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a b s t r a c t 

Background Standard views in two-dimensional echocardiography are well established but the qualities of 
acquired images are highly dependent on operator skills and are assessed subjectively. This study was aimed at 
providing an objective assessment pipeline for echocardiogram image quality by defining a new set of domain- 
specific quality indicators. Consequently, image quality assessment can thus be automated to enhance clinical 
measurements, interpretation, and real-time optimization. 
Methods We developed deep neural networks for the automated assessment of echocardiographic frames that 
were randomly sampled from 11,262 adult patients. The private echocardiography dataset consists of 33,784 
frames, previously acquired between 2010 and 2020. Unlike non-medical images where full-reference metrics 
can be applied for image quality, echocardiogram’s data are highly heterogeneous and requires blind-reference 
(IQA) metrics. Therefore, deep learning approaches were used to extract the spatiotemporal features and the 
image’s quality indicators were evaluated against the mean absolute error. Our quality indicators encapsulate 
both anatomical and pathological elements to provide multivariate assessment scores for anatomical visibility, 
clarity, depth-gain and foreshortedness. 
Results The model performance accuracy yielded 94.4%, 96.8%, 96.2%, 97.4% for anatomical visibility, clarity, 
depth-gain and foreshortedness, respectively. The mean model error of 0.375 ± 0.0052 with computational speed 
of 2.52 ms per frame (real-time performance) was achieved. 
Conclusion The novel approach offers new insight to the objective assessment of transthoracic echocardiogram 

image quality and clinical quantification in A4C and PLAX views. It also lays stronger foundations for the op- 
erator’s guidance system which can leverage the learning curve for the acquisition of optimum quality images 
during the transthoracic examination. 
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. Introduction 

A two-dimensional (2D) echocardiogram has become de facto of as-
essing cardiac functions because it presents rich anatomical details of
he myocardium, and for its non-ionizing in-vivo advantages. Never-
heless, echocardiogram quality assessment is not void of technical and
perational drawbacks. Firstly, echocardiogram images are produced
hrough scattering centers and do not present crisp edges unlike the
on-medical images. Secondly, the acquisition of high-quality echo im-
ges requires a significant experts’ skill, and the standards of image
uality are commonly exacerbated by user’s subjective assessment and
atients’ anatomical profiles. For example, there is a strong indication
hy the quantification of systolic function is recommended for apical-

our (A4C) and parasternal long axis (PLAX) views [1–3] , According to
osir (1997) and Lang (2015), the spatial orientations of A4C and PLAX
∗ Corresponding author: Robert B. Labs, School of Computing and Engin
obbie.labs@uwl.ac.uk ) 
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iews are congruent in orientation, thus offering complementary advan-
ages on the heart’s functional measurement and quantifications. How-
ver, echocardiogram quality assessment still exists in subjective do-
ain, with significant impacts, as documented [4–6] , ultimately point-

ng to the issues of clinical reliability, misdiagnosis, and poor response
o patient care. These drawbacks remain significant and are inhibiting
he adoption of echocardiograms as the reliable imaging modality de-
pites its many advantages. Apparently, a good quality image provides
 more accurate delineation of myocardial borders and yields accurate
easurement [3] , but the factor perceived as a ‘good quality’ indicator is

ased on individual assessment that varies throughout the clinical prac-
ices. This indicates the need for a coherent standard and benchmark for
etermining the constituents of a “good quality ” image. 

Currently, the method of echocardiographic image assessment en-
ails manual inspection of echo images (sometimes large number of im-
eering, University of West London, London, United Kingdom. (Email: 
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edical Association. This is an open access article under the CC BY-NC-ND 
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ges) to determine its clinical and pathological relevance. This process
s known to be time consuming, laboriously expensive, and precipitate
ariability of opinions on diagnostic outcomes. Consequently, an au-
omated assessment is thus required for consistency, reliability, assess-
ent, and optimization. 

.1. The objective of this study 

The assessment of image quality in natural images (non-medical im-
ges) are quite straight forward with deep learning approaches, as they
re modeled either with full-reference (FR-IQA) or reduce-reference
RR-IQA) metrics. On the other hand, 2D echocardiographic images
re formed by an interference pattern of scattering centers with in-
erent poor lateral and axial resolutions. Basically, the echocardio-
ram’s anatomical features do not present crisp edges and boundary
ither because the endocardium is trabeculated with papillary muscles
nd the external purkinje networks [7] . The complexity of the heart
tructure and the relationship between the epicardium, myocardium,
nd pericardium does exacerbate the acoustic impedance transition be-
ween it soft layers and precipitated the heterogeneity in echocardio-
rams. Because of this problem, it is grossly inadequate to model 2D
chocardiograms under distortion-specific metrics [8] . The echocardio-
ram presents significantly subtle differences in its successive frames,
hat human eyes cannot detect [9] . This is a direct contrast to natural
mages, which usually feature well-known distortion types. 

