be explicitly defined, to provide scores visualisation for ultrasound operator’ during image 

acquisition phase.  

Furthermore, impact of image quality on echocardiographic measurements and global 

longitudinal strain has once been demonstrated by Nagata et al., (2018), but failed to address 

the explicit differentiation on specific elements that constitute quality with respect to image 

acquisition and quantification. Therefore, optimization cannot be implemented on average 

weighted value. 

 Although Abdi et al., (2017) work reported plausible outcomes, the assessment method was 

technically insufficient for clinical translation. This is because the defined quality features are 

limited and do not represent experts’ global characteristics for cardiac diagnosis using 2D 

echocardiographic images.  

Also was Luong et al. (Luong et al., 2021), defined twelve criteria to grade each of the nine 

apical standard views, but the assessment method and scores do not represent cardiologists’ 

conventional assessment in practice hence, could not be used for real-time optimization.  

The most recent study, to the best of our knowledge, was Dong et al, (Dong et al., 2020) 

represents the most recent study on objective quality assessment, however the study was limited 

to apical four-chamber plane (A4C) in fetal cardiology. Dong et al., (2020) did not include A2C 

and PLAX view, the recommended imaging plane for LV quantification and diagnosis.  

Hence, new measures of image quality were proposed by (Labs et al., 2020, 2021) based on the 

global properties of the echocardiographic images that match the pathological inferences and 

clinical recommendation. This serves the basis for optimization of ultrasound echo image 

acquisition and real-time optimization. 
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7.3 Main Contributions 
 

As noted in the earlier chapter, interpreting the results of the proposed architectures in the 

literature is not straightforward. This is because a direct comparison of the models' performance 

and clinical use case would require access to the same patient dataset and clinical application. 

At present, no echocardiography dataset and the corresponding annotations for the image 

quality assessment is publicly available or a unified pipeline where real-time optimization of 

image acquisition has been established.  

Therefore, this chapter enumerates the performance of novel deep learning algorithm 

established for automated image quality optimization of ultrasound images. The solution would 

integrate an independent echocardiography dataset (PACS-2) which would be made available 

on request at IntSav repository. 

In the view of the above, the main contributions of this research can be summarised as follows: 

● Preparation of (40,000) large independent cardiac dataset consisting of A2C, A4C, 

PLAX apical views for quality assessment and benchmarking standard. 

● Release of dataset including experts ground truth annotations for apical visibility, 

chamber clarity, depth-gain, foreshortening to the public domain. 

● Fully optimised deep learning multivariate pipeline that simultaneously predicts four 

independent scores of quality attributes and view classification from echo sequences. 

● Novel method on real-time access of 4 specific quality attributes to aid optimum image 

acquisition and reliable clinical quantifications. 

● Provide evaluation for real-time application pipeline suitable for operator feedback for 

data acquisition, and real-time optimization for A2C, A4C, and PLAX cardiac standard 

views.  

 

7.4 Methodology 
 

This section provides new insight to objective attributes of image quality, an overview of the 

key elements in objective assessment standards. Unlike previous related works, we provide the 

most comprehensive attributes of image quality as reviewed by cardiologists, and real-time 

feedback for operators' guides to obtain optimum image quality for quantification and clinical 

measurements. 
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7.4.1 Private Dataset PACS-2 

For clinical assessment of myocardial functions, cardiologists place a magnitude of importance 

on A4C and PLAX for volumetric quantification and linear measurements. Even though cardiac 

data are highly personalised with healthcare legislations, it’s rare to have a substantial large 

number of cardiac datasets in public domain. But for the purpose of this research, an ethical 

approval (ref. 243023) was sought from the UK's Health Regulatory Agency. 

This study is based on randomly selected patients’ dataset consisting of 6,216 (A2C frames), 

15,476 (A4C frames) and 18,308 (PLAX frames) from patients who had earlier undergone 

echocardiography TTE with St Mary’s Hospital, Private NHS Trust which was purposely 

acquired for this study. These cardiac images acquired in both standards consist of end systole 

(ES) and end diastole (ED) frames were completed by experienced echocardiographers using 

high-end ultrasound GE Healthcare (Vivid.i) and Philips Healthcare (iE33 xMATRIX) 

equipment. Standard protocol in data protection act (2018) allows for the removal of all patient-

identifiable information from DICOM-formatted videos before data analysis and applicable 

studies. Three frames were randomly drawn from each cine loop video and split into training 

(32,000 frames), and testing (8,000 frames) sub-datasets in 80:20 ratios. Figure 7.3., 

summarises model’s dataset distributions with three categorical labels derived from expert’s 

quality scores previously assigned to each frame; range of zero (0) to 4.5 as poor quality, 4.6 to 

6.5 as average quality, and 6.7 to 9.9 as good (optimum) quality, respectively.  

 

Figure 7.2: Data distribution for total cardiac images used for model development consist of 40,000 extracted 

frames of A2C, A4C and PLAX images, with three quality-levels: suboptimal quality, average quality, and optimal 

quality, respectively. 
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7.4.2 Ground Truth Annotations 

Each of the cardiac echo cine (A2C, A4C and PLAX views) were studied for anatomical 

characteristics that relate to experts’ clinical reviews and projection characteristics that relate 

to 2D echocardiograms. These features were visually analysed and were defined by 23 criteria 

listed in (Table 7.1) and referred to as ‘PACS-1’ dataset. Consequently, four specific quality 

attributes were identified and established for real-time assessment and optimization. 

