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ABSTRACT 
While early warning systems are recognised as the most cost-effective solution in urban flood 
risk management, highly accurate flood forecasting is limited to short-term timesteps, usually 
less than a few hours especially for prediction of overflowing in urban drainage systems . This 
study aims to provide a framework for more accurate overflow predictions for longer lead times 
by using data mining models applied to time series data for multi-step flood forecasting. The 
framework including event identification, feature analysis and developing models is 
demonstrated by its application to a pilot study in London. All numerical rainfall data and water 
levels in urban drainage systems are first turned to the categorical  events on which 6 common 
weak learner models are developed. Then, three new time-series models, including 
overflowing-based, non-overflowing-based, and accuracy-based, are developed based on 
these models to predict overflow states among all identified events. Three weak learner models, 
i.e. discriminant analysis, naive Bayes, and decision tree are considered as the best models 
based on accuracy, total overflowing detection and total non-overflowing detection. 
Furthermore, while the accuracy of these models is changed between 95 to 85% from 1 to 12-
step ahead of prediction, these models can detect the non-overflow conditions better than 
overflow detection. To cover this gap, new time series developed models could significantly 
reduce the overestimation and underestimation of water levels, including correct predicting of 
50% of the total events after 12-step ahead by overflow-based model. This result shows the 
potential of using time-series data-demanding models for effective and highly accurate 
predictions of overflow events.  
 
Keywords: Data mining; Drainage system; Flooding classification; Multistep prediction Overflow 
prediction 

1. INTRODUCTION 
Flooding is recognised as a worldwide natural hazard, which is responsible alone for over 30% 
of global economic loss and 60% of the total affected people by all types of natural hazards [1]. 
According to UNDRR [2], the number of flood occurrences increased in the recent 50 years 
(Figure 1a), in which more than 3.5 billion people have been affected and near 1,750 billion 
pounds loss is estimated so far (Figure 1b). Therefore, early warning systems can now 
commerce to a reliable and practical solution for predicting floods’ overflowing of drainage 
systems by using weak learner data mining models (WLDM). However, they are unable to 
forecast flood for long time steps due to complicated non-periodic and chaotic mechanism of 
rainfall occurrence and weak correlation between flooding and drainage systems’ water level 
[3]. 

Previous research works applies WLDM such as support vector machine (SVM), k-nearest 
neighbourhood (KNN), discriminant analysis (DA), decision tree (DT), Gaussian process 
regression (GPR), naive Bayes (NB), and neural network pattern recognition (NNPR) to 
forecasting water level in urban drainage systems (UDS) [4,5]. They were also used to 
determine overflow conditions in which the flow in UDS exceeds the full capacity of UDS and 
spills into urban areas and causes flooding. However, other data mining models (DMs), 
particularly feedback forward and recurrent neural network (RNN) models show more potential 
due to representing a significant forecasting accuracy, handling big data and high-speed 
computation [6]. Despite the good performance of these DMs, the accuracy of forecasting 
overflow in these models for periods longer than 60 minutes is reduced significantly [1]. To 
tackle this, hybrid models have been developed recently in which WLDM are mixed with RNN 
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[7]. While these models could increase the accuracy of overflow prediction in near lead time, 
they are still unable to provide reliable and accurate estimation for lead time longer than two 
hours. [8,9]. Additionally applied WLDM focus heavily on increasing model accuracy in only one 
specific time step [10] instead of following the concept of time-series DMs for multi-step 
prediction [11,12].  
 

  
     (a)          (b) 

Figure 1. Recent 50-year recorded flood events all around the world: a) number of flood 

occurrences, b) associated cumulative social and economic loss 

Hence, the present study aims to propose flexible time-series WLDM models to fill the above gaps, 
including (1) providing more accurate overflow predictions for longer lead time, and (2) using the 
concept of time series DMs to find the best method for multi-step prediction, (3) investigating model 
performance on not only different lead times, but also multistep overflow detection of flood events. 
This model can enable the development of a high-speed and outperformed real-time overflow 
classification model that can be trained based on a limited temporal set of data, i.e. only rainfall and 
water level in UDS. The proposed framework along with the case study in the UK will be described 
in the next section followed by presenting research findings, critical discussion, and finally 
highlighting key findings and final remarks in conclusions.  