The objective of this study, therefore, focuses on 2D echocardio-
raphic image quality indicators and the method of its assessment. Sev-
ral research efforts have indicated the value of objective standards and
roposed a number of assessment methods for evaluating echocardio-
raphic image quality [10–12] . Unfortunately, the efforts do not meet
ranslatory acceptance, either because they are limited in scope, or be-
ause they do not represent expert’s clinical standard in objective bench-
arking. Therefore, the implementation of an automated assessment
rotocol would be based on a fundamental definition of domain-specific
bjective standards and method of its assessment. 

However, in the context of ultrasound, a coherent standard of objec-
ivity relating to general echocardiography’s digital image is essential
ut difficult to define outside the clinical practice [6] . But it is commonly
dmitted that the constituents of a good-quality echocardiogram image
hould be relative or congruent to clinical significance and anatomical
elineation. This knowledge comes with many years of experts’ profes-
ional experiences. Hence, an objective standard should include specific
lements, that purposely encapsulate both the anatomical and patho-
ogical visibility, with the possibility for quality optimization and real-
ime assessment. Consequently, by defining the element of image qual-
ty attributes (indicators) in these two planes, we can effectively model
n inclusive, objective standards benchmark that is relevant to general-
zed clinical protocols in echocardiography. We believe this would pro-
ide objective arbitration to improve reliability of cardiac measurement,
uantification, and diagnostic accuracy in echocardiography. 

.2. Related work 

All previously reported studies on objective assessment have used
imited criteria to define objective quality and were deemed inappropri-
te of clinical assessment in clinical practice. The method of assessment
sing a weighted average score index has been considered unsuitable for
eal-time acquisition and optimization guidance. Hence, the practical
eployability of such a system is limited to experimental demonstration
nstead of translatory advantage. A clinically relevant system therefore
ould provide insight on objective standard and method of assessing

pecific quality attributes. 
We have earlier demonstrated the feasibility of such a system of as-

essment [ 7 , 13 ] and hereby provide details of wider implementations
nd how it can be clinically deployed in a unified workflow. Apart from
alidating an objective quality system with external clinical dataset, the
192 
roof of concept for operators’ guidance on automated echocardiogra-
hy have been discussed in many studies [ 14–15 ], but implementing a
seful pipeline for clinical advantages has achieved little impact. This
s because a pipeline that offers weighted average scores is incapable of
pecificity in relation to the elements of image quality and operators’
cquisition skills. All existing pipelines (without exception) that are ca-
able of real-time feedback have only indicated the maximum quality
atings of echo images without suggesting ‘how’ or ‘what’ aspect of the
mage requires an improvement. This means that operators are left to
tilize their acquisition experience, which is of a little benefit to less
xperienced operators. 

One of the earliest works on objective assessment of cardiac image
uality is Abdi et al. He demonstrated the feasibility of objective assess-
ent using convolutional neural network models in five apical views
sing six criteria scoring methods [ 16–17 ]. Since there was no publicly
vailable cardiac dataset to model, the author relied on expert’s knowl-
dge for its feature engineering, a high resource intensive process. Abdi’s
5% of model accuracy was regarded as plausible outcome but was clin-
cally deficient for transthoracic standard examination practice. This is
ecause the defined quality indicators are limited and do not represent
xperts’ global characteristics for cardiac diagnosis using 2D echocar-
iographic images. 

Alternatively, Luong et al.’s research utilized twelve criteria to grade
ach of the nine apical standard views, while computing a continuous
ingle variable score to represent objective quantity for respective api-
al views [18] . Luong’s regression model achieved overall accuracy of
7% with regards to four expert ground truths and sufficiently demon-
trated the impact of image quality in diagnostic utility. However, the
ssessment methods and scores do not represent cardiologists’ conven-
ional assessment in practice and hence, cannot be applied in clinical
orkflow. 