 

Table 7.1: Score criteria for Apical-Two Chamber (A2C), Apical-Four Chamber (A4C) and Parasternal Long 

Axis (PLAX) Quality attributes and Ground Truth  

A2C - A4C 

 

PLAX 

Assessed Element per Attributes 

Maximum 

Manual Score 

awarded 

Assessed Element per Attributes 

Maximum 

Manual 

Score 

awarded 

APICAL VISIBILITY:  APICAL VISIBILITY:  

Correct Axis, Apex visible 6 Left Ventricle (LV) Visible 5 

Anterior wall / IAS visible   2 Right Ventricle (RV) Visible 3 

Inferior wall / IVS visible 2 Full Segment Pericardium Visible 2 

    

ANATOMICAL CLARITY:  ANATOMICAL CLARITY:  

LV Cavity clarity, (Endocardial 

Border) 
4 LV Cavity Clarity (distinguishable 

border) 
4 

Anterior leaflets (MITRA 

Valve) 
3 LV Anteroseptal Wall Clarity 3 

Posterior leaflets (MITRA 

Valve) 
3 LV Inferolateral Wall Clarity 3 

    

DEPTH-GAIN:  DEPTH-GAIN:  

Image Sectorial Gain 4 Sectorial Gain 4 

No Excess Gain 3 No Excess Gain 3 

Minimum Artefacts 3 Minimum Artefacts 3 

    

LV FORESHORTEN:  CAVITY FORESHORT:  

LV Apical Segment present 4 No-False Apex present 4 

Normal-Shaped Diastole 3 No-Apex Diastole 3 

Normal-Shaped Systole 3 No-Apex Systole 3 
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7.4.3 Quality Optimization Procedure 

In all existing ultrasound image quality studies, criteria defined for objective assessment centred 

on limited features like subjective clarity of image’s edges, valves, chambers, and gains. These 

clearly represent some important features by which anatomical details of the myocardium are 

analysed. In our studies, we have identified subjective correlation between observer perception 

of an image's anatomical features and the magnitude of distinguishable features present in the 

image. Thus, we proposed that objective optimization is based on defined anatomical and 

pathological features that encompass the echo image. Optimization protocol in this regard, 

would focus on improving the prediction scores for the following attributes:  

1. Apical Visibility: This is a minimum clinically required feature that involves significant 

acquisition experience. In A4C plane, apical visibility defines the on-axis projection of 

the myocardium with a beam cutting through the heart’s apex region. This presents a 

four-chamber view. This view should remain for both diastole and systole frame 

because of its clinical and pathological significance, paramount to clinical 

measurement, quantification, and interpretation (Mitchell et al., 2019).  

Assuming the intraventricular septum in Figure 7.2 is oriented along any point Pi on x-

axis, this position indicates a spatial distribution with structural deviation from origin 

P0 can be corrected by equations (7.1; 7.2), taking moment 𝛽 from probes’ medial (𝑥𝑝) 

or lateral translation (𝑦𝑝) to obtain optimum apical projection (𝑥1, 𝑦1). In the PLAX 

view, the left ventricle (LV) apex is not visualised, but emphasis is placed on anatomical 

orientation of the pericardium, RV at the apex, and LV chamber for linear and 

volumetric measurement. Pipeline’s feedback displays in real-time, the current quality 

scores while fine tuning probe’s translations until the highest score is achieved. Quality 

score ranges from 0.1 is rejected as unsuitable for quantification to maximum score 

range of 0.9 as optimum quality, respectively.  

𝑥1 = (𝑥𝑝 − 𝑥𝑐)  𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽 − (𝑦𝑝 − 𝑦𝑐) 𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽 + 𝑥𝑐        (7.1) 

𝑦1 = (𝑥𝑝 − 𝑥𝑐)  𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽 − (𝑦𝑝 − 𝑦𝑐) 𝑐𝑜𝑠 𝑐𝑜𝑠 𝛽 + 𝑦𝑐        (7.2) 
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Figure 7.3: Showing the magnitude of (off-axis) projection indicated by red arrow. An optimum (on-axis) 

projection shows the interventricular septum runs vertically down the middle of the screen indicated by blue 

arrows in parallel to the red arrow. 

 

2. Anatomical Clarity: This is a legacy attribute in objective assessment. Unlike non-

medical images, chamber cavities, walls and valves are soft tissues that only present 

rough boundaries and contractive edges. Kurt, et al., (Kurt et al., 2009), have 

demonstrated the impact of contrast echocardiography (Kurt et al., 2009), however, with 

respect to quantification, anatomical clarity is visualised by several distinguishable fast-

moving pixel’s formations during cardiac cycles. This quality element addresses the 

degree of distinguishable pixel element representing the endocardial border cavities or 

clear distinction between the intraventricular septum in A4C, pericardium in PLAX, 

valves, any trabeculated pericardial fluids and endocardial walls. It offers the perceptual 

distinction between pixels luminance levels which is described by the root means square 

