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.

⁻ The methodology comprises three components: “data collection and

preparation”, “model development” and “performance assessment”

(Figure 1) and applied for real case study, meaning Ruislip urban

drainage system (Figure 2).

⁻ The nonlinear autoregressive network with exogenous inputs (NARX)

models is selected, which is recommended as most powerful model is

suitable for multivariate time series hydrological and hydraulics

problems (Piadeh et al., 2022).

⁻ Three conventional models first are defined: (1) Built model with one

rainfall monitoring station (RMS), (2) Built model with three more

correlated RMS, (3) Built model with 6 RMS to show the importance

of data integration in model performance.

⁻ Range of input data are selected based on other studies’

recommendations, i.e. using lag time in which best cross-correlation

or cross-covariance coefficient is obtained between rainfall station

and water level data) (Snieder et al., 2020).

⁻ Performance are assessed for 15-minute, 1-hour, 2-hour and 3-hour

steps ahead forecasting in conventional models and only 3-hour lead

time for optimised model.

⁻ Indicators of performance assessment are set to (1) Root mean square

error (RMSE), (2) Normalised Nash–Sutcliffe model efficiency

coefficient (NNSE), and (3) Accuracy of overflow detection (ACC)

for identified flood events only inspired by Piadeh et al. (2021).

⁻ Best conventional model is optimised by the shuffled frog leaping

algorithm to show difference between conventional approach and

optimised approach in input data selection, each trial includes 4 and

shuffle sample for exploration and exploitation step, respectively.

Objectives were RMSE, NSE, and ACC enhancement. Stopping

criteria is set to improvement less than 0.01% (Bui et al., 2020).

Methodology

⁻ Conventional models are improved with including more rainfall data

stations, where RMSE improved 20% and ACC increased form 19%

to 71% for 12-step ahead for instance. This result shows that data

integration can be helpfully increased model performance of AI

models, which also is compatible by result obtained from Zounemat-

Kermani et al. (2020). However, computational time increased

significantly for best model (See Figure 4-Right).

⁻ Testing all different feedback delays (range of data input) required

around 280 years (each run model needs around 15 min. for training

and validation), Therefore, optimised model can help noticeably.

⁻ Results shows that input variables for optimised model are not same

as conventional approaches were previously recommended (Figure

5-Left).

⁻ Optimised model was built after 20 hr. (10 trial and 80 run model),

in which ACC is raised from 71% to 80%, NNSE slightly improved

and more importantly RMSE decreased from 101 to 83 mm (Figure

5-Right).

⁻ Optimised model could reduced error in especially overflow

condition and high depth uprising (Figure 6).

Results

Data-driven models for real-time flood forecasting use time-series input data by using specific range

of input data for each iteration of both training and validation processes. However, little is known

about the preparation and classification of these input datasets to achieve the best model performance.

Introduction
Proposing an input variable selection method based on nature-based

optimisation model to obtain the best dataset of input data for AI-

Based time-series flood forecasting models.
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Figure 1. The methodology applied for developing different urban 

flood forecasting models
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Figure 2. Location of the case study
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Figure 3. Data relationship between different selected rainfall 

stations and water level: (Left): Cross-correlation, (Right): Cross-

covariance

Figure 5. Each trial’s model improvement using optimisation model (Left) Decision variables, (Right) Performance
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Figure 4. Performance indicators for conventional built models
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Figure 6. Model performance of (Left) Best conventional model, (Right) Optimised model
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