The most recent study on objective quality assessment by Dong et al.
14] . However, the study was limited to fetal ultrasound in apical four-
hamber plane (A4C) and did not include PLAX view nor similar score
riteria that can be independently accessed for adults’ echocardiogra-
hy examination in clinical practice. Dong’s argument for focus/zoom
ttributes emanated from fetal cardiology where specific tissue became
he focus of an investigation. However, these image attributes, though
mportant, should be described as elements of clarity. Therefore, a
oomed-in section of the myocardium should exhibit the attributes of
larity instead of being considered as an independent indicator. 

.3. Main contributions 

In the light of the above related work, we admit the research ef-
orts are plausible contributions, however, the specified criteria used to
efine quality assessment are limited in scope and are insufficient for
TE’s clinical relevance. The existing assessment methods do not match
xpert’s expectations as currently obtainable in clinical practice. 

However, in this research, we examined all existing quality criteria
nd proposed additional criteria that could translate to experts’ subjec-
ive assessment. Finally, we defined, for the first time, a novel, most
omprehensive criteria, and objective attributes (quality indicators) by
hich cardiac images can be assessed and optimized. We summarize our
ain contributions as follows: 

• Demonstrate the feasibility of a novel, coherent and clinically rele-
vant objective standard for the assessment of 2D echocardiographic
images that account for relevant anatomical profiles, linear and vol-
umetric quantifications of myocardial functions. 

• Fresh insight to real-time assessment method that provides access to
specific elements of cardiac image quality for the purpose of image
optimization, accurate quantification, and diagnosis. 

• Annotation of an independent echocardiography patient dataset
showing four attributes of image quality namely: anatomical visibil-
ity, chamber clarity, depth-gain, and fore-shortening attributes for
A4C, PLAX apical standard views. 
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Table 1 View-specific scoring definition 

A4C PLAX 

Assessed element per attributes Maximum manual scores awarded Assessed element per attributes Maximum manual scores awarded 

Anatomical visibility Anatomical visibility 
Correct axis, Apical segment 6 Left ventricle (LV) visible 5 
Interventricular septum visible 2 Right ventricle (RV) visible 3 
Interatrial septum visible 2 Full segment pericardium visible 2 

Anatomical clarity Anatomical clarity 
LV cavity clarity, clear edges 4 LV cavity clarity (distinguishable border) 4 
Distinguishable valves 3 LV anteroseptal wall clarity 3 
Distinguishable septum wall 3 LV inferolateral wall clarity 3 

Signal depth-gain Signal depth-gain 
Image sectorial gain 4 Sectorial gain 4 
No excess gain 3 No excess gain 3 
Minimum artefacts 3 Minimum artefacts 3 

LV foreshorten Cavity foreshorten 
LV apical segment present 4 No-apex diastole 5 
Normal-shaped diastole 3 No-apex systole 5 
Normal-shaped systole 3 

The quality of each view was evaluated according to several experts’ elicited criteria; each criterion consisted of several attributes with independent scores but 
yielding a maximum score of 10 points for each criterion. 
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• Public release of experts’ annotated patient dataset to allow future
studies and external validation of the new approaches or methods
available on request at IntSav-QLabs [ 31 ] 

• Detailed implementation of multi-stream deep learning architecture
pipeline to process and allow access to specific image attributes in
A4C and PLAX view of echo cine loop. 

. Materials and methods 

We provide a detailed account of the dataset description, and justi-
cation for the collective elements required for objective standard as-
essment of image quality on A4C and PLAX views, and how they can
e optimized in real-time deployment. This is followed by the expert
nnotation process and details for the implementation of our deep con-
olutional neural network model. 

.1. Dataset source and ethical approval 

At present, no echocardiogram dataset with the corresponding four
eparate annotations on A4C/PLAX image quality assessment is publicly
vailable. We, therefore, aimed at preparing our own dataset (echocar-
iograms and corresponding ground-truth) for model developments. A
arge random sample of echocardiographic studies from different pa-
ients performed between 2010 and 2020 was extracted from Impe-
ial College Healthcare NHS Trust’s echocardiogram database. Ethi-
al approval was obtained from the Health Regulatory Agency for the
nonymized export of large quantities of imaging data. It was not nec-
ssary to approach patients individually for consent of data originally
cquired for clinical purposes. 

The images were acquired during examinations performed by ex-
erienced echocardiographers, according to the standard protocols for
sing ultrasound equipment from GE Healthcare and Philips Healthcare
anufacturers. Automated anonymization was performed to remove the
atient-identifiable information from DICOM-formatted videos. 