(RMS) contrast where 𝑓(𝑥, 𝑦) represents the normalised pixels and 𝜇𝑓 is the mean 

normalised image in equation (7.3). With RMS contrast, contrast of cardiac frames with 

dissimilar and similar anatomical features can be computed without the need for angular 

frequency content. Moreover, cardiac frames with very high or very low contrast 

represent the extreme ends of the spectrum and pose significant challenges (Nagata et 

al., 2018), (Kurt et al., 2009) where little expertise is found. A very high contrast could 

generate artefacts and potentially obscured essential pathological details while a very 

low-contrast image could bear significant anatomical details required for clinical 

measurement. For optimization on clarity attributes, operators can rely on real-time 

scores while rocking, fanning or use probe cardinal compression until optimum score is 

achieved.  
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𝑓𝑐 = [
1

𝑚𝑛
∑ ∑ {𝑓(𝑥, 𝑦) − 𝜇𝑓}

2]
1

2 𝑛−1
𝑗=0

𝑚−1
𝑖=0          (7.3) 

 

3. Image Depth Gain: Depth-gain quality features present a measure of intensity of 

discrete signal samples of a specific region of interest. Echocardiograms’ acoustic 

beams, some of which pass through trabeculated tissues, yields subtle impedance which 

influence the intensity of the image signals. This explains why anatomical visibility are 

susceptible to depth changes, sector width and frame speed. Selection of appropriate 

transducer probes can provide improved intensity at near field of tissue penetration 

(Sassaroli et al., 2019), while low frequency probes yield the opposite. Furthermore, an 

excessive gain at the near field usually possesses strong intensity or high amplitude and 

may become excessively high or excessively low at the far field region. In the same 

vein, excessive gain can present as pulmonary fluid in some cases (Dong et al., 2020) 

and images with very low gain attributes but bear significant anatomical details or 

noticeable artefact are not ignored in clinical practice. Nevertheless, potential 

introduction of artefact from excessive gain would equally exacerbate visibility issues, 

yield an incorrect depiction of true anatomical tissues or obscure relevant anatomical 

details. Therefore, improper depth-gain can induce significant dis-uniformity in the 

pixel intensities across the image, most often at the lower part of the image sector. For 

real-time optimization, time gain compensation (TGC) which compensate the unequal 

attenuation and spreading of the received signals, are often used to optimise images’ 

near-field or far-field attenuation quality, along with appropriate probe choices. This is 

where the optimization algorithm becomes relevant, by effectively guiding the 

ultrasound operator to choose the right setting while scoring the effect of the choices 

in real-time. TGC setting is repeated until optimum depth-gain is achieved.  

 

 

4. Apical Foreshortening: This is inherently common in echocardiogram acquisition as a 

type of deformation of the ventricular apical region. Smistad et al., (Smistad et al., 

2020), have described the importance of real-time detection of apical foreshortening 

with deep learning pipeline. Foreshortening is a non-linear structural deformation where 

changes in size of the areas and volumes become geometrically incongruent (Ünlü et 

al., 2019). It accounts for inaccurate quantification of ejection fraction (EF) (Labs et al., 

2020), prevents the detection of crucial pathologies in the apical region and exacerbates 
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clinical measurements. However, in a PLAX view where LV apex visibility is not 

required, apex visibility could be taken as ‘false-apex’ (Ünlü et al., 2019) and counts as 

LV foreshortening. From a clinical standpoint, eliminating foreshortedness is 

paramount for optimum anatomical assessment and diagnosis. For real-time 

optimization, pipeline displays objective score relating to the magnitude of 

foreshortening in the current frame, this can be improved using one or the combination 

of probe manipulations until foreshortening score is achieved.  

 

 

7.4.4 Model Architecture & Training 

Prior to the implementation of real-time streaming of ultrasound protocol, this research has 

established an efficient light-weight spatiotemporal model (illustrated in Figure 7.4 process 2 

and 3) based on differentiable neural architecture search (NAS) approach (Azarmehr et al., 

2021). The predictive model was based on earlier work; multi-stream time series regression 

architecture (Labs, Zolgharni and Loo, 2021) implemented via model subclassing for greater 

control, each independent stream predicts specific quality attribute proposed in section 2.2 and 

included a corresponding prediction for view classification simultaneously. The architecture is 

logically divided into two parts; the first shared layer allows weight sharing through 

TensorFlow API module, while extracting the hierarchical spatial feature in the frame sequence. 

The resultant vector is flattened and fed into the second part of the network, a single layered 

Long Short-Term Memory (LSTM) (Donahue et al., 2016) for temporal extraction. The 

spatiotemporal architecture is trained on 24,000 frames of 224 x 224 x 3 spatial size, with 8,000 

validation samples in 80:20 ratio. Predictions are made via fully connected layers which 

compute specific quality scores and the probability for discrete labels via logistic regression 

module, simultaneously. Each layer employs Rectifier Linear Units (ReLU) for its internal 

activation function while the output layer employs sigmoid function to provide boundary for 

normalised scores on each model output. The model incorporated dual loss functions; mean 

squared error (MSE) for regression and binary cross entropy for view classification are 

optimised via adaptive moment estimation (ADAM). The resultant output scores are bound 

normalised in the range of (0 to 1), yielding four quality attributes per frame. 
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7.4.5 Proposed Optimization Pipeline 

The objective quality assessment pipeline illustrated in Figure 7.4, is intended for real-time 

operators’ feedback and optimization of cardiac image quality before clinical measurement and 

quantifications. The experiment was carried out on Z600 Mini server with GeForce GTX 970 

chipset's Maxwell GPU architecture and featuring 4GB RAM coupled to 1,664 CUDA cores. 