2. METHODOLOGY 
The proposed framework as shown in Figure 2 comprises two main parts: (1) data collection 
and preparation, and (2) model development and performance assessment. The time-series of 
rainfall and water level data of UDS (described in section 2.1) collected from a public domain 
online database and their missing data are infilled by linear regression, are used to identify both 
flood and non-flood events [13]. Identified numerical events are then turned into categorial 
order, named hereafter featured events, through the method proposed in Section 2.2. Several 
widely used WLDMs are developed based on these featured events which are introduced in 
Section 2.3. The time-series data mining models for predicting overflow conditions in floods and 
non-floods events are developed and evaluated based on the model performance criteria 
introduced in section 2.4. 

 
Figure 2. The proposed framework for flood overflow detection 
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2.1 Data collection and study area 
The proposed framework is demonstrated here through its application for forecasting flood 
overflow in a real-world UDS pilot study in the UK. Figure 2 shows the entire catchment area 
located in the London Borough of Hillingdon including the Ruislip urban catchment area 
analysed in this pilot study. The Ruislip UDS drives the Colne catchment surface runoff from 
south Hertfordshire to a tributary of the River Thames in England. The UDS located in the 
northwest of London collects the surface runoff through the river Pinn from a catchment area 
of 13 km2. The pilot study was selected due to its vulnerability to frequent fluvial flooding over 
the Ruislip urban neighbourhoods. Ruislip gauging station in the river Pinn located at the outlet 
of the Ruislip UDS is one of the 55 gauging stations installed in the Colne catchment area and 
is responsible for measuring and recording the water level. An ultrasonic depth monitor system 
is used to record the time-series of water level every 15 min at the station since 2009 [14]. 
Furthermore, the rainfall observed every 15 minutes at RAF Northolt rain gauge station, shown 
in Figure 2, is also used here [14]. The entire database includes 365,233 data for both rainfall 
and water level, 15-minute time intervals and a continuous duration of 11 years (2009-2020) 
are accessible through the application programming interface (API) of the UK Environment 

Agency [14]. 

 
Figure 2. The layout of the case study and location of rainfall and gauging stations 

2.2 Feature extraction and selection 
Based on rainfall and water level records, data are firstly converted to (1) overflow events i.e., 
rainfall occurrence causes water level rising in the UDS and overflowing, (2) non-overflowing 
events, i.e. despite rainfall, there is no water level rise as outlined in the event identifications 
[13]. Then all identified events are converted into several features of rainfall events listed in 
Table 1. Principle component analysis [15] is used as criteria (See Figure 3) to determine the 
final parameters including (1) rainfall duration, (2) rainfall intensity, (3) intensity of previously 
occurred rainfall, (4) season of the event and (5) overflowing state.  

 

 

 

 

 



Table 1. Extracted and final selected features for turning identified events to featured events 

Group 
feature 

Extracted 
feature 

Description 
Type of  

used data 
Transformation 

Rainfall 
data 

Duration 
(F1) 

Duration of rainfall 
occurrence in the area 
of interest 

Actual 
Timestep  
(Every 15 mins) 

Total depth 
(F2) 

Liquid precipitation 
covering a horizontal 
surface area of interest 

Actual mm 

Intensity 
(F3) 

The average rainfall 
rate for a specific 
duration 

Actual mm/hr. 

Peak depth 
(F4) 

The maximum amount 
of rainfall Intensity 

Actual mm 

Previous 
rainfall 

Occurrence 
(F5) 

Evidence showing 
rainfall occurred before 
the current time 

Categorised 
0 (No) 
1 (Yes) 

Intensity 
(F6) 

The average rainfall 
intensity of previously 
recorded rainfall 

Actual mm/hr. 

Date of 
the year 

Season 
(F7) 

Time of the year Categorised 
1(Dry) 
2 (Mild) 
3 (Rainy) 

Long-term 
history (F8) 

Average rainfall 
intensity of this date for 
the past 10 years 

Actual mm/hr. 