A neural network model, previously developed in our research
roup [ 19,20 ], was then used to detect different echocardiographic
iews and separate the A4C and PLAX views. This resulted in a total
f 33,784 frames from different patients: 15,476 and 18,308 frames for
4C and PLAX, respectively. 

.2. Definition and grouping of quality attributes indicators 

View-specific image quality scoring indicators (attributes) and cri-
eria was defined by consulting our clinical expert committee at the
ational Heart and Lung Institute. Four main quality attributes were
193 
onsidered for each view, which are listed in Table 1 , and enumerated
s follows. 

.2.1. Anatomical visibility 

Unlike photographic images, ultrasound images are formed by inter-
erence patterns of scattering centers that do not present clear edges, but
nherently poor lateral and axial resolutions [7] . Hence, the magnitude
f visibility on chamber cavities for both A4C and PLAX frames can be
orrectly visualized using the correct method of heart’s apex slicing, to
ield the acceptable clinical projection of images’ anatomical structures.
his could present a sharp or blurred edges [15] of amplitude structures.
quations (1 - 2) describe the rotation of a frame vector in 2D spatial
istribution where 𝑥 1 𝑦 1 represent on-axis projection, taking arbitrary
enter 𝑥 𝑐 , 𝑦 𝑐 , off-axis 𝑥 𝑝 , 𝑦 𝑝 can thus be mitigated from 𝛽 known angle
o improve anatomical visibility. In A4C, emphasis is placed on apical
rientation, echogenicity of the left ventricle chamber, and mitral and
trium valves [2] . Although the LV apex is not visualized in PLAX, em-
hasis is placed on the anatomical echogenicity and clinical orientation
f the right and left ventricles, the pericardium positions, and the aortic
alves. These are clinically relevant features experts rely on for quan-
ification, clinical assessment, and diagnosis. 

 1 = ( 𝑥 𝑝 − 𝑥 𝑐 ) 𝑐𝑜𝑠𝛽 − ( 𝑦 𝑝 − 𝑦 𝑐 ) 𝑠𝑖𝑛𝛽 + 𝑥 𝑐 (1)

 1 = ( 𝑥 𝑝 − 𝑥 𝑐 ) 𝑠𝑖𝑛𝛽 − ( 𝑦 𝑝 − 𝑦 𝑐 ) 𝑐𝑜𝑠𝛽 + 𝑦 𝑐 (2)

.2.2. Cavity clarity 

Left ventricle clarity is a legacy attribute in objective assessment.
nlike non-medical images, apical chambers of any zoomed region
an only present rough boundaries and contractive edges. Kurt, et al.
15] have demonstrated the impact of contrast echocardiography, how-
ver, with respect to quantification, cavity clarity is visualized by sev-
ral distinguishable fast-moving pixel’s formations during cardiac cy-
les. This attribute, therefore, addresses the degree of distinguishable
ixel element representing the endocardial border cavities or clear dis-
inction between the intraventricular septum, valves, any trabeculated
ericardial fluids and endocardial walls. Cardiac frames with very high
ontrast or very low contrast represent the extreme end of the spec-
rum and pose significant challenges [ 4,21 ] to inexperienced operators.
quation (3) describes the root mean squared (RMS) contrast, 𝐶 𝑖 , which
oes not depend on angular frequency content or spatial distribution
s best suited for 2D cardiac frames. This is given as the difference
etween the standard deviation of normalized pixel intensity 𝐼 𝑖,𝑗 , and

ean normalized intensity 𝐼, of a given anatomical pathology; where
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 i,j ) represents the i -th and j -th element of 2D image size 𝑀 , 𝑁 ; An ex-
reme contrast could generate artefacts and potentially obscured essen-
ial anatomical details. Unfortunately, echo images with low contrast do
ave significant anatomical details required for clinical measurement,
uggesting the need to assess each image on the merits of clarity. 