The pipeline framework accepts high-speed, streaming (frame) data of any varying length for 

either A2C, A4C or PLAX from GE Vivid.i ultrasound source equipment, composite video 

input or echo cine loop video (in retrospect) while observing all clinical protocols in 

transthoracic workflow. Each user session is divided into four sequential processes, each 

process with its respective varying threads.  The heart of process step 1 is an external frame 

grabber with capability for high data rates, frame buffer, and low latency. During the clinical 

ultrasound acquisition phase, two-dimensional cardiac frame data is sequentially fed into the 

encoder module where real-time feature extraction takes place. While maintaining active 

connection with ultrasound equipment, process step 2 establishes two major threads of 

spatiotemporal convolution to predict four specific quality attributes scores and logistic 

probability module handles the prediction class of currently generated image as illustrated in 

process step 3. The objective scores are then visualised on the fast-moving frames, in real-time, 

providing specific feedback to operators who then make necessary probe’s adjustment until 

optimum quality is achieved on the specific attribute. The final process step 4 allows the 

operator to record the optimised cine loop in Microsoft’s audio video interleave (.AVI) format, 

or a still image from the sequenced frames in Joint Photographic Experts Group (.JPG) format. 

Each of the sessions can thus be recorded and sequentially stored for further future assessment. 
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Figure 7.4: Block diagram of a real-time quality assessment and optimization pipeline showing essential 

processing steps, threads for user session. Features embedded 4 streams deep learning architecture dedicated to 

assessment and operators’ feedback on apical visibility, anatomical clarity, depth gain and apical foreshortening 

attributes of image quality. 

 

7.5 Evaluation Metrics 
Evaluation metrics used encompass the proposed architecture and the integration of model into 

optimisation pipeline and are enumerated as follows: 

A. Model Performance: Since the model uses multiplex variables for each score attribute, 

performance was evaluated via objective function using linear correlation coefficient (LCC) 

in equation (7.4); measures linear difference between cardiologist's score (QMS) and 

algorithm’s predicted score (QPS).  Minimal LCC error indicates the best fit model, hence 

better predictions. Figure 7.5, indicate LCC error distribution per selected quality attributes. 

Model’s accuracy was determined in (6) MAE (equation 7.5), while computational 

inference speed was found at 4.24ms per frame as detailed in Table 14. Results reinforce 

possibility for real-time feasibility and clinical deployability. 

 

𝐸𝑟𝑟𝐿𝐶𝐶 = 
∑ (�̅�𝑖−𝑥�̂�)(�̅�𝑖− �̂�𝑖)

𝑁
𝑖=1

√∑ (�̅�𝑖− �̂�𝑖)
2  𝑁

𝑖=1  √∑ �̅�𝑖− �̂�𝑖)
2𝑀

𝑖=1

                     (7.4)   

 

𝐴𝑐𝑐𝑚 = 1 − (
1

𝑛
∑ |𝑄𝑀𝑆𝑖 − 𝑄𝐴𝑆𝑖

𝑛
𝑖=0 |)  ∗  100     (7.5)    
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B. Pipeline Performance and Validation: Acquisition of cardiac frames in PLAX, A4C and 

A2C were performed using the phased array probe with GE Healthcare (Vivid.i) ultrasound 

equipment known as the source equipment. This acquisition was done by an experienced 

clinician under transthoracic laboratory conditions. The frames were stored in DICOM and 

AVI formats to allow retrospective assessment for the purposes of performance evaluation 

and analysis.  Our source equipment features relevant hardware interface ports for possible 

external connectivity. In the setup, an off-the-shelf but a high-end, high speed frame grabber 

with high-definition media interface (HDMI) (Xiong et al., 2013) input port and universal 

serial bus (USB) 3.0 (Ghetia, Tripathi and Gupta, 2013) output port was considered. USB 

3.0 boasting of 5Gbps data rates with short cable connection (one metre length) was selected 

to avoid excessive transmission delay. Our host equipment, an Intel i7 dual core (Khan et 

al., 2019) laptop running deep learning algorithm for real-time quality assessment as 

described in our methodology. Hereafter, each cardiac cine loop was reproduced and 

visualised on the source and destination screens where quality scoring is performed in real-

time. In practice, frame length and frame speed are expected to vary significantly while 

providing real-time feedback to the operator during acquisition phase, pipeline performance 

was therefore, estimated using aggregated values for end-to-end classic characteristic delay 

in transmission 𝐷𝑡𝑥, propagation 𝐷𝑔𝑡, processing 𝐷𝑝𝑡, and queuing 𝐷𝑞𝑡; given in equation 

(7.6). A standard synchronisation clock is set up for both source and destination, to measure 

bits transmission and delivery time. In a one-way delay scenario, which involves streaming 

video exhibits the properties of probability density function, a randomized pixelating 

variable in a continuum as opposed to discrete random variable. 

 

𝐷𝑒2𝑒 =
𝑙

𝑞
+

𝑑

𝑠
+ [

𝑖𝑎(𝑙)

𝑓
+ (𝑏𝑎(𝑙) ∗  𝑡𝑚)] + 

1

𝜇
𝑙𝑛 𝑙𝑛 

𝛽

𝜇
           (7.6) 

 

 

Where delay components are expressed as sum of all the delays; {𝑑1, 𝑑2, 𝑑3,  ... 𝑑𝑁}, 

average values taken over a series of measurement is thus calculated: 

 

𝛥𝜇 = 
∑ 𝑑𝑖

𝑁
𝑖=1

𝑁
                                                    (7.7) 

 

Each term in the equation, except 𝐷𝑔𝑡  and 𝐷𝑝𝑡 which could be microscopically negligible 

due to latest advancement in processing power, constitutes significant impact to the overall 

delay mechanism; where l is the data packet length, q for rate of data transmission, d for 
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distance using cable connection, 𝑖𝑎 pipeline embedded instructions,  f processor’s clock 

frequency, 𝑏𝑎 buffer delay, 𝑡𝑚 memory access time and 𝐷𝑞𝑡 which details the queue waiting 

time using 𝛽 as arrival and µ departure rate. The overall delay (in milliseconds) must satisfy 

real-time feedback support for cardiac frames between 40fps and 60fps.  