Overflow Existence 
State of water level in 
comparison to full 
capacity of UDS 

Categorised 
Class 1 (No 
overflowing) 

Class 2 (Overflowing) 

 

 
Figure 3. Principal components analysis (PCA) on extracted features 

2.3 Developed data mining models 

Based on the literature, 7 WLDMs are selected to develop here, including: (1) DA, (2) DT, (3) 
GPR, (4) KNN, (5) NB, (6) SVM, and (7) NNPR. Models are developed based on 2 classes (1) 
non-overflow state, and (2) overflow detection. Time-series models are also developed based 
on the process shown in Figure 4, in which 12 timesteps of each event are predicted by a 
specified developed model. Here, WLDMs are used to build three time-series models based on 
the best overall accuracy (called "ACC" model), the best overflow detection (called "TPR" 
model) and the best non-overflow detection (called "TNR" model) of previous developed 
WLDM. For this purpose, among all developed WLDM, the best model is used for the prediction 
of the event’s class in first time step ahead, and then this process goes continued iteratively for 
further time steps.  
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Figure 4. Iterative process of developing time-series data mining models 

All models are built for prediction from 1-step to 12-step ahead using MATLAB 2021a and then 
individually optimised based on 30 different iterations. 75% and 25% of total events are used 
for building WLDMs and time-series models, respectively. All WLDM models are developed 
based on 70% (53% of the total database) for model training, 15% (11% of the total database) 
for validation and 15% of data for test. In each timestep, training, validation and test dataset 
are generated randomly based on characteristics of the entire database, meaning 70% of non-
overflow events and 30% of overflow events. All developed WLDM models are stored in a model 
warehouse (library) used then for developing time-series models.  

2.4 Key performance indicators 
Performance of WLDM models is evaluated by using three main indicators listed in Table 2, 
including (1) accuracy, (2) total correct detection of overflow events, and (3) Total correct 
detection of non-overflow events. Besides, developed time-series models evaluated based on 
the confusion matrix shown in Figure 5, consisting of (1) hit rate, predicting correct event’s class 
in correct timestep, (2) miss rate, underestimated prediction in both event class and timestep, 
(3) Over rate, overestimated prediction in event class, (4) acceptable rate, predicting correct 
event class in correct or earlier timestep. 

Table 2. Key performance indicators used for performance assessment of WLDM models 

Metric Covered concern Equation Range 

Accuracy 

(ACC) 

Probability in that the model prediction is correct, i.e. 

interested in predicting the right classes without caring 

about the type of the class or class distribution. 

TP + TN

n
 [0,1] 

Total positive 

rate (TPR) 

Sensitivity of model in recalling actual overflow condition, 

i.e. accuracy of overflow class 

TP

TP + FN
 [0,1] 

Total negative 

rate (TNR) 

Specificity of the model in selecting actual non-overflow 

condition, i.e. accuracy of non-overflow class 

TN

TN + FP
 [0,1] 

TP: True overflow detection           TN: True non-overflow detection             n: total number of events 

FP: Non-overflow event is detected as an overflow condition 

FN: Overflow event is detected as a non-overflow condition 

 

Time step: t

Model warehouse

th” t“Allocate 

developed model

Predict overflowing class 

for “t” timestep ahead

Featured event database

t=t+1

Determined class

Best preformed model



 
Figure 5. Structure of time-series event-based performance assessment 

3. RESULTS AND DISCUSSION 
Performance of developed WLDM models for different prediction timesteps (1-12 timesteps 
ahead) are demonstrated in Figure 6 and the best model performance is indicated in Table 3. 
Overall, ACC and TNR reduced from near 95% to 80% from 1 timestep to 12 timesteps for all 
models (Figure 6a and 6C), whereas TPR dropped up to 50% for the longest lead time (Figure 
6b). While the number of the observed non-overflow event is 3 times more than overflow events, 
high accuracy of TNR shows that developed WLDM models are more capable to detect non-
overflow events than detecting correct overflow conditions. Furthermore, Table 3 indicates that 
no absolute and unique WLDM model can perfectly show the best performance in comparison 
to other models. For example, although DA is recognised as the best ACC model, positioning 
the first rank in 6 out of total 12 timesteps with an average of 88.65%, it could not obtain the 
best TPR or TNR score, whereas NB and DT models have the best performance in these 
metrics, respectively. 

   

(a) (b) (c) 

 
 

Figure 6. Performance of WLDMs in different prediction timesteps: (a) ACC, (b) TPR, (c) TNR 

 

Based on the recognised best WLDM models for all metrics, the performance of these models 
is investigated in time-series modelling, which is shown in Figure 7. While the accuracy of exact 
prediction, i.e. correct detection of events, is generally reduced from around 85% (1 step ahead) 
to near 80% (12 steps ahead) for all models, the TPR-based model shows slightly better 
performance in which the accuracy is about 80% for all time steps. However, these models are 
distinguished from each other in the rate and trend of underestimation and overestimation 
accuracy. The ACC-based model for longer lead times tends to overestimate flood forecasting 
while the TNR-based model has more underestimated flood forecasting. Although the result of 
the TNR-based model was expected because of the ability of WLDM models to better prediction 
of non-overflow events in comparison to overflow events, it was expected that the TPR-based 
model has more underestimated forecasting because of using WLDM with the lower range of 
TPR rather than TNR and ACC score. However, flexible use of WLDM in time-series models 
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could overcome this gap and shows better performance on the low range of both overestimated 
and underestimated predictions. 