 𝑖,𝑗 = 

[ 

1 
𝑀𝑁 

𝑀−1 ∑
𝑖 =0 

𝑁−1 ∑
𝑗=0 

( 𝐼 𝑖,𝑗 − 𝐼 ) 2 
] 

1 
2 

(3)

.2.3. Depth-gain 

Depth-gain is peculiar to 2D echocardiography, and it represents
 measure of intensity of discrete signal samples of a specific region
f interest. The intensity of the image signals becomes susceptible to
epth changes, sector width and patient’s anatomical profile. Although
he use of high frequency probes can yield better resolution at shallow
issue depth penetration [ 21 ], low frequency probes give the opposite
ffect. Consequently, signal gain at the image apex (near field) usually
ossesses strong intensity of high amplitude and could become exces-
ively low at the far field region of the cardiac frame. In the same way,
xcessive gain can present as pulmonary fluid in some cases [13] and
mages with extremely low gain attributes but bear significant anatom-
cal details or noticeable artefacts are considered in clinical practice.
quation (4) describes the intensity of the reflected beam, which is as-
ociated with depth gain; where 𝑑2 𝜙 represent the luminous flux of the
nfinitesimal area of source 𝑑Σ, divided by the product of 𝑑Σ, infinites-
mal solid angle 𝑑Ω𝜉 and 𝜃𝜉 angle between the normal Ω𝜉 to the source
Σ. While the image luminance represents a photometric measure of a
ixel’s intensity per unit area of light for a given area of interest. Bright-
ess therefore is the subjective impression of the object of luminance
 𝑖,𝑗 and is measured in candela per square meter cd/m 

2 . The objective
odel therefore assesses and scores any potential introduction of arte-

acts from excessive gain, incorrect depiction of tissues or obscurity of
elevant anatomical details that are relevant for measurements. 

 𝑖,𝑗 = 

𝑑 2 𝜙

𝑑Σ . 𝑑Ω𝜉 𝑐𝑜𝑠𝜃𝜉
(4)

.2.4. Foreshortening 

Apical foreshortening presents as a form of perspective deformation
f the LV cavity, especially in the apex region. This deformation occurs
s a result of poor image acquisition skills and could effectively alter the
hamber’s size and renders its volumes geometrically incongruent [ 22 ].
pical foreshortening could occur during either the systolic or diastolic
ycles, hence, both cycles are considered during the frame’s real-time
ssessment. Smistad et al. have described the importance of real-time
etection of apical foreshortening. For instance, foreshortening can re-
ult in inaccurate quantification of ejection fraction (EF) [14] or prevent
he detection of crucial pathology, especially in the apical region. We re-
er to this undesirable perspective transformation 𝐼 ( 𝑥,𝑦,𝑧 ) which adds an
dditional layer z , to the image’s 2D plane x,y is expressed in terms of the
roduct of homogenous transformation properties given in Equation (5) .
n the PLAX view, however, where LV apex visibility is not required, vis-
ble apex of the LV could be taken as ‘false-apex’ [2] , therefore counts
s LV foreshortening. From a clinical standpoint, eliminating foreshort-
dness is paramount to optimal quantification, anatomical assessment
nd diagnosis of many ailments including cardiomyopathy. 

 𝑥,𝑦,𝑧 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 − 

1 
𝑑 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
𝑥 

𝑦 

𝑧 

− 

1 
𝑑 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
= > 

(
− 𝑑 

𝑥 

𝑧 
, 𝑑 

𝑦 

𝑧 

)
(5)

.3. Expert annotation s 

To establish the ground-truth scoring for neural network develop-
ents and testing, each echo video underwent annotation process by
194 
n experienced expert, who provided an independent score value for
ach quality attribute defined in Table 1 . The score ranges from 0 to
 under each attribute, to allow for specificity and fair assessment of
he A4C/PLAX apical standard. Therefore, the multi-stream architec-
ure was trained on all four attributes simultaneously to provide nor-
alized objective scores in the final output. Expert annotations for the

cho videos were used as the quality score for all constituent frames of
hat video for the model developments. 

.4. Dataset preparations 

The study population consisted of a random sample of 11,262 echo-
raphic studies from patients with age ranges from 17 to 85 years, who
ere recruited from patients who had undergone echocardiography.
hree frames were randomly drawn from the video and split into train-

ng (27,028 frames), and testing (6,756 frames) sub-datasets in 80:20
atios. Figure 1 summarizes the frame distributions for A4C and PLAX
ith a categorical characteristic using experts’ maximum score range
alues of 4.5, 6.5, 9.9 designated as poor, average, and good quality
 Figure 2 ) respectively. Any image with 0 score was rejected and con-
idered unsuitable for model development. 