 

 

7.6 Results and Analysis 
 

In this study, we have presented the most comprehensive attributes and large dataset for 

domain-specific evaluation, assessment, and optimization than any known previous studies.  

Both the multivariate model and the pipeline were evaluated using metrics detailed in section 

7.5 while (Table 7.2) list the mean accuracy and error distribution per quality attribute is also 

depicted (Figure 7.5) by box plot, showing the error distribution for apical visibility, anatomical 

clarity, depth gain and foreshortening properties, respectively. The model prediction speed was 

found to be at 4.24ms per frame for input pixel size of 128 x 128 x 3, which is sufficient for 

real-time deployment. However, this speed was found to be much higher considering the end-

to-end delay as detailed in Table 7.2. Displayed samples indicated a real-time quality scores 

evaluation per frame (Figure 7.6) showing view classification type (ID), score for Apical 

visibility (VS), LV clarity, Depth Gain (DG), Apical foreshortening (FS), and aggregated 

quality scores respectively.   

 

Figure 7.5: Error distribution per model outputs, computed as the absolute difference between predicted score 

per attributes and experts scores. Very minimal (0.032%) percentage of error distribution and high accuracy are 

paramount indicators to reliable quantifications.  
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Table 7.2: Computed errors per quality attributes and end-to-end delay measured in milliseconds. 

 Visibility Clarity Depth Gain Foreshortening 

Mean +/- SD 0.052 

0.011 

0.062 

0.017 

0.069 

0.011 

0.056 

0.010 

Average End-to-End Delay 

𝐷𝑒2𝑒 (ms) 

127.90* (* stereo process) 

 

 

      
 

      

Figure 7.6: Showing samples with retrospective quality grading for visibility (VS), clarity (LC), depth-gain (DG) 

and apical foreshortening (FS). Pipeline model also shows image view classification and overall quality score 

(AS). Each quality grading varies from 0.0 to 1 and reflects the aspect of image quality that must be optimised. 

Pipeline allows real-time assessment and optimization simultaneously.  

 

Although, sample results are self-explanatory with the prediction scores clearly visualised on 

each specimen. First, the model accurately identifies the image view types, and provides the 

quality rating for each quality element. Also, samples quality are better than the other in terms 

of clarity, visibility, depth-gain and foreshortedness. High score range indicate better quality 

while low score range indicate poor quality.   
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7.7 Conclusion 
 

In this study, I have presented the feasibility for the most comprehensive objective attributes of 

cardiac images with provides the underlining principle of real-time optimization of ultrasound 

image quality.  

Since ultrasound image quality is paramount to accurate diagnosis and the acquisition of 

optimum image quality involves significant skill, an effective optimization utility would be 

termed a priced tool. Therefore, real-time optimization utility is clinically relevant to effective 

LV diagnosis, offset inherent variability, and save life during clinical emergencies. The 

possibility of accelerating clinicians’ acquisition skill while providing arbitration for standard 

reproducibility in clinical practice is also a huge benefit. 

Consequently, this thesis proposes a combined methods of multivariate assessment and real-

time optimization of echocardiographic images. This chapter have demonstrated, by experiment 

the performance of deep convolutional neural pipeline suitable for operator feedback. This can 

accelerate clinicians acquisition skills and save lives during medical emergencies. Moreover, 

the author has considered imaging planes in A2C, A4C and PLAX, since these are de facto 

requirement for clinical measurement and quantification, as recommended by the Association 

of American Cardiologists.  

A future study may include wider population and intensive clinical trials with pipeline 

exhibiting support for different image compression and selective quality attributes that would 

satisfy individual laboratory requirements.  

The author has considered the optimization feasibility on four clinical element of image quality 

and believes it's significant for comprehensive clinical standard framework that can be 

implemented in various laboratories for translatory advantages.  

A more comprehensive study would include additional criteria for 3D image quality 

assessments and other point of care systems. 

The author admit that ground truth annotation process was laboriously expensive, hence the 

annotations made by a single cardiologist and an accredited annotator is an indicator that an 

intra-observer variability may influence model’ performance if not included in the analysis. 

Nevertheless, an intra-observer variability could be taken as different standards that exist in 

clinical laboratories dues to legislation or expert preferences.  
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Due to cost and availability of expert resources, the requirement to obtaining additional 

annotation of any large echocardiogram dataset may hinder further studies on intra/inter-

observer variations on objective model development. My work on ‘Global Framework for 

Image Quality’ plays out here. Researchers and cardiologists can rely on reinforced learning 

algorithm rather than using human experts to automatically generate annotation and labels for 

future studies.  