Table 3. Best WLDMs based on the key performance indicators 

Time step 
Best developed model 

ACC TPR TNR 

1 DA (93.10%) NB (86.56%) DT (98.07%) 

2 DA (93.06%) NB (87.93%) DT (97.13%) 

3 KNN (92.03%) NB (86.68%) KNN (97.51%) 

4 GPR (91.47%) NB (84.07%) GPR (97.81%) 

5 DA (90.01%) DA (82.74%) DT (95.49%) 

6 KNN (89.92%) DA (80.61%) DT (95.16%) 

7 DA (88.42%) NB (74.63%) DA (95.39%) 

8 DA (88.27%) DA (76.42%) KNN (94.29%) 

9 KNN (85.86%) NB (73.35%) SVM (93.77%) 

10 NRP (85.47%) NRP (70.44%) SVM (93.41%) 

11 DA (85.15%) NRP (67.04%) SVM (94.10%) 

12 SVM (84.64%) NB (66.29%) SVM (94.42%) 

Best model1* 
DA  

(62*, 88.65%3*) 

NB 

(72*, 76.94%3*) 

DT 

(42*, 94.47%3*) 

1*: Best model is selected based on the Friedman test for all 12 timesteps 

2*: Frequency of best model among total 12 timesteps 

3*: Average value for all 12 timesteps 

 

  
(a) (b) 

 
(c) 

 
 

Figure 7. Performance assessment of developed time-series models in each time step: 

(a) ACC-based, (b) TPR-based, (C) TNR-based 

Model performance should be also investigated for all duration of events, as shown in Figure 
8. Results show that the miss rate of prediction is still low for both ACC-based and TPR-based 
models (less than 3% in Figure 8a). However, this rate suddenly increases to 25% for the TNR-
based model. On the other hand, as can be seen in Figure 8b, 13% of total events have 
overestimation forecasting in the ACC-based model, whereas this rate is reduced to 5.68% and 
2.44% for TPR-based and TNR-based, respectively. Finally, while hit rate is quite low for all 
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models (42%, 22% and 11% for TPR, ACC, and TNR models, shown in Figure 8c, respectively), 
acceptable rate illustrated in Figure 8d shows these models can satisfactorily predict the correct 
class, meaning overflowing or not overflowing, in correct timestep or slightly earlier. More 
specifically, the TPR-based model could show a 91% acceptable rate with just an average of 
1.13 timestep lag (average of all lagged time between actual timestep and predicted timestep 
of true predicted class). These promising results can show time series models, particularly the 
TPR-based model, can be simply but effectively applied for early warning overflow detection 
systems. 

 

 

 
(a)  (b) 

 

 

 
(c)  (d) 

Figure 8. Event-based performance assessment of developed time-series models: (a) 

Miss rate, (b) Over estimated rate, (c) Hit rate, (d) Acceptable rate 

4. CONCLUSIONS 
The present study provides a framework for developing WLDMs followed by time-series models 
based on ACC, TPR and TNR metrics, for early warning overflow detection systems. Analysis 
of WLDMs, applied for the real case study, shows that none of the selected models could 
outperform each other for all metrics or for all prediction timesteps. While models indicating 
better ACC rather than TPR are more capable in detecting non-overflow events than overflow 
conditions (80-95% vs 60-90% accuracy of TNR and TPR). However, time-series models, 
especially the TPR-based model, could cover this accuracy by choosing the best WLDM in 
each time step, which result in reducing overestimation and underestimations for different 
timesteps of prediction as well as reflecting more than 90% of the acceptable rate. Hence, the 
application of time-series data mining models can enable the development of a high-speed and 
real-time overflow classification model that can be trained based on limited features obtained 
from only rainfall and water level in UDS. However, the applied concept requires further studies 
such as using advantages of ensemble modelling and involving more input decision variables, 
especially temperature, soil moisture and wind characteristics. 
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