.5. Neural network architecture 

The architecture used in this study, referred to as ‘QA-NET’ is based
n a multi-stream, multi-output regression model, featuring four sub-
ode model architectures fused together to simultaneously train and
ake predictions in a multi-labelled fashion. The model accepts input

rame of variable length (spatial size 224 × 224 pixels) indicated by
eight matrix 𝑤 

𝑙 
𝑖 
and convolved with the convolution layer of each par-

llel sub-model 𝐹 𝑖 −1 as the input feature-map to achieve a 2D output
eature map, 𝐹 𝑙 

𝑖 
of 𝑖 𝑡ℎ kernel of the specific convolution layer 𝑙, given in

quation (6) . This flattened vector is fed into a layer of time sequence
odule (LSTM) for temporal extraction. Each convolution layer features

n activation function of the type - Rectifier Linear Units (ReLU) [ 23 ], as
hown in Equation (7) where neurons’ activation values of 𝑥 ranges from
 to maximum value. Each node was dedicated to extracting a specific
natomical feature relating to criteria defined for A4C and PLAX stan-
ard views in Table 1 . The components of the sub-node architecture are
tructurally optimized for each specific quality attribute and adapted
ased on best performing architecture against each quality attribute.
he model features both spatial and temporal modules, illustrated in
igure 3 , and detailed as follows: 

a) Each of the spatial module consists of four convolutional layers (ex-
cept the clarity module with three convolutional layers), with kernel
configuration of 32, 32, 32, 64 and of 3 × 3 size, respectively. Each
convolutional layer features batch normalization [ 24 ], except the
third convolutional layer which missed out on max pooling [ 25 ],
and dropout of 0.5 [ 26 ]. The output is flattened, and the sequence
is fed into the temporal module. 

b) Temporal module consists of an LSTM layer, used to extract tempo-
ral features. It accepts vector data from each adjacent convolutional
module to compute mean score on frames’ sequence data. The fea-
tures are based on fast changing pixel intensity between consecu-
tive frames, which resulted in noises where increase in varnishing
gradients on training data became apparent. Therefore, output lay-
ers were conFig.d differently to feature two stages of dense layer,
batch normalization and dropouts of 0.5. This was noted to offer
resilience against noisy labels and reduce variance in image/frame
data. 

The choice of architecture was based on the performance data, mem-
ry requirement, and fastest inference speed data, all of which are signif-
cant for real-time feedback implementation. We also investigated of the
ell-known, state-of-the-art network architectures as found in relevant
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Figure 1. Summary of data distribution for A4C and PLAX cardiac frames, indicating three categories of quality levels based on experts scores values: Frames with 
max scores of 4.5, 6.5 and 9.9, are classified as Poor quality, Average quality, and Good quality, respectively. 

Figure 2. Samples of A4C with (a) cut-off apex, (b) slightly foreshortened, and (c) good-quality image with clear visibility of interventricular septum, the left 
ventricle (LV) correctly projected (on-axis), depth-gain, and minimal foreshortening would likely gain high prediction values in quality assessment. 

Figure 3. The multi-stream neural network architecture referred to as ’Q-NET’. 
Each stream is dedicated to specific prediction and assessment of images quality 
on visibility, clarity, depth-gain and foreshortedness as identified by QV, QC, 
QD, and QF, respectively. 
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esources: DenseNet121 [ 27 ], ResNet [ 28 ], VggNet [ 29 ] and compare
he performance along with each 2d + t hybrid versions. 

The model was trained using a 5-fold cross validation technique to
nsure adequate learning on the dataset and performance was recorded
or each model. The hyper parameters learning rate was set at 0.002
ith a high momentum of 0.95 and decay rate of 0.1 every 24 steps,
nd they were reproducibly initialized to minimize possible deviations
n score performance. Data augmentation was applied to allow opti-
um learning sequences for the models; a maximum translation of [-
.05, + 0.05] pixels and maximum rotation of 5 degrees were applied
andomly for horizontal, vertical, and rotational angles, respectively.
o prevent overfitting in the training phase, we applied batch normal-

zation and dropout. A multi-label optimization approach was adopted
 30 ], and the model was trained simultaneously using four quality at-
ributes with mean absolute error as the cost function. Training was ini-
ialized with 32 batch size and completed as learning curves converged
195 
round 40 epochs. 