Here, we have optimised on four quality standard benchmark of image quality and believe it 

would eliminate the limitations imposed by arbitrary optimization techniques currently 

common in clinical lab or arbitrate to professional efforts in the healthcare sector. Therefore, 

future study may include other critical considerations required for selective standards that could 

satisfy different laboratory requirements, regionally or globally.  
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Chapter 8  
 

Conclusion and Future Work 
 

 

8.1 General Conclusion 
 

This research focused on contributing to the automation of image quality assessment that exists 

within the unified clinical workflow of cardiac functional assessment, diagnosis of 

cardiovascular diseases and decision making in cardiovascular interventions.  

Since cardiologist reliance on echocardiography is expected to grow due to its numerous 

advantages over other imaging systems, there is a concerted effort to provide a reliable 

automated system for quality assessment, quality standard arbiter and great influence on 

accurate diagnosis. 

Chapter 1 provided the clinical context of the research, the objectives, motivation, and laid 

foundation for the inherent issues with image quality, the assessment method, limitations, and 

challenges to ultrasound imaging prior to having a reliable diagnostic view of 

echocardiography.  

Additionally, Chapter 2 details the clinical background to the issues of obtaining optimum 

image quality, the hardware throughput and clinical image acquisition. 

In Chapter 3, technical background was detailed with introduction to several artificial 

intelligence models in the public domain. Also details of the approach implemented in this 

thesis are semi-automatic and automatic search for neural networks that is considered suitable 

for assessing image quality in 2d echocardiograms. While in Chapter 4, the view classification 

approach was implemented using the PACS dataset. The aim was to provide automatic 

identification of any standard apical views that existed among fourteen (14) different views in 

the private dataset PACS. Chapter 4 also detailed the method of semi-automatic neural 

architecture search for most efficient lightweight model architecture to suit classification and 
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provided justification for selecting semi-automatic neural architecture search along with model 

ensemble learning and the contributions made on NAS-DARTS-based architectures in earlier 

publication. 

Chapter 5 details how the absence of 2D image quality standard and cardiac dataset have 

limited research effort in automated assessment within recent years. Furthermore, it proposed 

a novel standard that specifies clinical and anatomical constituents of quality features using 

domain-specific attributes which are reviewed by expert and cardiologists. It details why a 

single weighted-average score is grossly insufficient for 2D echocardiogram quality evaluation 

and provides justification for defining 4 image quality attributes and the novel method of 

assessing each specific attribute. 

In chapter 6 further expatiate on quality attributes of echo image by taking a comprehensive 

annotation and criteria for explicit assessment of apical four chamber image. Using apical four 

chamber view (A4C) the method is although applicable to other apical standard views of 

echocardiograms, each cardiac specimens were analysed using 21 clinical criteria and 

characterised based on 7 class group namely: anatomical projection, Intraventricular septum 

visibility, valves visibility, left ventricle clarity, image sector gain, Foreshortening diastole, and 

Foreshortening systole. This research acknowledges how it’s practically impossible to have 

multiple annotations per frame or video because it’s a costly venture and resorted to semi-

supervised learning instead with an additional method of novel spot-checking process which is 

aimed at reducing trajectory errors associated with semi-supervised learning. Semi supervised 

learning latches on the fraction of labelled samples to generalise on the unlabelled samples and 

thus provide discrete labels from the samples label space.  

Chapter 7 latches on to the established model used in chapter 5 and details the implementation 

of real-time optimization process for acquiring optimum echocardiogram images. It provided 

the architecture for on-the-job optimization feedback, techniques, and suggestions to users for 

the onward clinical processes within the unified workflow. In the same vein, it provides the 

analysis of a model's performance, pipeline performance, and results of a system evaluated 

against end-to-end data propagation and suitability for clinical workflow. 
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8.2 Future Works 
 

This proposed approach used in the research work, has yielded superior performance in terms 

of deployability and use case compared to any existing approach in quality assessment which 

indicates the specific element of image quality that must be optimised in real-time and provides 

objectivity on quality assessment score for operators’ feedback and guidance. 

Since this is a novel approach in objective quality standard and method of assessment of such 

quality, a comparison with any existing approach would make a fair judgement. Unfortunately, 

the existing assessment was only based on a weighted average method of quality scoring and 

did not provide any parallel approach to measure by. Hence, its near impossibility to determine 

equivalence while different dataset of corresponding annotation was utilised. Therefore, we 

make our dataset with expert annotations on four quality attributes public at IntSav repository 

to allow external validation by other researchers and equipment manufactures.  

 

8.2.1 Standard View Classification 

This study has focused on the identification of 14 standard apical view using ensemble learning 

classification method which combined the spatial and temporal element of echocardiograms. 

Such a task will be crucial for a real-time view detection system in clinical scenarios where 

images need to be processed while they are acquired from the patient and/or where the system 

is to be used for operator guidance. Also, this is useful as a post processing tool to assess cardiac 

specimens in retrospect or offline assessment.  

Unlike some earlier studies where a similar ensemble method was implemented (Østvik, 

Smistad, Aase et al., 2019); their majority votes ensemble method was based majorly on spatial 

element of the images rather than combining both spatial and temporal components associated 

with 2D echocardiogram frames or specimen. (Madani, Ong et al., 2018).  

Although 2D echocardiography is widely accepted for preliminary exams, the images produced 

vary in terms of sizes, look, feel, and protocol. Vendor dependent images still constitute 

considerable issues that may be resolved by future solutions in cardiac classification. Future 
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work could detect the apical views as well as vendor signature in the image. This is essential 

for comparison in terms of performance and informs user preference.    