 

𝑙 
𝑖,𝑗𝑘 

= 

𝑛 ∑
𝑖 =0 

𝑚 ∑
𝑗=0 

𝑤 

𝑙 
𝑖,𝑚𝑛 𝐹 

𝑙−1 
( 𝑗+ 𝑚 ) ( 𝑘 + 𝑛 ) (6)

 ( 𝑥 ) 𝑟𝑒𝑙𝑢 = 𝑚𝑎𝑥 ( 0 , 𝑥 ) (7)

.6. Evaluation metrics 

Since the model uses multiplex variables for each score attributes,
he output score was normalized to [0, 1] via sigmoid activation func-
ion 𝑓 ( 𝑥 ) , Equation (8) and prediction error were evaluated against the
AE, taking the average of the absolute difference between cardiol-

gist’s ground truth (Q GT ) scores and model’s predicted scores (Q P ).
herefore, model’s minimal error with values close to 0 would indicate
 best fit scenario, while a larger error with values close to 1 would
ndicate a poor fit regression model. Lastly, the average model’s perfor-
ance in percentage was computed in Equation (9) . 

 ( 𝑥 ) 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 = 1∕ ( 1 + 𝑒 − 𝑥 ) (8)

ode 𝑙 acc = 1 − 

⎛ ⎜ ⎜ ⎝ 
∑𝑛 

𝑖 =0 
|||𝑄 GTi − 𝑄 pi 

|||
𝑛 

⎞ ⎟ ⎟ ⎠ ∗ 100 (9) 

. Results 

Cardiac echo frames are laced with significant complexities, among
hich are patients’ anatomical and pathological differences ; these com-
lexities are reflected in each fast-moving echo frame, therefore, the
odel’s inference speed is overly critical to real-time assessment and

perators’ feedback guidance for possible optimization. Hence, imple-
enting a customized model that can successfully generalize with high

onfidence and high-speed inference would make a significant achieve-
ent in automated assessment. 
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Table 2 Model performance on quality attribute/indicator and the error distribution, given by the mean and deviation ( 𝜇 ± 𝜎) notation 

Quality model / indicator Accuracy (%) Q1 Q2 Q3 Inference time (ms) 

𝜇 ± 𝜎

Visibility 94.37 0.1536 ± 0.1036 0.1681 ± 0.1100 0.1581 ± 0.1038 9.476 
Clarity 96.84 0.1635 ± 0.1034 0.1759 ± 0.1042 0.1837 ± 0.1106 7.753 
Depth-gain 96.27 0.1357 ± 0.0982 0.1326 ± 0.0956 0.1306 ± 0.0956 8.384 
Foreshorten 97.50 0.1909 ± 0.1262 0.1901 ± 0.1285 0.2044 ± 0.1242 9.356 

Q1, Q2, and Q3 represent the three levels of image quality per model. Inference time is the average time it takes the model to identify and predict scores for each 
image’s quality levels. 

Figure 4. Box plot shows the error distribution on the multi-stream model ar- 
chitecture featuring the collective quality attributes indicators. The y-axis shows 
the difference between experts’ ground truth and model predictions. The x-axis 
shows each quality attributes (indicator) per model. 
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The proposed multi-stream model was evaluated on an external
ataset to lower systemic bias and achieved a mean accuracy of 96.20%
nd 2.52 ms inference speed which reinforces the viability for real-time
eedback deployment per quality per frame. The results enumerated in
able 2 outlined the accuracies and error distribution achieved on each
edicated model for visibility, clarity, depth-gain and foreshorten indi-
ators respectively. The aggregated error distribution per model is de-
igure 5. Sample of predicted images with respective objective scores. Visibility (V
AS) are used to assess cardiac image quality during clinical acquisition process. 

196 
icted in Figure 4 , while the model predictive accuracy ( Table 3 ) for
isibility, clarity, depth-gain, and foreshortening group attributes (indi-
ators) are 94.4%, 96.8%, 96.2% and 97.4% respectively. The samples
f predicted cardiac frames shown in Figure 5 that clearly indicates the
redictive objective scores for visibility, clarity, depth-gain, foreshort-
dness and its weighted average score (AS). These are automatically
enerated by the pipeline and superimposed on the cardiac frames in
eal-time. 

. Discussion 

The results of each model’s performance (except QA-NET + LSTM) are
hown in Table 3 , and vary substantially by group attribute/indicator
ven though each model retains its original values of hyperparameters.
his indicatively prove that one model cannot fit it all. Each of the eval-
ated state-of-the-art model is incapable of delivering consistent per-
ormance in terms of accuracy, and real-time inference speed on the
elected group quality attributes/indicators. 

The achieved inference speeds for DenseNet121, ResNet50, and Vg-
Net16, are 24.70ms, 19.53ms, and 30.76ms, respectively. This im-
lies that a maximum frame per second (FPS) of 40, 51 and 32 can be
chieved with the respective state-of-the-art models. This speed is insuf-
cient for real-time quality assessment. Nevertheless, our model (QA-
et) achieved a reduction of 90% in inference speed for the combined
S), clarity (LC), depth-gain (DG), foreshortening (FS) and overall quality score 
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Table 3 Comparison of the model’s performance, including the selected state-of-the-art model (DenseNet, ResNet and VggNet) on echocardiogram objective quality 
score 

Regression accuracy (%) Inference 
time (ms) 

Model data Visibility Clarity Depth-gain Foreshorten Accuracy 

DENSNET + LSTM 92.20 88.20 95.62 90.44 91.62 24.704 
RESNET + LSTM 89.45 92.25 87.40 92.20 90.32 19.526 
VGGNET + LSTM 92.30 97.20 98.40 89.20 94.28 30.760 
QA-NET + LSTM 94.40 96.80 96.20 97.40 96.20 2.520 

Each of the models was evaluated on the combined attributes (quality indicator) of visibility, clarity, depth-gain, and foreshortening simultaneously. The best 
performing model (QA-Net), in terms of accuracy and inference is highlighted. 

Figure 6. Illustrates the convolutional layers learned features (feature map) from a specific image (original input image) and its respective layers of distinguishable 
detection from each model. 
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odel performance, making it the best candidate for transthoracic im-
ge quality assessment solution. Note that our multi-stream pipeline ac-
ively combined four attributes group indicators simultaneously during
he training and prediction phases. The deep neural networks were fully
ptimized to yield the best inference speed and performance accuracy
n each of the specific quality indicator. Therefore, we concluded that
ach quality attribute/indicator associated with distinguishable patho-
ogical complexities and fast-changing echocardiogram would require a
ully customized and optimized model for objective quality assessment
ask. 

Furthermore, a summary of visualization of the learned features
s illustrated in Figure 6 . To obtain this, each quality indicator
roup was modeled individually to show the discriminative ability
f the respective network of our model. Here, the model’s feature
aps give the idea on which part of image’s element is being fo-

used upon at each convolutional layer in the network. Although
everal global characteristics have been used in the quality criteria,
his study does not claim exhaustiveness in the group criteria in-
icators. We are aware that different laboratories are at liberty to
dopt what is considered the best practice in their region of prac-
ice, especially when such requirements are mandatory by healthcare
egislation. 

. Conclusion 

In this study, we considered four distinctive group of quality at-
ributes or indicators where echocardiographic image quality was eval-
197 
ated and a novel method of accessing such attributes under A4C and
LAX echocardiographic views. These two views bear clinical signif-
cance and are recommended for chamber quantification and linear
easurement in clinical workflow [1–3] . Since this appear to be the
rst time where 2D echocardiogram quality indicators are thus defined
omprehensively, the results of our work can only be compared to the
ecent, and existing work on echocardiographic image quality assess-
ent listed in Table 4 . Technical comparison, in terms of the use case

unctionality, clinical feasibility, and method of assessment could pro-
ide significant evidence on how this important clinical problem in
chocardiographic image quality has been addressed. Furthermore, each
f the existing work (including ours) has employed different indepen-
ent dataset, study population and sample size. Even though our works
chieved better model accuracy compared to all the existing similar
orks, it is reasonably unfair to compare the model accuracy or infer-

nce speed event, except for clinical deployability and use case func-
ionality. 

We have presented the clinical significance and feasibility of devel-
ping an automated quality assessment in 2D echocardiographic images.
herefore, a quantitative method defined for image quality standard can
rovide useful feedback for an operator guidance system and a valuable
ool for research in clinical practice, first to function as an arbiter ref-
rence to clinicians and, secondly, to accelerate the learning curve for
hose in training. Also, it can provide specific information on the ade-
uacy of the images obtained in retrospect, which could be universally
elevant for a lifesaving procedure at the point of care or during clinical
mergencies. 
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198 
Finally, we used the annotation provided by two experts; a cardiol-
gist who provided reference and supervision and an accredited anno-
ator. An intra-observer variability can be examined by obtaining addi-
ional annotations from human experts and compared them to the error
n the predicted scores. 
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