Other studies have revealed the impact of 3D echocardiography but admit that it suffers from a 

significant reduction in frame rate and image quality in contrast to 2D echocardiogram. 

Consequently, has limited usage in routine transthoracic exams (Cheng et al., 2018).  

Looking at other modality in echocardiogram is essential to technological advancement. For 

example, recent 3D echocardiography technology has precipitated research interests in recent 

times however, 3D echo suffers significant reduction in frame rate and image quality in contrast 

to 2D echocardiogram (Cheng et al., 2018). Consequently, has limited usage in transthoracic 

routine examination workflow. Future work would consider the inclusion of 3D echo with the 

view of generating accurate anatomical and pathological classification.  

  

8.2.2 Objective Quality Standards 

Echocardiogram objective image quality is not a trivial issue in transthoracic exam workflow 

since the accuracy and reliability of diagnosis is hugely dependent on optimum quality of the 

acquired cardiac specimen. Unfortunately, it’s not clear to researchers and experts what 

constitutes the element of ‘good quality’ which pushes the idea of optimum image quality to 

mere relative terms.  

Plausible research efforts have attempted this issue by defining a reference image and 

calculating the deviation of any given image to this reference, specifying an image farther from 

the reference image the less the objective quality score. This may be applicable to non-medical 

images, however, in echocardiography, this method is not practical since images formation do 

not follow a hi-fi photography but vary significantly in amplitude and based on patient 

anatomical and pathological profiles. Therefore, it is difficult to define an image with perfect 

quality as a reference.  

Some studies have been carried out on blind image quality standard; largely focusing on the 

distortion of images due to compression, with some implementing machine learning algorithms 

using edge sharpness and random/structural noise level to evaluate image quality. 

Unfortunately, this approach is difficult to apply to echocardiography because cardiac 

ultrasound does not present well defined edges due to two facts: 2D cardiac images are formed 

by interference pattern of scattering centres presenting an inherent poor resolution; and 
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anatomical features do not present crisp edges because the endocardium is trabeculated there 

are papillary muscles, the external purkinje network. So there exist relatively subtle acoustic 

impedance transitions next to larger ones. Prior to consideration for automatic image quality 

assessment, are the needs to specify and understand what is meant by quality standard and how 

to represent such standard in clinical practice 

Consequently, it is incumbent upon the research to develop a blind image quality standard 

which does not depend on a reference image but on domain-specific features, clinically relevant 

to patients’ pathological and anatomical profile. 

Training a deep neural network requires large amounts of annotated data, which is often very 

difficult to obtain because cardiac dataset is highly personalised and protected by data 

protection act in the United Kingdom. Therefore, researcher frantic effort gravitates towards 

reducing or eliminating the cost associated with experts’ annotation by implementing self-

supervised learning as demonstrated in chapter 6, characterization of cardiac specimen global 

properties. Semi-supervised learning provides other generalisation techniques for neural 

models while obtaining discrete predictions on the unlabelled dataset. Danu et. al., (2020) had 

recently demonstrated the potential of self-supervision learning to yield significant advantage 

in classification tasks (Danu, Ciuşdel and Itu, 2020). 

Therefore, this study has focused on defining and establishing for the first time, new measures 

of image quality standard using domain-specific, comprehensive anatomical features relevant 

for linear measurement and quantification. These are reviewed and considered by clinicians and 

cardiologists. The research also expanded on the objective standard feature to include global 

characterization of apical four chamber image. Future work therefore would consider global 

properties on other apical standard views in the private dataset.  

Moreover, this study examined the proposed neural network using only one manual expert 

annotation. Future study can consider examining the performance of the models using more 

than one manual expert judgement to study the discrepancies of the variability of annotations.  
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8.2.3 Quality Assessment Method 

Image quality assessment is generally approached by defining a reference standard and 

calculating the deviation of any given image to this reference. Several researchers have tried to 

solve this using different techniques like universal image quality index (UIQ) (Wang, Z et al 

2002) blind image quality assessment (Zhang, Y., et al 2016), These methods may be valid for 

non-medical images but certainly not practicable in echocardiography, since images vary 

significantly from patient to patient, and it is difficult to define an image with perfect quality. 

Therefore, assessment is a limited subjective domain where experts manually sweep through 

each cardiac specimen and determine its clinical and pathological relevance. The subjective 

assessment is subject to variability error and potentially cascade further error in quantification 

and measurement analysis.  

Earlier research efforts by Abdi., H et al., (2017; 2018) had demonstrated the feasibility of 

automated assessment methods of echocardiogram image quality. The method of assessment 

was based on a weighted average score which was predicted for each cardiac frame. his 

approach was supported by Luong., et al., (2020) and Dong., et al., (2020). Unfortunately, 

predicting weighted average score did not culminate into translatory advantage because single 

prediction score does not provide enough information to the operator as to why the image is 

tagged as suboptimal quality. Hence, this research focused on defining novel measures and 

methods of image quality assessment and implemented an artificial intelligence pipeline to 

access four quality properties of image quality as defined in chapter 5 using the domain-

specific, multi-stream, multi-output prediction method.  

The research has presented the clinical significance and feasibility of developing an automated 

quality assessment in 2D echocardiographic images that contribute to automated diagnosis and 

quantification in echocardiology. An automated image quality assessment technique would be 

significant as part of a system that could accelerate the learning curve for those training in 

echocardiography and automated quality control process which is required for both clinical and 

research purposes. This would provide real-time guidance to less experienced operators, 

increase their chances of acquiring optimum quality images and enhance diagnostic accuracy 

of cardiac functions.  

Similarly, this study has considered quality assessment for A2C, A4C and PLAX frames as the 

primary apical view standards to demonstrate the feasibility of clinical application for quality 

assessment, however, A2C quantifications may not be a focus under clinical practice suitable 



Conclusion and Future Work  175 

for unified quantification, therefore, future study would include other relevant apical view 

standards like PSAX, A5C, A3C, and other standard that is consider useful for research and 

diagnostic purposes.  

 Future work would consider areas of improvement to include assessment of selectable global 

properties of echocardiogram quality features, this may be significant for laboratory 

consideration and account for differences in clinical protocol that may exist in different 

countries or laboratories.  

Finally, the future work would consider multiple annotations rather than the annotation 

provided by one expert cardiologist and once accredited annotator. Intra-observer variability 

can be examined by obtaining additional annotations from human experts and compared with 

the error in the predicted scores. 

. 

8.2.4 Real-Time Optimization 

An automated image quality assessment and real-time optimization technique is a high-priced 

solution in echocardiography workflow for so many reasons: (i) such system could integrate 

individual steps under cardiac specimen analysis into a unified workflow, (ii) could  accelerate 

the learning curve for those training in echocardiography, (iii) assisting as part of an automated 

quality control process (for both clinical and research purposes) while providing real-time 

guidance to operators with a view of increasing chances of acquiring optimum quality images, 

thereby enhance diagnostic accuracy of cardiovascular diseases. 

This research has focused on implementing such a system incorporating what is considered the 

most relevant standard apical views in A2C, A4C and PLAX cardiac specimens. For example, 

the study has considered 14 different apical standard views under images classification, while 

another experiment in this research has successfully implemented pipeline build on deep 

convolutional neural network to assess 3 different apical standard views with feasibility for 

global properties characterization. Other apical standards would be considered in future work 

as they could find relevance with real-time optimization and translatory advantages in clinical 

practice. This study has therefore, implemented a pipeline that potentially be used for real-time 

optimization pipeline for A2C, A4C and PLAX images. Although, testing and verification with 

echo equipment has been hampered by Covid-19 social distance restrictions and lockdown 

policy which was in effect at the time of this experiment, the offline verification experiment, 
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which represent a prove of concept and feasibility, indicated a significant success that should 

be applied in future study to assess different standard echocardiographic views and more quality 

attributes that would satisfy wider requirements. 

A future possible idea would integrate user selectable criteria that would be suitable for point 

of care deployment and encompass major laboratory assessments criteria.  

Although, two annotations or ground truth labels provided by two expert cardiologist and one 

accredited annotator were used in the study, the properties that encompass intra-observer and 

inter-observer variability could be examined in future work, by obtaining additional annotations 

from human experts and compared with the error in the predicted scores. 

The implemented pipeline yielded a superior performance in terms of deployability and use 

case compared to any existing approach in real-time quality optimization which present and 

indicate the specific element of image quality that must be optimised in real-time and provides 

objectivity on assessment score for operators’ feedback and guidance.  
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Appendix A 
 

The following are the list of publications made during this PhD study: 

 

(i)  Journal Articles: 

● Azarmehr N, Ye X, Howard P, Lane E, Labs R, Shun-shin M, Cole G, Bidaut L, Francis 

D, and Zolgharni M, 2020. Neural Architecture Search of Echocardiography View 

Classifiers, Journal of Medical Imaging. 

● Labs RB, Vrettos A, Loo J, Zolgharni M, 2021. Automated Assessment of 

Transthoracic Echocardiogram Image Quality Using Deep Neural Networks (under 

review with Journal of Intelligent Medicine). 

● Labs RB, Vrettos A, Loo J, Zolgharni M, 2021, Objective characterization of 2D 

echocardiographic Image Quality Using Semi-Supervised Deep Learning, (Ready for 

submission for peer review with SPI Journal). 

● Labs RB, Vrettos A, Loo J, Zolgharni M, 2021, Real-time Optimization of 2D 

echocardiographic Image Quality for Accurate Clinical Quantifications, (Under final 

review for submission to IEEE Journal) 

 

(ii)  Conference Proceedings: 

● Ogbuabor, G., Labs, R. B., (2018) Human Activity Recognition for Healthcare using 

Smartphones. In: International Conference on Machine Learning and Computing. 

ICMLC 2018. Association for Computing Machinery, New York, NY, USA, (pp. 41-

46) DOI: https://doi.org/10.1145/3195106.3195157. 

● Labs, R. B., Vrettos, A., Azarmehr, N., Howard, J.P., Shun-shin, M. J., Francis, D.P. 

and Zolgharni, M., (2020) Automated Assessment of Image Quality in 2D 

Echocardiography Using Deep Learning. In: International Conference on Radiology, 

Medical Imaging and Radiation Oncology. ICRMIRO 2020, Part XVII (pp. 2160 - 

2165). 
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● Labs R.B., Zolgharni M., Loo J.P. (2021) Echocardiographic Image Quality 

Assessment Using Deep Neural Networks. In: Papież B.W., Yaqub M., Jiao J., 

Namburete A.I.L., Noble J.A. (eds) Medical Image Understanding and Analysis. MIUA 

2021. Lecture Notes in Computer Science, vol 12722. Springer, Cham. 

https://doi.org/10.1007/978-3-030-80432-9_36 
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